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Abstract—The detection of moving objects is the first step
in video surveillance systems. But due to the challenging back-
grounds such as illumination conditions, color saturation, and
shadows, etc., the state of the art methods do not provide
accurate segmentation using only a single camera. Recently,
subspace learning model such as Robust Principal Component
analysis (RPCA) shows a very nice framework towards object
detection. But, RPCA presents the limitations of computational
and memory issues due to the batch optimization methods, and
hence it cannot process high dimensional data. Recent research
on RPCA methods such as Online RPCA (OR-PCA) alleviates
the traditional RPCA limitations. However, OR-PCA using only
color or intensity features shows a weak performance specially
when the background and foreground objects have a similar
color or shadows appear in the background scene . To handle
these challenges, this paper presents an extension of OR-PCA
with the integration of depth and color information for robust
background subtraction. Depth is less affected by shadows or
background/foreground color saturation issues. However, the
foreground object may not be detected when it is far from the
camera field as depth is less useful without color information.
We show that the OR-PCA including spatiotemporal constraints
provides accurate segmentation with the utilization of both color
and depth features. Experimental evaluations on a well-defined
benchmark dataset with other methods demonstrate that our
proposed technique is a top performer using color and range
information.

Keywords—OR-PCA, Background subtraction, Disparity, Color
features.

I. INTRODUCTION

Accurate and precise detection of moving objects from
video sequence is the first step in many computer vision
and image processing applications. This pre-processing step
consists of separating moving objects called “foreground” from
the static scene called “background”. However, it becomes
really hard task when the scene has sudden illumination change
or geometrical changes such as waving trees, water surfaces,
etc. [1]

Many algorithms have been developed to tackle the chal-
lenging problems in the background subtraction (also known as
foreground detection) [1]–[3]. Among them, Robust Principal
Component Analysis (RPCA) based approach shows a very
nice framework for object detection. The background sequence
is modeled by low-dimensional subspace called low-rank ma-
trix and sparse error constitutes the foreground objects. Fig. 1

shows an example of moving object segmentation using RPCA
based approach.

(a) (b) (c) (d)
Fig. 1: A rotary sequence of BMC [4] dataset. From left to
right: (a) input, (b) low-rank, (c) sparse, and (d) foreground
mask.

Although RPCA for background subtraction attracts a lot
of attention, but it faces some limitations. First, the algorithm
includes batch optimization. In order to decompose an input
image A into low-rank matrix L and sparse component S, a
chunk of samples are required to store in memory. As a result,
it suffers from huge memory usage and high computational
cost. Second, there is no RPCA based approach which uses
additional features such as edges, texture or depth information,
as well as pixel intensity for background modeling, because it
causes much more memory usages. Therefore, RPCA based
scheme is not suitable for practical background subtraction
systems. However, the most recent work on RPCA such as
Online RPCA (OR-PCA) solves most of the traditional RPCA
problems.

Online Robust Principal Component Analysis (OR-
PCA) [5] process one frame per time instance via stochastic
optimization, provides a very interesting solution of RPCA
based scheme. In [1] and [2], OR-PCA is modified to be
adapted for background/foreground separation via image de-
composition with initialization scheme using Markov Random
Field (MRF). However, only intensity features are considered
in this work. Due to the tedious parameter setting, the system
is not applicable for real-time processing. As OR-PCA [2]



method is able to provide robust background subtraction under
different well-known challenges such as sudden illumination
changes, waving trees, water surface, etc. But using a single
camera, the problem is still far away from being solved spe-
cially when the background/foreground objects contain similar
features and shadows appear in a background sequence.

In this paper, we present depth extended OR-PCA (DEOR-
PCA) with spatiotemporal constraints for robust background
subtraction using binocular cameras and stereo algorithms
to compute the disparity image from pair of images. Depth
information using three disparity estimation methods such as
phase [6], variational [7] and semi-global block matching
(SGBM) [8] based, with color features in OR-PCA produce
accurate foreground segmentation. We briefly summarize our
methodology here. First, the depth information is estimated
from stereo pairs using three disparity estimation methods.
Second, OR-PCA is applied on every color and depth frame
to separate the low-rank and sparse component. Then the
integration is performed on each separated low-rank and sparse
matrix and a hard thresholding scheme is applied to obtain
the initial foreground mask from integrated sparse component.
Morever, spatiotemporal constraints such as MRF is applied on
initial foreground mask to further improve the segmentation.
In addition, a very nice comparison of foreground detection
based on three types of disparity methods is presented.

The rest of this paper is organized as follows. In Section II,
the related work is reviewed. Section III describes the proposed
extended OR-PCA framework based on color and depth infor-
mation. Experimental results are discussed in Section IV, and
finally the conclusion and some future directions are shown in
Section V.

II. RELATED WORK

Over the past few years, excellent methods have been
proposed for background subtraction using subspace learning
model [9]. Among them, Oliver et al. [10] are the first authors
to model the background using Principal Components Analysis
(PCA). The foreground detection is then achieved by thresh-
olding the difference between the reconstructed background
and input image. PCA provides a robust subspace learning
model but it is not robust when the data is corrupted and
outliers appear in the new subspace basis. In contrast, recent
RPCA based approaches in [9] can tackle the problem of
traditional PCA.

A remarkable improvements have been found on RPCA for
background modeling. Excellent surveys on background mod-
eling using RPCA can be found in [9]. For example, Candes
et al. [11] proposed a robust convex optimization technique to
address the PCA problems. Many batch optimization methods,
such as Augmented Lagrangian Multiplier (ALM), Singular
Value Thresholding (SVT) and Linearized Alternating Direc-
tion Method with an Adaptive Penalty (LADMAP) discussed
in [9] solve the sub-optimization problem to separate the low-
rank matrix and sparse error in each iteration under defined
convergence criteria. These RPCA methods work in a batch
optimization manner, as a result huge memory usage and high
time complexity issues occur.

Therefore, Feng and Xu [5] recently proposed Online
Robust-PCA (OR-PCA) algorithm which processes one chunk

per time instance using stochastic approximations (no batch
optimization is needed). A nuclear norm objective function is
reformulated in this approach, and therefore all the samples
are decoupled in optimization process for sparse error sep-
aration but no interesting results are observed in this work
for background subtraction application. Therefore, Javed et
al. [1] modified OR-PCA for background/foreground sepa-
ration. Only intensity information via image decomposition
including data-dependent initialization scheme is proposed in
thier work. As a result the method is robust to some extent but
it gets fail under highly dynamic background scenes.

Therefore, Javed et.al [2] further enhanced the OR-PCA
using intensity features with continuous constraints such as
Markov Random Field (MRF) to address the highly dynamic
background scenes. A number of encouraging results have
been observed in [2]. But annoying paramter tunning and
lack of useful features are the main drawback in their ap-
proach. In [12], multiple features based OR-PCA for robust
background subtraction is proposed Nine different features are
used in this work and foreground detection is acheived using
dynamic feature selection scheme based on feature similarity
among low-rank features. Although the method is very ro-
bust for background subtraction but due to the computational
complexity issues the method is not applicable for real-time
applications.

There are significant work already being studied in [13]–
[16] on background subtraction using disparity information.
For example, Ivanov et.al [13] proposed an approach based
on the use of range information to warp on image pair with
the other one. This approach is not based on background
subtraction method and the foreground detection is required
if the color and brightness between corresponding points do
not match.

In [14], Kolgomorov et.al proposed two algorithms for bi-
layer detection using fusion of stereo and color information
based on the live background substitution. The foreground
objects are detected using background subtraction on stereo
pairs. Schiller [15] also proposed color based background
subtraction with fusing depth information obtained using low-
resolution Time-Of-Flight camera. Due to its low resolution,
the method is not robust at objects boundaries.

In [16], a codebook algorithm is extended with fusing depth
information. A very interesting study is presented for object
segmentation on three types of disparity estimation algorithms
as diuscussed above.

In this work, our main contributions can be summarized
as follows: since RPCA based schemes either works in online
or batch optimization manners using only a single camera,
therefore we present an extension of OR-PCA [2] for binocular
camera case for robust background subtraction. The three
different types of disparity images are computed and OR-PCA
is applied on each color and disparity image to get the sparse
component. OR-PCA with disparity information provides an
accurate segmentation on a wide range of background scenes.

III. METHODOLOGY

In this section, DEOR-PCA (depth extended OR-PCA)
is discussed in detail. Our methodology consists of several
components which are described as a system diagram in Fig. 2.
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Fig. 2: Overview of our background modeling scheme.

Our methodology consists of four main stages: dispar-
ity estimation, background modeling, integration and spatial-
temporal constraints. Initially, the range information is ob-
tained using disparity estimation algorithms on a set of stereo
pairs. Then, OR-PCA is applied to each of left and disparity
images to model the background, separately. Next the inte-
gration is performed, which combines low-rank and sparse
components obtained via OR-PCA to recover the background
model and foreground mask from each image. The recon-
structed sparse matrix is then thresholded to get the binary
foreground mask. Finally, the spatiotemporal constraints such
as continuous MRF is applied to remove most of the noise in
the foreground mask due to depth information. In the following
sections, we will describe each module in detail.

A. Disparity Estimation

In the first stage, three types of depth images are computed
using variational [7], phase [6] and SGBM [8] based disparity
algorithms. In this work, the disparity information is already
provided as we use the benchmark dataset [17]. However in
real-time processing, the disparity map can be obtained in the
same way. Fig. 3 shows an example of input with three types of
depth images taken from the dataset described in [16]. These
depth images are computed based on color correspondence,
therefore the noise can effect segmentation results from the
events such as flickering of lights, and uniform regions, etc.

Since the range is less effected, when shadows appear in a
background scene or foreground objects contains similar color
features as background. But when the disparity is less useful
e.g., foreground objects are not very close from the camera,
the method may not produce correct results. Therefore both
color and disparity features are useful. Overall, DEOR-PCA
performs accurate foreground segmentation using variational
based disparity which is discussed in the later section.

B. Background Modeling

Online Robust PCA [5] is applied on each depth and color
frame. OR-PCA decomposes the nuclear norm of the objective
function of the traditional PCP algorithms into an explicit
product of two low-rank matrices, i.e., basis and coefficient.
Thus, OR-PCA can be formulated as

min
L∈<d×p,R∈<p×r,E

{
1

2
‖D − LRT − E‖2F

+
λ1
2
(‖L‖2F + ‖R‖2F ) + λ2‖E‖1

}
, (1)

where D is an input data of any size (one sample), d is the
number of pixels with three color features, e.g. (width ×
height × 3), L is a basis of each individual color channel,
R is a coefficient and E is a sparse error. λ1 controls the
basis and coefficients for low-rank matrix, whereas λ2 controls
the sparsity pattern, which can be tunned according to video
analysis. In addition, basis and coefficient depend on the value
of rank r, which is tunned carefully to speed up the stochastic
optimization process.

In particular, the OR-PCA optimization consists of two
iterative updating components. First, every incoming range and
disparity image is projected onto current initialized basis L and
we separate the sparse noise component, which includes the
outliers contamination. Then, the basis L is updated with a

(a) (b) (c) (d)
Fig. 3: Sample LCD Screen sequence. From left to right:
(a) input, (b) Phase, (c) SGBM, and (d) variational disparity.



new color and depth image individually. More details can be
found in [5].

OR-PCA is applied to each color and disparity image
using Eqn. 1 to get the low-rank and sparse matrix for each
component. The background sequence for each image is then
modeled by a multiple of basis L and its coefficient R e.g.,
X = LRt, whereas the sparse component E for each image
constitutes the foreground objects.

C. Integration

The low-rank and sparse components are obtained from
each feature after applying OR-PCA. Color and range low-
rank and sparse components are integrated in this step. We
use same parameters setting for OR-PCA in Eq.(1) for each
feature. λ1 is considered as a constant 0.01 for both images.
λ2 and rank r for depth information, whereas λ′2 and rank r′
for color frame are selected according to background scene,
for obtaining enough sparsity pattern for each image.

Since disparity sparse component provides more informa-
tion in background scene, therefore λ2 must be the same as
λ′2. After integrating sparse components of each image by
adding individual features, the binary foreground mask f is
then obtained by thresholding the integrated sparse component.
A hard thresholding scheme is applied to get the initial
foreground map.

At this stage, the background subtraction scheme is good
enough using variational based disparity information to deal
with static and some small background dynamics as shown
in Fig. 4 (d). However as illustrated in Fig. 4 (b) and (c),
the integrated color and phase as well as SGBM based range
information using OR-PCA produces false alarms. As these
methods are very sensitive against noise or flickering of lights,
which effect the quality of depth map. In addition, as discussed
above color features do not provide enough information to
detect objects which contain similar features as background
but depth is less effected and hence our method provides an
accurate segmentation as shown in Fig. 4 (d).

We use the parameters in Eqn. 1 as r = r′ = 1, and
λ2 = λ′2 = 1/

√
max(width, height) for both images, which

speed up the stochastic process for image decomposition.
OR-PCA on color image with the integration of phase and
SGBM based disparity produces noise without spatiotemporal
constraints. As a result, a large number of false alarms are
generated, which is not useful for visual surveillance system.
Therefore, we have employed a spatiotemporal information in
the foreground mask such as MRF, which improves the quality
of foreground detection and alleviates most of the noise in
depth mask.

D. Spatiotemporal Constraints

The initial foreground labeling is not optimal and therefore
it can be improved with spatiotemporal constraints. In this
paper, we utilize an MRF to optimize the initial labeling
field. The MRF is a set of random variables having a Markov
property described by an undirected graph.

Let us consider the foreground image f as a set of pixels
P and a set of labels L = {0, 1}, such that

(a) (b) (c) (d)
Fig. 4: Suitecase sequence. Input with disparity images, sparse
component, thresholded mask, and ground truth with integrated
foreground mask are shown in each of rows.

fi =

{
0, if p belongs to background,
1, if p belongs to foreground.

(2)

The goal is to find a labeling f which minimizes the energy
function:

E(f) =
∑
i∈K

Ui(fi) +
∑

i,j∈N
Vi,j(fi, fj), (3)

where N ⊂ P × P is a neighborhood system on pixels,
the function Ui(fi) penalizes or assigns pixel belonging to
foreground and Vi,j(fi, fj) controls the continuous degree of
foreground or measures the cost of assigning the labels to the
adajacent pixels.

The basic idea of graph cuts is to construct a directed
graph G = (V, E), where the vertices V stands for all pixels in
image and edges E denotes spatially neighboring pixels having
nonnegative weights that has two special vertices (terminals),
namely, the source s and the sink t.

In this work, we have used the gco-v3.0 library [18] for
optimizing multi-label energies via the α-expansion and α-β-
swap algorithms. It supports energies with any combination of
unary, pairwise, and label cost terms.

IV. EXPERIMENTAL EVALUATIONS

In this section we present a set of both qualitative and
quantitative experiments on a real video sequence benchmark
dataset [16]. Our goal is to show that only color information is
not enough for background subtraction and it can be enhance
with disparity images.



A. Qualitative Analysis

Due to the space limitations, some specific qualitative
results are presented and we compare our method with other
well known state of the art methods, e.g 4D Mixture of Gaus-
sians (MOG4D) [15], PBAS [19], and Depth Extended Code-
book [16] (DECB). In addition, we have also evaluated our
method DEOR-PCA with three disparity based estiamtion al-
groithms such as DEOR-PCA variational, DEOR-PCA phase,
and DE-ORPCA SGBM based foreground detection.

In [16], every sequence presents a major challenge such
as suitecase sequence presents the low lighting and color
saturation problem, crossing sequence contains foreground
objects in and out of camera field where detection is useful
based on color features. Similary, flickering of light challenge
is presented in LCD screen, shadows are appeared in Lab
door sequence. Fig. 5, 6 and 7 show the visual results of our
proposed technique.

B. Quantitative Analysis

Quantitative results are also presented for the benchmark
dataset. Our algorithm is implemented in Matlab R2013a with
3.40 GHz Intel core i5 processor with 4 GB RAM. Addition-
ally, 5×5 median filtering is applied as a post-processing step
on binary foreground mask. The dataset contains four video
sequences with hand segmented ground truth available for
specific scene to compute the metrics. Cameras are calibrated
and each pair of images is rectified for accurate disparity
computation. The suitecase and crossing sequence contains an
image size of 1, 024 × 1, 024 whereas LCD screen and Lab
door video have a frame size of 640× 480.

The F -measure score is computed for each specific se-
quence with its hand segmented ground truth data and the
average F -measure score is provided in each case. The F -
measure is given as

Fmeasure =
2×Recall × Precision
Recall + Precision

, (4)

where Recall and Precision are computed based on true pos-
itives, false positives and false negatives, respectively. Table. I
shows a brief analysis of quantitive results in detail. Com-
putational complexity is also observed during experimental
evaluations. The computational time is recorded in CPU time
as hh:mm::ss for 100 frames as shown in Table. II.

C. Discussion

In suitecase sequence, Fig. 5 provides three types of visual
segmentation results. In this scenario, the suitcase contains
similar color features with the background scene, therefore the
detection is based mainly on depth information, and variational
as well as phase based disparity approach provides good results
as compared to SGBM as shown in Fig. 5 (f), (g), and (h)
respectively. The noise in depth images is due to camera noise
or disparity estimation algorithms.

Similarly, the crossing sequence in Fig. 6 presents two
major difficulties. First, foreground objects are in and out of
the camera field and the objects are detected based on color
features. Second, due to color saturation of foregorund objects
and shadows, the color feature is less important for detection.

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 5: Suitecase sequence. From left to right: (a) input,
(b) variational, (c) phase, (d) SGBM, (e) ground truth,
(f) DEOR-PCA variational, (g) DEOR-PCA phase, and
(h) DEOR-PCA SGBM based foreground mask.

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 6: Crossing sequence. From left to right: (a) input, (b) vari-
ational, (c) phase, (d) SGBM, (e) ground truth, (f) DEOR-PCA
variational, (g) DEOR-PCA phase, and (h) DEOR-PCA SGBM
based foreground mask.

As compared to the suitcase category, the detection is based
on both color and depth information for crossing sequence and
variational based disparity approach gives accurate foreground
segmentation as depicted in Fig. 6 (f).

Furthermore, the lab door sequence has a flickering of
light and the object is close and far from the camera field.
Both features are important and variational based disparity
information improves the accuracy as compares to other two
approaches as shown in Fig. 7 and Table. I.

Method Suitecase Crossing LCD screen Lab door Avr.
MOG4D-phase 0.412 0.658 0.781 0.492 0.585

MOG4D-SGBM 0.433 0.457 0.687 0.570 0.536
MOG4D-Var 0.762 0.778 0.625 0.431 0.649

PBAS 0.565 0.853 0.708 0.725 0.712
DECB-phase 0.499 0.636 0.691 0.658 0.621

DECB-SGBM 0.790 0.851 0.832 0.691 0.791
DECB-Var 0.766 0.780 0.803 0.548 0.724

DEOR-PCA-phase 0.431 0.620 0.684 0.5467 0.674
DEOR-PCA-SGBM 0.413 0.416 0.668 0.572 0.617

DEOR-PCA-Var 0.826 0.906 0.764 0.780 0.819

TABLE I: Quantitative comparison of F-measure score with
other state of the art methods of overall dataset. Bold values
represent the best F-measure whereas the bold red value
indicates the best average F-measure on all sequences.



(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 7: Lab door sequence. From left to right: (a) input,
(b) variational, (c) phase, (d) SGBM, (e) ground truth,
(f) DEOR-PCA variational, (g) DEOR-PCA phase, and
(h) DEOR-PCA SGBM based foreground mask.

Method 1024× 1024 512× 512 640× 480 320× 240
DEOR-PCA 00:01:12 00:00:24 00:00:27 00:00:09

TABLE II: Time complexity according to different image
resolution.

V. CONCLUSION

In this paper, a robust background modeling method against
challenging background scenes is presented using both color
and disparity information on OR-PCA with spatiotemporal
constraints. Our methodology is robust against different back-
ground dynamics. We applied three types of range informa-
tion on OR-PCA. In addition, experimental evaluations and
comparisons with other state of the art methods show the
effectiveness and robustness of our proposed scheme with
different type of range information, which demonstrate that
subspace learning model shows a very nice potential for
background/foreground separation using binocular cameras.

First, the variational based range information provides an
accurate foreground segmentation, however SGBM and phase
estimation algorithms make a noise sometimes and hence the
accuracy is reduced. Second, only one dataset is available,
which is tested using OR-PCA. Therefore, our future work
will focus more on brief analysis of each depth information
with fusion technique to make the algrotihm more robust and
rigorous experimental results will be presented in more details.
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