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Abstract. Accurate and efficient foreground detection is an important
task in video surveillance system. The task becomes more critical when
the background scene shows more variations, such as water surface, wav-
ing trees, varying illumination conditions, etc. Recently, Robust Prin-
cipal Components Analysis (RPCA) shows a very nice framework for
moving object detection. The background sequence is modeled by a
low-dimensional subspace called low-rank matrix and sparse error con-
stitutes the foreground objects. But RPCA presents the limitations of
computational complexity and memory storage due to batch optimiza-
tion methods, as a result it is difficult to apply for real-time system. To
handle these challenges, this paper presents a robust foreground detec-
tion algorithm via Online Robust PCA (OR-PCA) using image decom-
position along with continuous constraint such as Markov Random Field
(MRF). OR-PCA with good initialization scheme using image decom-
position approach improves the accuracy of foreground detection and
the computation time as well. Moreover, solving MRF with graph-cuts
exploits structural information using spatial neighborhood system and
similarities to further improve the foreground segmentation in highly dy-
namic backgrounds. Experimental results on challenging datasets such as
Wallflower, I2R, BMC 2012 and Change Detection 2014 dataset demon-
strate that our proposed scheme significantly outperforms the state of
the art approaches and works effectively on a wide range of complex
background scenes.

1 Introduction

Foreground detection (also known as background subtraction) is one of the most
important preprocessing step in many computer vision applications. Typically,
the foreground detection process forms the first stage in automated visual surveil-
lance systems, as well as other applications such as motion capture, object track-
ing and augmented reality.

Many algorithms have been developed to handle the problem of foreground
detection in videos [1–3]. In recent years, Robust Principal Component Analysis
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(RPCA) based low-rank matrix decomposition algorithms have been used for
foreground detection [4]. RPCA decomposes the original data matrix A as a
sum of low-dimensional subspace called low-rank matrix L and correlated sparse
outliers S. Fig. 1 shows an example of foreground detection using RPCA of
original images taken from i-LIDS dataset [5].

As RPCA based approaches provide a nice framework for foreground de-
tection, but it currently faces two major difficulties. Traditional RPCA based
approaches use batch optimization, e.g. in order to decompose low-rank and
sparse components, a number of samples are required to store. Therefore, it
suffers from high memory cost and computational complexity.

In order to tackle these issues, this paper presents a robust foreground detec-
tion algorithm via Online Robust PCA (OR-PCA) on decomposed images from
input image. We briefly explain our methodology here: First, input image is de-
composed into Gaussian and Laplacian images. Then, OR-PCA is applied to each
Gaussian and Laplacian images for background modeling. Since Gaussian image
is robust against noise of small pixel variations and Laplacian image preserves
edge features. Therefore, our methodology improves the quality of foreground as
well as computational time using alternative initialization scheme in OR-PCA.
Finally, an MRF is utilized to exploit structural information and similarities to
improve the foreground segmentation.

The rest of this paper is organized as follows. In Section 2, the related work
is reviewed. Section 3 describes our methodology in detail. Experimental results
are discussed in Section 4. Finally, conclusions are drawn in Section 5.

(a) (b) (c) (d)

Fig. 1. An example of moving object detection using RPCA. From left to right: (a)
input, (b) low-rank, (c) sparse component, and (d) foreground mask.
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2 Related Work

Over the past few years, excellent methods have been proposed for foreground
object detection and tracking. Among them, RPCA [6] shows promising re-
sults for background modeling. Excellent surveys on background modeling using
RPCA can be found in [4, 7]. All these RPCA approaches, such as Augmented La-
grangian Multiplier (ALM), Singular Value Thresholding (SVT) and Linearized
Alternating Direction Method with an Adaptive Penalty (LADMAP) discussed
in [4], solve the sub-optimization problem in each iteration under defined con-
vergence criteria in order to separate the low-rank matrix and sparse error. All
these methods work in a batch optimization manner, as a result memory storage
and time complexity problems occur. Therefore Principal Component Pursuit
(PCP) via batch optimization is not acceptable for real-time system.

Many noticeable improvements have been found in the literature to accelerate
the PCP algorithms [8]. For example, Zhou et al. [9] proposed Go Decomposition
(GoDec) which accelerates RPCA algorithm via PCP using Bilateral Random
Projections (BRP) scheme to separate the low-rank and sparse matrix. Semi-
Soft GoDec [9] method is an extension of GoDec which is four times faster than
GoDec. It imposes hard thresholding scheme in low-rank and sparse matrix en-
tries. In [10], Zhou et al. proposed Detecting Contiguous Outliers in the low-rank
Representation (DECOLOR) method, which accelerates PCP algorithm by in-
tegrating the object detection and background learning into a single process of
optimization. It also adds continuity constraints on low-rank and sparse com-
ponents. In [11], a fast PCP algorithm is proposed, which reduces the SVD
computational time in inexact ALM (IALM) by adding some constants in the
minimization equation of low-rank and sparse. The results in background mod-
eling case are very encouraging, but it is due to the base of PCP not desirable
for real-time processing.

Incremental and online robust PCA methods are also developed for PCP
algorithms. Fore example, in [12], He et al. proposed Grassmanian Robust Adap-
tive Subspace Tracking Algorithm (GRASTA), which is an incremental gradient
descent method on Grassmannian manifold for solving the RPCA problem in
online manner. In its each iteration, GRASTA uses the gradient of the updated
augmented Lagrangian function after revealing a new sample to perform the gra-
dient descent. Results are encouraging for background modeling, but no theoretic
guarantee of the algorithm convergence for GRASTA is provided. Therefore, in
[13], an online learning method for sparse coding and dictionary learning is pro-
posed which efficiently solves the smooth non convex objective function over a
convex set. A real-time processing is achieved, but it does not require learning
rate tunning like regular stochastic gradient descents.

In [14], Guan et al. proposed non-negative matrix factorization (NMF) method
which receives one chunk of samples per step and updates the basis accordingly.
NMF converges faster in each step of basis update. But, using a buffering strat-
egy both time complexity and space remain the issue for handling large datasets.
Therefore, Feng and Xu [15] recently proposed Online Robust-PCA (OR-PCA)
algorithm which processes one sample per time instance using stochastic approx-
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imations. In this approach, a nuclear norm objective function is reformulated and
therefore all the samples are decoupled in optimization process for sparse error
separation. In this work, we develop a background/foreground separation method
based on the OR-PCA which is modified to be adapted for this application.

3 Methodology

In this section, we discuss our scheme for foreground detection in detail. Our
methodology consists of several components which are described as a system
diagram in Fig. 2.

1st Gaussian 
Image  

2nd Gaussian 
Image  

Online 
Robust 
PCA

Laplacian 
Image

Low Rank

Low Rank Sparse

Sparse

Integration

Background ModelingDecomposition

Continuous 
MRF

Fig. 2. Overview of our background modeling scheme.

Our methodology consists of four main stages: decomposition, background
modeling, integration and continuous MRF. Initially, the input video frames are
decomposed into Gaussian and Laplacian images using a set of two Gaussian
kernels. Then, OR-PCA is applied to each of Gaussian and Laplacian images
with different parameters to model the background, separately. In the back-
ground modeling stage, we have proposed an alternative initialization scheme
to speed up the stochastic optimization process. Finally, the integration stage,
which combines low-rank and sparse components obtained via OR-PCA to re-
cover the background model and foreground image, is performed. The recon-
structed sparse matrix is then thresholded to get the binary foreground mask. In
order to improve the foreground segmentation, a MRF is applied which exploits
structural information and similarities continuously. In the following sections,
we will describe each module in detail.

3.1 Decomposition

In the first stage, two separate spatial Gaussian kernels are designed to de-
compose the input image into Gaussian and Laplacian images. First, Gaussian



OR-PCA with MRF for Foreground Detection 5

kernels are applied on the input image to get the Gaussian images. In the first
case, we choose the standard deviation σ on the Gaussian kernel as 2 with a
filter size of 5× 5 to get the first Gaussian image. In the second case, we apply
Gaussian kernel with a same σ value on the first blurred image due to its enough
smoothing properties. Since the difference of Gaussians is approximately same
as Laplacian of Gaussian, therefore Laplacian image is obtained by the difference
of two Gaussian images.

Every input video frame is decomposed into Gaussian and Laplacian images
using the method discussed above. As Gaussian image is robust against back-
ground variations and Laplacian image provides enough edge features for small
pixels variations. Therefore, the false alarms are reduced from foreground region
to some extent as a result, and our methodology provides accurate foreground
detection.

3.2 Background Modeling

Online Robust PCA [15] is used to model the background from Gaussian and
Laplacian images. OR-PCA decomposes the nuclear norm of the objective func-
tion of the traditional PCP algorithms into an explicit product of two low-rank
matrices, i.e., basis and coefficient. Thus, OR-PCA can be formulated as

min
L∈<p×n,R∈<n×r,E

{
1

2
‖Z − LRT − E‖2F

+
λ1
2

(‖L‖2F + ‖R‖2F ) + λ2‖E‖1
}
, (1)

where Z is an input data, L is a basis, R is a coefficient, and E is a sparse error.
λ1 controls the basis and coefficients for low-rank matrix, whereas λ2 controls the
sparsity pattern, which can be tunned according to video analysis. In addition,
basis and coefficient depend on the value of rank.

In particular, the OR-PCA optimization consists of two iterative updating
components. Firstly, the input video frame is projected onto current initialized
basis and we separate the sparse noise component, which includes the outliers
contamination. Then, the basis is updated with a new input video frame. More
details can be found in [15].

The background sequence for each image is then modeled by a multiple of
basis L and its coefficient R, whereas the sparse component E for each image
constitutes the foreground objects.

Initialization. The number of subspace basis is randomly determined using
improper value of rank, and no initialization method is considered for OR-PCA
in [15]. The rank value R is 20 and λ1 = λ2 = 0.01 in Eq.(1). As a result, the
algorithm converges slowly to the optimal solution and outliers appear in the
low-rank matrix, which effects the sparse component as well as foreground mask
for background modeling case, as shown in Fig. 3.
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(a) (b) (c) (d)

Fig. 3. OR-PCA failure using r = 20 and λ1 = λ2 = 0.01. From left to right: (a) input,
(b) low-rank, (c) sparse component, and (d) foreground mask.

In order to meet the time complexity, the basis for low-dimensional subspace
is initialized using first N video frames with a good selection of rank. Since we
are applying OR-PCA on two images in our scheme, the basis for each image is
initialized according to this scheme. In this case, the rank is a tunable parameter
for each image, that will be discussed in the later section.

By this technique, the OR-PCA converges to the low-dimensional subspace
faster than original one. The outliers are also reduced and good computational
time is achieved without sacrificing the quality of foreground in surveillance case.

3.3 Integration

The low-rank and sparse components are obtained from each decomposed image
after applying OR-PCA. Gaussian and Laplacian low-rank and sparse compo-
nents are integrated in this step. We use different parameters setting for OR-PCA
in Eq.(1) on each decomposed image. λ1 is considered as a constant 0.01 for both
images. λ2 and rank r for Laplacian, whereas λ′2 and rank r′ for Gaussian im-
age are selected according to background scene, for obtaining enough sparsity
pattern for each decomposed image.

Since Laplacian image provides enough edge features for small variations in
background scene, therefore λ2 must be smaller than λ′2. After integrating both
components of each image, the binary foreground mask f is then obtained by
thresholding the integrated sparse component.

At this stage, the background subtraction scheme is good enough to deal
with static and some small background dynamics such as slightly illumination
changes, but it fails to handle highly dynamic backgrounds, where most part of
the background pixels have high variations such as waving trees, water surface,
rapid illumination changes, etc. For example, in Fig. 4 (a), (b) and (c) show the
results of static and some small dynamic backgrounds. However, moving curtain
and waving trees where most part of the background pixels are moving are shown
in (d) and (e), respectively. We use the best parameters as r = 1 and λ2 = 0.03
for both images in (a). Whereas in (b) and (c), r = 1, r′ = 3, λ2 = 0.02 and
λ′2 = 0.04 are used for each decomposed images. Similarly, the best parameters
are also considered for (d) and (e) as r = 1, r′ = 10, λ2 = 0.02 and λ′2 = 0.06,
respectively.
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(a) (b) (c) (d) (e)

Fig. 4. OR-PCA via image decomposition. Input, low rank, sparse and foreground
mask images are shown in each of rows.

OR-PCA on decomposed images without a continuous constraint is not ro-
bust to handle highly dynamic background scenes as mentioned above. As a
result a large number of false alarms are generated, which is not useful for vi-
sual surveillance system. Therefore, we have employed a continuous constraint
in the foreground mask such as MRF, which improves the quality of foreground
segmentation in static as well as in highly dynamic backgrounds.

3.4 Improving Foreground Segmentation with MRF

The foreground labels can be not optimal, and therefore it can be improved with
spatio-temporal constraints. In this paper, we utilize an MRF to optimize the
labeling field. The MRF is a set of random variables having a Markov property
described by an undirected graph.

Let us consider the foreground image f as a set of pixels P and a set of labels
L = {0, 1}, such that

fp =

{
0, if p belongs to background,

1, if p belongs to foreground.
(2)

The goal is to find a labeling f which minimizes the energy function:

E(f) =
∑
p∈P

Dp(fp) +
∑

p,q∈N
Vp,q(fp, fq), (3)
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Fig. 5. Overview of solving MRF with graph cuts algorithm.

where N ⊂ P × P is a neighborhood system on pixels. Dp(fp) is a function
derived from the observed data that measures the cost of assigning the label
fp to the pixel p. Vp,q(fp, fq) measures the cost of assigning the labels fp, fq
to the adjacent pixels p, q. The energy functions like E are extremely difficult
to minimize, however, as they are nonconvex functions in a space with many
thousands of dimensions. In the last few years, however, efficient algorithms
have been developed for these problems based on graph cuts.

The basic idea of graph cuts is to construct a directed graph G = (V, E),
where the vertices V stands for all pixels in image and edges E denotes spatially
neighboring pixels having nonnegative weights that has two special vertices (ter-
minals), namely, the source s and the sink t.

MRF that has such type of s-t graph is called graph-representable as shown
in Fig. 5 and can be solved in polynomial time using graph cuts [16].

In this work, we have used the gco-v3.0 library 1 for optimizing multi-label
energies via the α-expansion and α-β-swap algorithms. It supports energies with
any combination of unary, pairwise, and label cost terms.

4 Experimental Results

In this section we present a set of both qualitative and quantitative experiments
on four challenging datasets namely Change Detection2 2014 [17], Wallflower3 [18],
I2R4 [19] and Background Models Challenge5 (BMC) 2012 [20] dataset.

1 http://vision.csd.uwo.ca/code/
2 http://www.changedetection.net/
3 http://research.microsoft.com/en-us/um/

people/jckrumm/wallflower/testimages.htm
4 http://perception.i2r.a-star.edu.sg/bk model/bk index.html
5 http://bmc.univ-bpclermont.fr/
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We compare our method with other well known state of the art methods, e.g.,
Mixture of Gaussians (MOG) [21], Semi Soft GoDec [9] and DECOLOR [10].
First we describe our experimental settings and then we analyzed the results
obtained from different datasets in detail.

4.1 Experimental Settings

As our algorithm is based on two frames processing, therefore different param-
eters setting are considered for each frame in Eq.(1). We use same parameters
as described in Fig. 4. Here we describe the range for each category. In case of
static backgrounds, we use rank as 1 and λ2 ∈ (0.01, 0.04] for both images. How-
ever, in case of highly dynamic backgrounds such as waving trees, water surface,
fountain, etc, the rank r must be in the range of r ∈ (1, 3] and λ2 ∈ (0.01, 0.03]
for Laplacian image, whereas the rank r′ ∈ (r, 8] and λ′2 ∈ (λ2, 0.09] for Gaus-
sian image, respectively. Similarly, for Bootstraping case, the rank r ∈ (1, 5] and
λ2 ∈ (0.01, 0.05) for Laplacian image and rank r′ ∈ (5, 10) and λ′2 ∈ (0.03, 0.06]
for Gaussian image.

4.2 Qualitative Analysis

Qualitative results are presented on selected video sequences from each dataset.
Our algorithm is implemented in Matlab R2013a with 3.40 GHz Intel core i5
processor with 4 GB RAM. Additionally, 5 × 5 median filtering is applied as a
post-processing step on binary foreground mask.

Change Detection 2014 Dataset. From Change Detection 2014 dataset [17],
five sequences namely, office and pedestrains from category baseline, whereas
canoe, fountain2 and overpass from category dynamic backgrounds are selected.
The image size of each sequence is 320× 240. Fig. 6 shows the visual results of
change detection dataset.

I2R Dataset. Five sequences namely, moving curtain, water surface, fountain,
lobby and hall sequences are selected out of nine from I2R dataset [19]. Each
sequence contains a 160× 128 of frame size. Fig. 7 shows results of I2R dataset.

Wallflower Dataset. Four sequences namely, waving trees, camouflage, fore-
ground aperture (FA) and light switch (LS) sequences are taken out of seven
from Wallflower dataset [18]. Each frame contains a frame size of 160 × 120.
Fig. 8 shows the qualitative results of wallflower dataset.

Background Models Challenge Dataset. Six sequences namely, Video 001,
Video 002, Video 004, Video 005, Video 006 and Video 007 are tested out of
nine from BMC 2012 dataset [20]. Each video sequence contains a frame size
of 320 × 240. Fig. 9 shows the qualitative results of BMC dataset with other
state-of-the-art methods.
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(a) (b) (c) (d) (e) (f)

Fig. 6. Qualitative comparisons of Change Detection Dataset. From left to right: (a) in-
put, (b) ground truth, (c) MOG, (d) Semi Soft GoDec, (e) DECOLOR, and (f) our
method.

(a) (b) (c) (d) (e) (f)

Fig. 7. Qualitative comparisons of I2R Dataset. From left to right: (a) input, (b) ground
truth, (c) MOG, (d) Semi Soft GoDec, (e) DECOLOR, and (f) our method.
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(a) (b) (c) (d) (e) (f)

Fig. 8. Qualitative comparisons of Wallflower Dataset. From left to right: (a) input,
(b) ground truth, (c) MOG, (d) Semi Soft GoDec, (e) DECOLOR, and (f) our method.

(a) (b) (c) (d) (e) (f)

Fig. 9. Qualitative comparisons of BMC 2012 Dataset. From left to right: (a) input,
(b) ground truth, (c) MOG, (d) Semi Soft GoDec, (e) DECOLOR, and (f) our method.

4.3 Quantitative Analysis

We also evaluate our algorithm quantitatively with other methods. F-measure
score is computed for all sequences, by comparing our results with their available
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corresponding ground truth data. The F -measure is given as

Fmeasure =
2×Recall × Precision
Recall + Precision

, (4)

where Recall and Precision are computed based on true positives, false pos-
itives and false negatives respectively. Wallflower, Change Detection and I2R
datasets are quantitatively evaluated according to this criteria. But BMC 2012
is evaluated according to their provided procedural tool6.

Table 1. Change Detection Dataset: Comparison of F-measure score in % (direct one-
to-one correspondence with Fig. 6).

Method Office Pedestrians Canoe Fountain2 Overpass Avg.

MOG 60.48 54.56 51.14 79.68 50.95 59.36

SemiSoft GoDec 56.02 70.31 30.91 31.38 55.17 48.75

DECOLOR 57.30 78.93 16.03 82.41 35.73 54.08

Ours 88.30 86.43 85.34 85.17 82.72 85.59

Table 2. I2R Dataset: Comparison of F-measure score in % (direct one-to-one corre-
spondence with Fig. 7).

Method Curtain Water Surface Fountain Hall Lobby Avg.

MOG 77.09 77.23 77.66 68.02 58.98 71.79

SemiSoft GoDec 43.44 44.73 25.74 57.13 36.02 41.45

DECOLOR 87.00 90.22 20.75 81.69 64.60 68.85

Ours 89.20 91.66 82.83 78.44 80.81 84.58

Table 3. Wallflower Dataset: Comparison of F-measure score in % (direct one-to-one
correspondence with Fig. 8).

Method Waving Trees LS FA Camouflage Avg.

MOG 66.39 16.86 32.91 74.21 47.59

SemiSoft GoDec 18.29 26.71 24.51 66.31 33.95

DECOLOR 88.45 - - 38.56 31.00

Ours 86.89 85.17 69.10 91.18 83.08

Table 1, 2, 3 and 4 show the achieved performance on each dataset. In each
case, our algorithm outperforms with other state of art methods, on average
F-measure of 85.59%, 84.58%, 83.08% and 86.19% in each dataset, respectively.

6 http://bmc.univ-bpclermont.fr/?q=node/7
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Table 4. BMC Dataset: Comparison of PSNR/F-measure score in % (direct one-to-one
correspondence with Fig. 9)

Video MOG SemiSoft GoDec DECOLOR Ours

1 24.71 / 69.45 22.78 / 78.65 24.32 / 70.20 35.06 / 89.16

2 25.98 / 75.57 23.64 / 80.35 33.70 / 84.67 34.11 / 86.18

4 37.44 / 90.65 33.11 / 87.55 46.35 / 95.52 44.15 / 94.68

5 35.10 / 73.42 21.42 / 69.54 32.20 / 75.81 40.38 / 79.17

6 27.28 / 77.93 24.16 / 75.50 28.12 / 78.89 32.69 / 76.80

7 43.67 / 76.10 26.19 / 72.27 53.71 / 93.51 51.69 / 91.19

Avg. 32.36 / 77.18 25.21 / 77.31 36.40 / 83.10 39.68 / 86.19

Time Complexity. The computational time is also investigated during our
experiments. The computational time is recorded frame by frame in seconds and
the average time of first hundred frames is computed of different frame size.
In our method, time is proportional to the value of rank. Table 5 shows the
comparison of computational time.

Time is computed for each case according to our experimental settings dis-
cussed above. Since traditional RPCA via PCP based algorithms, either gets
fail to load large amount of input video frames or take longer time for optimiza-
tion which is not useful for real time processing. However in our approach, we
have achieved a real time processing using initialization scheme with OR-PCA,
moreover image decomposition together with continuous contraint improves the
quality of foreground. These good experimental both qualitative and quantita-
tive evaluations are the consequences of our proposed OR-PCA based scheme.

Discussion. We also apply OR-PCA including MRF on input images to com-
pare our performance with decomposed images. As discussed above, decomposed
images accurately detect the foreground mask and increase the F -measure score.
Therefore we visually analyze some sequences such as WT and pedestrians as
shown in Fig. 10 to show that OR-PCA using decomposed images along with
MRF provides good segmentation results and best F -measure as compare to
apply it on input images. In each case, our algroithm gives best F -measure
score, e.g., 95.65%, 86.89% and 96.25%, respectively, whereas 78.65%, 79.10%,
and 89.50% are observed in case of input image.

Table 5. Comparison of computational time in seconds.

Cases Frame Size OR-PCA Ours

Static
576× 720 0.5120 0.0512
288× 360 0.1226 0.0140

Dynamic
240× 320 0.130 0.0281
120× 160 0.0260 0.0074

Bootstrap
256× 320 0.1166 0.0468
128× 160 0.0213 0.0149
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(a) (b) (c) (d)

Fig. 10. From left to right: (a) input, (b) groundtruth, (c) OR-PCA with MRF on
input image, and (d) ORPCA with MRF on decomposed images.

5 Conclusion

In this paper, a robust background modeling method against challenging back-
ground scenes is presented using OR-PCA via image decomposition with contin-
uous MRF. Our methodology is robust against different background dynamics.
We first decompose the input image then OR-PCA with initialization scheme
including continuous constraint is applied with parameters tuning. As a result,
computational complexity is reduced as compare to other PCP methods, and
foreground segmentation is improved significantly, due to spatial Gaussian ker-
nels and structural information in MRF. Experimental evaluations and compar-
isons with other state of the art methods show the effectiveness and robustness
of our proposed scheme.

However, we just applied OR-PCA on two decomposed images and param-
eters are tuned manually. Therefore, our future work will focus more on brief
analysis of each layer of hierarchical image decomposition with dynamical pa-
rameters setting, which adapts changes according to background dynamics.
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