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ABSTRACT
The aim of this paper is to describe concisely the recent theoretical and numeri-
cal developments concerning absorbing boundary conditions and perfectly matched
layers for solving classical and relativistic quantum waves problems. The equations
considered in this paper are the Schrödinger, Klein-Gordon and Dirac equations.
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1. Introduction

The aim of this paper is to discuss how to build and discretize Absorbing Boundary
Conditions (ABCs) and Perfectly Matched Layers (PMLs) [1, 30, 31] to truncate an
unbounded spatial computational domain, when solving partial differential equations
arising in atomic, molecular and laser physics. More specifically, the equations that
will be considered are the Schrödinger, Klein-Gordon and Dirac equations in their
simplest form. The goal here is not to give all the technical mathematical details,
but rather to give a comprehensive introduction to the topic, from both the modeling
and computational points of view. For the equations above, many questions remain
still open and constitute some advanced developments in mathematical analysis and
computational physics.

To motivate the need to develop such theoretical analysis, we first consider an
example to understand why such boundary conditions are required for a practical
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computation. Let us introduce the following general scalar Schrödinger system i∂tψ + ∆ψ + V(x, t)ψ = 0 , (x, t) ∈ Rdx × [0;T ],
lim||x||→∞ ψ(x, t) = 0, t ∈ [0;T ],

ψ(x, 0) = ψ0(x) , x ∈ Rdx.
(1)

In the above system, ψ := ψ(x, t) is the complex-valued wave function to be computed,
the spatial variable is x ∈ Rd (d ≥ 1) and the time variable is t > 0, T being a maximal
time of computation and i :=

√
−1. Various possible potentials V could be considered:

• V(x, t) = V (x, t) ∈ C∞(Rx × [0;T ],R) the space of infinitely differentiable func-
tions, is a real-valued potential (e.g. V (x, t) = Vc(x) + x ·E(t) for modeling the
action of external electric field E in length gauge, with an usual regularized inter-
action potential Vc(x) in order to strictly satisfy the mathematical constraints;
see [35] for instance in a simple framework; the regularity assumption could in
fact be strongly weakened in the following developments, in particular in the
domain Ω),
• V(x, t) = f(ψ)(x, t) is a nonlinear potential (e.g. a cubic nonlinearity: V(x, t) =
β|u(x, t)|2),
• or a combination of both situations : V(x, t) = V (x, t) + f(ψ)(x, t).

We also assume that the initial wave function ψ0 is compactly supported (that is ψ0

is localized in space; some developments for non compactly supported initial data are
available in [25, 47]).

For numerical considerations, the initial problem must be solved in a bounded do-
main Ω. If the physical phenomena is not confined within a finite domain, problems
indeed arise. Let us for example consider the following one-dimensional case (d = 1):
V(x) := V (x) = x is a linear potential and the initial wave function is a gaussian beam
ψ0(x) = e−x

2+10ix (almost compactly supported numerically). A simple way to solve
Problem (1) is to introduce a bounded spatial computational domain e.g. Ω :=]−5; 15[
and to set homogeneous Dirichlet boundary conditions : ψ|ΣT = 0, i.e. we impose 0
on ΣT , where the boundary ΣT is simply defined here by ΣT := ∂Ω × [0;T ], with
Σ := ∂Ω = {−5; 15} and T = 2. We report on Figure 1(a) the amplitude of the ref-
erence numerical solution |ψ| as a function of time computed on a large domain (so
that we do not see the perturbation of the boundary conditions) and restricted here to
ΩT := Ω× [0;T ], and on Figure 1(b) the numerical solution to the bounded problem
on ΩT with homogeneous Dirichlet boundary conditions at ΣT . Both approaches use
a second-order finite difference scheme in space and a Crank-Nicolson scheme in time
[45]. As we can observe, since the wave field ψ strikes the right boundary xr := 15 at
T ≈ 0.25, then some numerical reflections occur. This is due to the Dirichlet boundary
condition which does not mimic the property that the wave is outgoing to the com-
putational domain, and actually acts like a ”wall”. At T = 1.4, some new reflections
appear at the left point x` := −5 and so on, the computational domain acting as a
quantum wave guide structure.

From this example, it is clear that a suitable exact or approximate boundary condi-
tion must be imposed at the endpoints of the computational domain to avoid artificial
reflections. We introduce a computational domain ΩT :=]x`, xr[×[0;T ] and a fictitious
boundary ΣT := ∂Ω = {xl, xr} × [0;T ]. The potential is usually a non supported
function inside Ω (that is not localized in space). The kind of boundary condition
that we are looking for writes as a relation between the (Dirichlet) trace ψ|Γ and
the normal derivative (Neumann) trace ∂nψ|Γ of the solution at the boundary ΣT :
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(a) Exact reference solution
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(b) Numerical solution with a Dirichlet bound-

ary condition

Figure 1. Example of the one-dimensional Schrödinger equation with a linear potential (V (x) = x): truncat-

ing the physical domain with an unsuited boundary condition generates some spurious unphysical reflections
at the fictitious boundaries x` = −5 and xr = 15.

F (ψ, ∂nψ|Γ) = 0. In general, this relation is built in the form

∂nψ + iΛ+ψ = 0, on ΣT .

The operator iΛ+ is called the Dirichlet-to-Neumann (DtN) operator.

2. ABCs for the one-dimensional wave equation

To introduce step by step the ideas related to ABCs for molecular physics, let us start
with the one-dimensional wave equation

∂2
xψ −

1

c2
∂2
t ψ = −QδxQ , (2)

in Rx×]0;T ], where ψ = ψ(x, t) is the wave function, x is the spatial coordinate and
t is the time variable. We consider a constant sound speed c for the homogeneous
isotropic medium Rx. The source is supposed to be a point source with amplitude Q,
located at point xQ. The free-space solution (that is for Q = 0) of Eq. (2) can be
written as the sum of a left and a right traveling waves (ψ` and ψr, respectively here),
if we assume that the initial data ψ0 and ψ1 are compactly supported in a domain
Ω :=]− x`;xr[:=]−R;R[ (R > 0), with boundary Σ := {x`;xr}. More precisely, if we
have 

∂2
xψ −

1

c2
∂2
t ψ = 0, (x, t) ∈ ΩT := Rx×]0;T [,

ψ(x, 0) = ψ0(x), x ∈ Rx,
∂tψ(x, 0) = ψ1(x), x ∈ Rx,

(3)

under the assumption that supp(ψ0,1) ⊂ Ω, then the solution ψ can be written as:

ψ(x, t) = ψ`(x+ ct) + ψr(x− ct). Some calculations show that we have

ψ(x, t) =
1

2
(ψ0(x+ ct) + ψ0(x− ct)) +

1

2

∫ x+ct

x−ct
ψ1(u)du, (4)
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that is 
2ψ`(x) = ψ0(x) +

∫ x

−∞
ψ1(u)du,

2ψr(x) = ψ0(x)−
∫ x

−∞
ψ1(u)du.

(5)

Let us remark that, for |x| sufficiently large, that is for all x such that |x| > L, the
supports of the two wave functions ψ`,r are disjoints. This implies e.g. that for x = −L
we have: ψ(x, t) = ψ`(x+ct), and so ∂xψ = c−1∂tψ. In a symmetrical way, we have for
the right traveling wave: x = L, and ψ(x, t) = ψr(x− ct), and so ∂xψ = −c−1∂tψ. By
introducing the outwardly directed unit normal vector n = ±1 to ] − L;L[, we have
the unification of the two boundary conditions

∂nψ +
1

c
∂tψ = 0, (6)

at ΣT . This means that, if one wants to solve numerically the initial value problem,
which is a difficult task since it is set in an unbounded domain Rx, we may rather
consider to solve the following Initial Boundary Value Problem (IBVP): find the ap-
proximate field ψa such that

∂2
xψ

a − 1

c2
∂2
t ψ

a = 0, (x, t) ∈ ΩT ,

ψa(x, 0) = ψa
0(x), x ∈ Ω,

∂tψ
a(x, 0) = ψa

1(x), x ∈ Ω,

∂nψ
a +

1

c
∂tψ

a = 0, (x, t) ∈ ΣT ,

(7)

which is set in the bounded spatial domain ΩT . The main point here is that numerically
computing ψa in Ω requires a finite number of grid points unlike working in Rx.
Furthermore, in the special case of a one-dimensional problem with constant wave
speed, we can prove that we have: ψa = ψ|ΩT which means that the restriction of the
solution ψ of the initial system exactly coincides with the solution ψa to the bounded
domain problem. Therefore, the two waves travel through the boundary Γ without
being reflected back into the domain, as physically expected. For this reason, the
boundary condition given by Eq. (6) is said to be a Transparent Boundary Condition
(TBC). If one considers the wave operator, an interesting remark is that we get the
following exact factorization of the wave operator

∂2
x −

1

c2
∂2
t = (∂x +

1

c
∂t)(∂x −

1

c
∂t). (8)

An alternative way for designing the TBCs above is based on the Laplace transform

L (ψ)(x, ω) = ψ̂(x, ω) =

∫ ∞
0

ψ(x, t)e−ωtdt,

with the co-variable ω = σ + iτ , σ > 0 (let us remark that an approach using the
Fourier transform is also possible, see Section 6). Under these notations, one gets the
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following properties

L (∂tψ)(x, ω) = ωψ̂(x, ω)− ψ(x, 0),

L (∂2
t ψ)(x, ω) = ω2ψ̂(x, ω)− ωψ(x, 0)− ∂tψ(x, 0).

The initial full space problem can then be rewritten as a transmission IBVP between
the bounded Neumann problem

(
1

c2
∂2
t − ∂2

x)ψint = 0, x ∈ Ω, t > 0,

∂xψ
int = ∂xψ

ext, x ∈ Σ, t > 0,
ψint(x, 0) = ψ0(x), x ∈ Ω,
∂tψ

int(x, 0) = ψ1(x), x ∈ Ω,

(9)

and the exterior Dirichlet problem
(

1

c2
∂2
t − ∂2

x)ψext = 0, x ∈ Rx/Ω, t > 0,

ψext(x, t) = ψext(x, t), x = ±L, t > 0,
ψext(x, 0) = 0, x ∈ Rx/Ω,
∂tψ

ext(x, 0) = 0, x ∈ Rx/Ω.

(10)

Let us Laplace transform the first equation of system (10). Then, for x > xr, one
obtains the following ODE

ω2

c2
ψ̂ext − ∂2

xψ̂
ext = 0. (11)

A simple computation shows that the solution writes down as the superposition of two
waves travelling in opposite directions

ψ̂ext(x, ω) = A+(ω)e
ω

c
x +A−(ω)e−

ω

c
x.

Since the exterior solution must have a finite energy (square-integrable function), this
leads to the condition A+ = 0 and to the solution (with xr = L)

ψ̂ext(x, ω) = e−
ω

c
(x−xr)(ψext(xr, ·))(ω).

Then by differentiating, by continuity and using the second equation in (9)

∂xψ̂
int(x, ω)|x=xr = −ω

c
ψ̂int(x, ω)|x=xr ,

and finally by applying the inverse Laplace transform, one obtains

∂xψ
int(x, t)|x=L = −1

c
∂tψ

int(x, t)|x=xr ,

leading to the TBC for ψint at ΣT

∂nψ
int +

1

c
∂tψ

int = 0, on ΣT . (12)
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Therefore, the solution ψint exactly corresponds to ψa in system (7). This also trans-
lates the property that the factorization (8) indeed splits the original wave operator
into an outgoing and an incoming absorbing operators according to the choice of the
sign ± in front of the c−1∂t operator.

3. ABCs for one-dimensional Schrödinger equations

3.1. The free-space case

Let us now come to the case of the Schrödinger equation. We first consider the simple
case of the one-dimensional Schrödinger equation in the free-space since it is a constant
coefficient partial differential equation. The techniques applied to the wave operator
to derive boundary conditions can still be used, but the resulting boundary conditions
have some very specific differences that require more developments, in particular from
the computational point of view.

Let us first introduce the formulation of the problem as coupled transmission prob-
lems  (i∂t + ∂2

x)ψint = 0, x ∈ Ω, t > 0,
∂xψ

int = ∂xψ
ext, x ∈ Σ, t > 0,

ψint(x, 0) = ψ0(x), x ∈ Ω,
(13)

and 
(i∂t + ∂2

x)ψext = 0, x ∈ Ω`,r, t > 0,
ψext = ψint, x ∈ Σ, t > 0,
lim
|x|→∞

ψext(x, t) = 0, t > 0,

ψext(x, 0) = 0, x ∈ Ω`,r.

(14)

Now, we Laplace transform the first equation of system (14) (for example in the right
semi-infinite subdomain Ωr :=]xr; +∞[, setting Ω` :=] − ∞;x`[). Then one gets the

ODE: iωψ̂ext + ∂2
xψ̂

ext = 0, whose solution is explicitely given by

ψ̂ext(x, ω) = A+(ω)e
+
√
−iω x +A−(ω)e−

+
√
−iω x,

where the principal determination of the square-root is such that <( +
√
·) > 0. Since we

need to find a finite mass solution, one requires that ψext ∈ L2(Ωr), leading to A+ = 0.
We can write that

ψ̂ext(x, ω) = e−
+
√
−iω (x−xr)L(ψ̂ext(xr, ·))(ω),

and by differentiating and continuity

∂xψ̂
int(x, ω)|x=xr = − +

√
−iωψ̂int(x, ω)|x=xr = −e−iπ/4ω ψ̂

int(x, ω)|x=xr√
ω

.

6



Now, the direct application of the inverse Laplace transform leads to

∂xψ
int(x, t)|x=xr = −e−iπ/4∂t(

1√
π

∫ t

0

ψint(x, s)|x=xr√
t− s

ds) = −e−iπ/4∂1/2
t ψint(xr, t),

where ∂
1/2
t designates the Caputo fractional derivative [38] of order 1/2. Symmetrically,

the same derivation occurs at the left boundary. A unified writing of the transparent
boundary condition is then

(∂n + e−iπ/4∂
1/2
t )ψint = 0, on ΣT . (15)

Compared to the TBC (12) for the wave equation, there is a fundamental difference
when considering (15) for the Schrödinger equation. Indeed, the BC involves a nonlocal
time operator which must be discretized carefully (see Section 3.3). In practice, we are
led to solving the following IBVP set in a finite spatial domain

i∂tψ
int + ∂2

xψ
int = 0 , (x, t) ∈ ΩT ,

∂nψ
int + e−iπ/4∂

1/2
t ψint = 0, (x, t) ∈ ΣT ,

ψint(x, 0) = ψ0(x), x ∈ Ω.

(16)

In addition, if ψ0 ∈ H1(Ω) (finite energy Sobolev space), then it can be proved [5]
that there exists a unique smooth solution ψ in a well-adapted mathematical setting.
Moreover, ψ satisfies the following mass inequality: ‖ψ(t)‖L2(Ω) ≤ ‖ψ0‖L2(Ω), ∀t > 0.
This property can be physically interpreted as the usual mass conservation property
for the full space equation: ‖ψ(t)‖L2 = ‖ψ0‖L2 , ∀t > 0. Indeed, for the bounded domain
problem (16), some mass of the solution goes out of the computational domain, which
is exactly what is expected from the TBC. Let us also remark that, similarly to the
wave operator, one gets the factorization: i∂t+∂2

x = (∂x+
√
−i∂t)(∂x−

√
−i∂t). It can

be shown that the TBC in (16) writes: (∂n +
√
−i∂t)ψint = 0, for (x, t) ∈ ΣT .

3.2. Adding a potential or/and a nonlinearity

Let us now consider the case where a potential is included into the equation. Then, if
the potential V(x) = V (x) is general in Ω`,r in system (1) but is time independent (in
Ω`,r, V can be general in the computational domain Ω, even nonsmooth), we are led to

solving a variable coefficients ODE corresponding to: ∂2
xψ̂

ext+(V (x)+iω)ψ̂ext = 0, after
applying a Laplace transform. Most of the time, getting the TBC is out of reach [7].
If V also depends on t, this would lead to handle the Laplace transform of V (x, t)ψext

which is a convolution.
In some special cases, the TBC can still be computed. For example, for a linear

potential V (x) = x, the expression of the exact operator can be made explicit [7]
through the Airy functions in the Laplace domain. However, the concrete use of such
boundary conditions is nontrivial. If one considers a potential V := V (t), then a
change of gauge φ(x, t) = ψext(x, t)e−iV(t) leads (after coming back to the interior
solution ψint) to the TBC

∂nψ
int + e−iπ/4eiV(t)∂

1/2
t (e−iV(t)ψint) = 0, on ΣT , (17)

with: V(t) := ItV , where It is the integral of V from 0 to t.
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Considering the general situation is much more complicate and TBCs can generally
not be built. Instead, one can produce families of approximate Absorbing Boundary
Conditions (ABCs) of increasing order that minimize the reflection at the boundary.
Various directions exist [7, 26], but some, based on the generalization of the point of
view of the Laplace transform by pseudodifferential operators theory and symbolical
calculus [27, 34], are systematic and can be also used for many systems of PDEs (in
particular, for the Klein-Gordon and Dirac equations). For example, one may derive
the following fourth-order ABC (see [7])

∂nψ
int + e−iπ/4eiV∂

1/2
t

(
e−iVψint

)
+ i sg(∂nV )

√
|∂nV |
2

eiVIt(

√
|∂nV |
2

e−iVψint) = 0,

(18)
on ΣT , where sg is the sign function and V(x, t) := ItV . We directly see that, when
V is x-independent, this ABC simplifies to (17) and is then exact as a TBC. Other
kinds of ABCs can be found in the literature [7, 26] for variable potentials.

Constructing TBCs for a nonlinear equation is generally impossible (see [50] for
a special case). To get a nonlinear ABC for system (1) in 1D, the main idea is to
use the formal substitution V = f(ψ)(x, t) and V = It(f(ψ))(x, t) in the BC (18)
[6, 9, 12, 46]. Another approach, called unified approach and prospected in [48, 49],
also uses a splitting operator idea but rather to build ABCs for nonlinear Schrödinger
equations. Volkov-based absorbing boundary conditions following similar ideas, and
specifically designed for laser-molecule interaction, were also proposed in [40].

3.3. How to discretize the initial boundary-value problem

When one wants to discretize one of the above IBVP, we must careful approximate the
boundary conditions to get a stable scheme [1, 5]. Indeed, if one considers for example
(18) which includes all the difficulties, we remark that the boundary condition involves

• some time convolution integrals (fractional derivatives/integration operators),
• some variable coefficients and nonlinear terms,
• and the normal derivative.

When discretizing the boundary-value problem, even with a simple Dirichlet (ψint = 0)
or Neumann (∂nψ

int = 0) boundary condition on ΣT , building a semi-discrete time
scheme is far from being trivial. Indeed, in such a case, we often require that some
physical properties remain fulfilled at the semi-discrete level: mass/energy conserva-
tion, time reversibility, gauge invariance, preservation of the dispersion relation. We
refer to [2] for a complete description of the most standard and well-adapted schemes
(Crank-Nicolson, Time-Splitting, relaxation schemes...). When considering an absorb-
ing boundary condition, then one must take care to preserve these properties. This is
not a trivial task even for the simplest case, i.e. the one-dimensional free-space linear
Schrödinger equation [1, 5]. To illustrate this difficulty, let us mention that when using
a Crank-Nicolson scheme [1, 2, 5] for a uniform time step ∆t > 0, the half-order time
derivative operator must be discretized thanks to the following quadrature rule

∂
1/2
t f(tn) ≈

√
2

∆t

n∑
k=0

βn−kf
k, (19)

with βk = (−1)kαk, ∀k ≥ 0, (α0, α1, α2, ...) = (1, 1, 1
2 ,

1
2 ,

3
8 ,

3
8 , ...), to provide an un-
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conditionally stable scheme. The variable coefficients and nonlinear terms, as well as
the normal derivative, are usually discretized consistently with the interior time and
space scheme (e.g. finite difference, finite element). Let us remark that well-known
FFT-based pseudo-spectral approximation schemes in space [2, 19] which strongly
assume that the boundary conditions are periodic (or that we have a Dirichlet or
Neumann boundary condition when using sine- or cosine-transform) cannot be used
with an ABC. Nevertheless, we will see in Section 5 that a suitable truncation of the
computational domain can be achieved using a Perfectly Matched Layer (PML) ap-
proach. Finally, let us remark that fast evaluation schemes can be employed for the
computation of convolution quadratures [36, 52].

To illustrate the accuracy of the boundary condition (18) for the truncated IBVP
(1), we consider the nonlinear potential V(x, t) = 0.1x2 − |ψ|2, and the initial data is

taken as ψ0(x) = 2sech(
√

2x)ei
15

2
x. We first compute the reference solution ψref with a

relaxation time scheme [2, 9, 22] on a very large domain, so that we do not see the effect
of the boundary and plot the amplitude |ψref(x, t)| in the domain ΩT :=]−10; 10[×[0; 2]
(see Figure 2(a)), for ∆t = 10−3. Then, we discretize [7] the truncated IBVP with the
same semi-discrete time scheme (relaxation), setting successively as a function of time,
the discrete version of the ABC (18) at three different locations: xr = 10 (Figure 2(b)),
xr = 8 (Figure 2(c)) and xr = 6 (Figure 2(d)). The spatial discretization scheme is
based on a linear finite element method [7] with N = 4 × 103 points. As we can see,
the ABC (18) yields an accurate simulation of the outgoing wave to the computational
domain at xr.

4. ABCs for two-dimensional Schrödinger equations

4.1. The free-space case: straight boundary

The extension of ABCs to higher-dimensions requires mainly the suitable integration of
the effect of the boundary Σ. In the case of a straight boundary for the two-dimensional
case, the exact DtN operator Λ+ can be built [1] in the form

∂nψ + iΛ+(∂y, ∂t)ψ = 0, on ΣT := Σ× [0;T ], (20)

where n is the outwardly directed unit normal vector to the left half-space Ω :=
{x := (x, y) ∈ R2/x < 0}. The expression of Λ+ is based on the inverse time Laplace
transform, the partial Fourier transform in y and an extension of the factorization
formula (see e.g. [1]). The operator Λ+ is nonlocal both in time and space and can be
tricky to implement in a standard code (e.g. based on finite-difference or finite-element
approximations). To simplify the situation, local approximations are usually used. For
example, the following first- and second-order ABCs can be derived

ABC1 (∂n + e−iπ/4∂
1/2
t )ψ = 0, on ΣT ,

ABC2 (∂n + e−iπ/4∂
1/2
t − eiπ/4 1

2
∆ΣI

1/2
t )ψ = 0, on ΣT ,

(21)

where ∆Σ := ∂2
y is the second-order derivative operator (called Laplace-Beltrami op-

erator) over Σ. These boundary conditions are local in space, which is expected for
deriving efficient algorithms (indeed, the associated discrete matrices are then highly
sparse) but nevertheless remain nonlocal in time (yielding then to consider all the past

9



(a) Numerical reference solution. (b) Numerical approximate solution (xr = 10).

(c) Numerical approximate solution (xr = 8). (d) Numerical approximate solution (xr = 6).

Figure 2. ABCs for the 1D Schrödinger equation (with a quadratic potential minus a nonlinear cubic term):
V(x, t) = 0.1x2 − |ψ|2, for t ∈ [0; 2]. The location of the ABC changes from xr = 10 to xr = 8 and finally

xr = 6 without almost affecting the solution (at least at some visible levels of accuracy since the boundary
condition is not transparent).

history of the solution). Similarly to the one-dimensional case, the fractional operators

∂
1/2
t and I

1/2
t can be evaluated by suitable discrete formulae, through fast convolu-

tion algorithms or localized representations based on rational approximations [10, 36].
From the implementation point of view, the approach is relatively close to the one-
dimensional case. The operator ∆Σ could be approximated through finite-difference
or finite-element methods, depending on the spatial approximation scheme in Ω.

4.2. The free-space case: curved boundary

Since the boundary conditions ABC1,2 defined by the expressions (21) are derived in
the half-space case, they can be directly applied to a rectangular domain. However,
some errors may arise during the numerical simulations due to the corner reflection.
Usually, additional well-adapted corner conditions must be enforced to accurately rep-
resent the wave function ψ, leading to difficult developments in mathematical and
numerical analysis [32]. For practical computations, ABCs are rather preferred for
smooth boundaries (e.g. a square with rounded corners, or a circle). Therefore, the
ABC must take into account the fact that the fictitious boundary is curved, incorpo-
rating in particular the effects of the curvature κ(s) (as well as its variations ∂sκ, s
being the curvilinear abscissa along Σ) and the curvilinear variations of the solution
onto the surface Σ, i.e. through some terms ∂sψ, ∂2

sψ,... We do not give any detail

10



here since the derivation of families of local ABCs is extremely technical and we refer
to [4] for more details. For example, the following fourth-order ABC can be obtained

∂nψ + e−iπ/4∂
1/2
t ψ +

κ

2
ψ − eiπ/4

(
κ2

8
+

1

2
∆Σ

)
I

1/2
t ψ

+i

(
κ3

8
+

1

2
∂s(κ∂s) +

∆Σκ

8

)
Itψ = 0, on ΣT ,

(22)

where ∆Σ := ∂2
s . Let us remark that (22) simplifies to (21) when κ = 0, i.e. for a

flat interface (and then s = y). Furthermore, when Σ is a circle, many terms vanish.
The implementation of such boundary conditions can be achieved again by using
suitable discrete quadratures for the time operators [11] and some finite-element or
finite-difference schemes in space.

4.3. Adding a potential or/and a nonlinearity

Finally, like in the one-dimensional situation, variable potentials and nonlinear terms
could be incorporated into the ABC. The derivation needs a lot of technical develop-
ments [8, 10]. Here, to illustrate the purpose, we write a fourth-order ABC that must
be seen as the extension of (18) and (22) to the 2D potential case

∂nψ + e−iπ/4eiV∂
1/2
t

(
e−iVψ

)
+
κ

2
ψ

−eiπ/4eiV(
∆Σ

2
+
κ2

8
+ i∂sV∂s +

1

2
(i∂2

sV − (∂sV)2))I
1/2
t (e−iVψ)

+ieiV(
∂s(κ∂s)

2
+
κ3

8
+

∆Σκ

8
+
i∂sκ∂sV

2
)It(e

−iVψ)

−i sg(∂nV )
√
|∂nV |eiVIt(

√
|∂nV |e−iVψ) = 0, on ΣT ,

(23)

with V = f(ψ)(x, t) and V = It(f(ψ))(x, t). The discretization can be achieved
through all the previous developments. The reader is refer to [8, 10] for more details
and numerical examples showing that these ABCs perform very well.

Even if ABCs can be produced for complicate equations, they are nevertheless not
always so easy to implement. In addition, for Schrödinger-type equations, one of the
drawback is that they are usually nonlocal in time. Localization can be done but at
the price of some advanced algorithmic developments. In the following section, we
introduce the Perfectly Matched Layer (PML) approach which is easier to implement
and appears as a simple computational alternative to ABCs.

5. PMLs for Schrödinger equations

The idea of Perfectly Matched Layer, PML, (sometimes also called sponge layers) has
been originally introduced for electromagnetism by a French engineer J.-P. Bérenger,
in the 94’ paper [20]. Since then, many developments have been directed towards the
understanding and improvement of PMLs for many PDE systems arising in Physics
and Engineering [31]. This methodology has some closed connections to what is com-
monly called ”absorbers” in the atomic physics literature and which refers to empiri-
cally designed absorbing layers [23]. Notice however that PML are rigorously designed
and provide better absorption as analyzed in [9]. In addition, they do not need to be

11



adapted to the potential and nonlinearity, unlike complex Absorbing Potential (AP)
approaches [41, 44] (see also Section 7.3 for a comparison between the PMLs and AP
approaches for the Dirac equation). For the Schrödinger equation, the developments
are more recent (see e.g. [9, 51] for some contributions). Basically, PMLs are designed
for linear wave problems [31] (see also Section 6.3 for the closely related Klein-Gordon
equation). Their application to nonlinear PDEs is direct but remains formal, without
any theoretical background as for the ABCs. Nevertheless, as seen below, they perform
very well for such situations and are easy to implement which makes them attractive.
In particular, and unlike ABCs, they can also be easily incorporated into an existing
solver based on pseudo-spectral FFT-based methods [16], opening the road to efficient
time-splitting schemes.

To give a simplified but sufficiently general presentation, we consider system (1)
for the 2D nonlinear case with a cubic nonlinearity and a general potential V . Let us
assume that we are interested in the computation of an approximate solution inside
the rectangular domain DPhy =]−Lx;Lx[×]−Ly;Ly[. The idea of PMLs is to surround
the physical domain DPhy by an absorbing unphysical layer: DPML := (]−L∗x;L∗x[×]−
L∗y;L

∗
y[) \ DPhy, with L∗ν = Lν + δν (ν = x, y) (represented by the green region in

Figure 3).

L
x
+δ

x
L

x−L
x
−δ

x −L
x

−L
y
−δ

y

−L
y

L
y

L
y
+δ

y

D : Domain of

Physical Interest

x

y

Figure 3. Surrounding the finite computational physical domain of interest DPhy (white color) by an absorb-
ing layer DPML to damp the waves entering the green region. The resulting complete computational domain

is then D.

The objective is to artificially damp the waves entering into the layer DPML. To this
end, one introduces the following functions

Sν(ν) =

{
1, |ν| < Lν ,

1 + eiϑνσν(|ν| − L∗ν), Lν ≤ ν < L∗ν ,
ν = x, y, (24)

where ϑν is a constant and σν is the so-called absorbing function. Various choices of
functions ϑν and σν are reported in the literature (see e.g. [21, 51]). Among these,
the following choices are popular and work well for nonlinear Schrödinger equations:
ϑν = π

4 and σν = σν0 (ν + δν)2, where δν = L∗ν − Lν is the thickness in the ν-direction
of the PML layer and σν0 is a real-valued positive constant representing the absorbing
strength. Since the wave is damped into the layer, we generally are free to choose
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the boundary condition on the outer boundary. Usually, homogeneous Dirichlet or
Neumann boundary conditions are set. Nevertheless, since our goal in the presentation
is here to use a pseudo-spectral FFT-based approximation scheme, we impose periodic
boundary conditions. With such choices, the 2D cubic nonlinear Schrödinger equation
with a potential V is truncated in the computational domain D :=] − Lx;Lx[×] −
Ly;Ly[= DPhy ∪ DPML and approximated by

i∂tψ = −1

2

[
∂x

Sx(x)

(
∂x

Sx(x)

)
+

∂y
Sy(y)

(
∂y

Sy(y)

)]
ψ +

[
V + β|ψ|2

]
ψ, x ∈ D, (25)

+periodic BC for x ∈ ∂D, t ≥ 0. (26)

Since system (25)-(26) is a nonlinear Schrödinger equation with variable coefficients
and periodic boundary conditions, it can be solved efficiently by using FFTs incorpo-
rated into a time-splitting scheme [16]. To this end, we first apply the time splitting
approach to deal with the nonlinearity, i.e., for x ∈ D, one solves

i ∂tψ(x, t) = −1

2

[
∂x

Sx(x)

(
∂x

Sx(x)

)
+

∂y
Sy(y)

(
∂y

Sy(y)

)]
ψ(x, t), tn ≤ t ≤ tn+1, (27)

for a time step ∆t > 0, followed by solving

i ∂tψ(x, t) =
[
V (x, t) + β |ψ(x, t)|2

]
ψ(x, t), tn ≤ t ≤ tn+1, (28)

for ∆t. If t ∈ [tn, tn+1], Eq. (28) leaves |ψ| invariant in t, i.e., |ψ(x, t)| = |ψ(x, tn)| :=
|ψn(x)|. Higher order splitting can naturally be implemented. Therefore, (28) reduces
to a linear ODE, which can be integrated analytically as:

ψ(x, t) = e−i[V(x,tn,t)+β |ψn(x)|2(t−tn)]ψ(x, tn), x ∈ D, tn ≤ t ≤ tn+1, (29)

with V(x, t1, t2) =
∫ t2
t1
V (x, τ)dτ . To solve Eq. (27) with periodic boundary conditions

by a Fourier pseudo-spectral method, we adapt the approach developed e.g. in [13, 14]
which combines FFT-based evaluations of the operator appearing in the right-hand
side of Eq. (27) after the semi-discretization in time by a Crank-Nicolson scheme
and the solution to implicit linear systems through a preconditioned Krylov subspace
solver [43]. This approach is simple to implement since it basically uses algorithmic
bricks that are well managed (even from the parallel implementation view point).
The resulting second-order in time and spectrally accurate scheme in space appears
therefore to be very efficient and robust, and well-adapted to simulate problems set in
infinite domains. We refer to [16] for more details and variant around this method.

To illustrate the method, we apply the resulting scheme to study the dynamics of a
manufactured 2D soliton. To this end, we choose the potential and initial data respec-
tively as V (x, t) = −1

2sech2(x− t)sech2(y− t)(cosh(2(x− t))+cosh(2(y− t))), ψ0(x) =

sech(x)sech(y)ei(x+y) and let β = −1. With these parameters, we can solve exactly the
problem and get the analytical outgoing solution ψ(x, t) = sech(x−t)sech(y−t)ei(x+y).
The other parameters are chosen as: Lν = 8, δν = 1 and σµ = 80 (ν = x, y). The time
step and mesh size are fixed as ∆t = 10−2 and hν = 1/8, respectively (tuning the
PML parameters can sometimes be tricky). Figure 4 shows the contour plots of |ψ|2
at different times. We can see that the soliton enters into the PML region, is very
well damped and then no visible waves are reflected back into the physical domain.
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This shows that PMLs can be extremely useful when one wants to truncate an infinite
domain, even when the problem is nonlinear. Let us remark that it is easy to extend
the method to higher-dimensions, and that circular PMLs are also available (see e.g.
[16] for the Schrödinger equation).

Figure 4. PML for the 2D Schrödinger equation: contour plots of |ψ(x, t)|2 at times t = 0, 4, 6, 7, 8, 9. The
problem consists in the dynamics of a manufactured 2D soliton.

6. ABCs/PMLs for the Klein-Gordon equation

6.1. ABCs for the field-particle Klein-Gordon equation

The Time-Domain Klein-Gordon Equation (TDKGE) is a wave equation for which
absorbing boundary layers have been extensively studied. We assume that the initial
data ψ0 and ψ1 are compactly supported in a domain Ω :=]−x`;xr[:=]−R;R[ (R > 0),
with boundary Σ := {x`;xr}. A strategy similar to the one used for the Schrödinger
equation is then applied to a spinless relativistic particle of charge e and mass m
and subject to an external constant electric field, written here in Coulomb gauge and
denoted by (V,A) (scalar and vector potential). In this case, the TDKGE reads PKGψ = 0, (x, t) ∈ ΩT := Rx×]0;T [,

ψ(x, 0) = ψ0(x), x ∈ Rx
∂tψ(x, 0) = ψ1(x), x ∈ Rx,

(30)

where the operator PKG is given by

PKG = ∂2
x − 1/c2∂2

t − ieV/c2∂t − ieA∂x + e2/c2V 2 − e2A2 −m2c2.
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Without giving the mathematical details, one gets the following TBC by factorizing
PKG

(
∂n −

1

c

√
∂2
t + ieV ∂t − e2V 2 +

3

4
c2e2A2 +m2c4 − iceA

2

)
ψ = 0, on ΣT . (31)

Now, when the external field is not constant and m 6= 0, it is no more possible
to explicitly construct the exact transparent operator. However, the computation of
approximate boundary conditions is possible. This step requires the introduction of
mathematical tools which are beyond the scope of this paper. In addition, the intro-
duction of a high-frequency regime assumption or the use of Padé’s approximants is
often required. For the interested reader, we refer to [15] where it can be shown that
a sequence of ABCs of increasing order can be built. For not constant Ax and V , the
resulting ABCs of orders k = 1, 2, 3, are given on ΣT by

ABC1

(
∂n +

1

c
∂t
)
ψ = 0,

ABC2

(
∂n +

1

c
∂t +

ieV

2c
−
ieAx

2

)
ψ = 0,

ABC3

(
∂n +

1

c
∂t +

ieV

2c
−
ieAx

2
−

1

2c

(
− ie∂tV − ic2e∂xAx + e2V 2 − c2e2A2

x

−m2c4 −
1

4
(e2V 2 − c2e2A2

x)−
i

2
(e∂xV − ce∂xAx) +

i

2
(e∂tV − ce∂tAx)

)
It

)
ψ = 0.

(32)

6.2. ABCs for the two-dimensional Klein-Gordon equation

We consider the two-dimensional TDKGE (~ = 1) including the electromagnetic field,
that is A(x, y, t) and V (x, y, t) which respectively represent the vectorial and scalar
potentials satisfying the Maxwell’s equations. The equation writes[(

i∂t − eV (x, y, t)
)2 − c2

(
− i∇− eA(x, y, t)

)2 −m2c4
]
ψ = 0 .

To simplify the presentation, we consider that the computational domain Ω is a disk
of radius R. We rewrite the TDKGE in polar coordinates in Σr, for r ∈ [0, ε) with
ε > 0 small enough, that is (the details are skipped)

(
c2∂2

r − ∂2
t +

c2

χ2
r

∂2
θ − µV ∂t +O1 +O2 +O3

)
ψ = 0. (33)

We set above Ax = Ar cos(θ)−Aθ sin(θ), Ay = Ar sin(θ) +Aθ cos(θ) and
O1 := −

( c2

χr
+ c2µAr

)
∂r, O2 := −

c2µ

χr
Aθ∂θ,

O3 := −µ∂tV − c2µ∂rAr −
c2µ

χr
Ar −

c2µ

χr
∂θAθ + e2V 2 − c2e2‖A‖2 −m2c4.

Again skipping all the technical details, ABCs for the field-particle TDKGE can be
obtained on ΣR

T := C(0, R)× [0;T ], with C(0, R) the circle of radius R and center 0,
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as

ABC1

(
∂r +

1

c
∂t

)
ψ = 0,

ABC2

(
∂r +

1

c

(
∂t +

ie

2
V +

1

2c
O1

))
ψ = 0,

ABC3

(
∂r +

1

c

[
∂t +

ie

2
V +

1

2c
O1 +

(
−

c2

2χ2
r

∂2
θ −

1

2
O2∂θ + iO4

)
It
])
ψ = 0,

where O4 is a complicated algebraic scalar operator, which is defined page 282 in [15].
Notice that the first-order ABC (ABC1) is exactly (6) in the r-direction.

We now consider the discretization of the 1D TDKGE with ABCs. A second-order
explicit scheme is proposed to approximate the equation defined by the corresponding
operator PKG in the truncated spatial domain Ω, that is for interior nodes

ψn+1
j − 2ψnj + ψn−1

j = ∆t2
[
c2

∆x2

(
ψnj+1 − 2ψnj + ψnj−1

)
+

Anj
2∆t

(
ψn+1
j − ψn−1

j

)
+
Bn
j

2∆x

(
ψnj+1 − ψnj−1

)
+ Cnj ψ

n
j

]
,

where
Anj = −ieV (xj , tn), Bn

j = −ieAx(xj , tn),

Cnj = −ie∂tV (xj , tn)− ic2∂xAx(xj , tn) + e2V 2(xj , tn)− c2e2A2
x(xj , tn)−m2c4.

The initial data is a wave packet given by

ψ0(x) =
ck0

mc2 +
√
m2c4 + c2k2

0

e−
x2

4
+ik0x,

with k0 = 10. The external field is such that A(t) = cos(t), V (t) = 0.1 sin(t) and ~ =
m = c = 1. The computational domain is Ω :=]− 10; 10[, T = 8 and ∆x = ∆t = 0.4.
The results for ABC1, ABC2 and ABC3 (see Eq. (32)) are presented in Figure 5 in the
(x, t)-plane (log-scale). The discretization of the time integral is based on similar ideas
[15] as (19). We clearly see that increasing the order of the ABC reduces the artificial
reflection at the boundary.

6.3. PMLs for the Klein-Gordon equation

We start this section by introducing the notion of PML for the linear wave equation.
The beginning of this section is extracted from [37]. As for the Schrödinger equation,
a thin layer surrounds the physical domain DPhy designed as an absorbing and reflec-
tionless material. The construction of PMLs is based on an analytic continuation of
the wave function in the complex plane, i.e. the wave function can be evaluated for
complex values of x in the absorbing layer. More precisely, we set x → x + if(x) for
some differentiable real-valued function f such that f ′(x) = σx(x)/ω, where σx(x) > 0
and a given frequency ω, in the PML region and zero otherwise. Then the derivative
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Figure 5. ABCs for the 1D TDKGE: |ψ| (log-scale) for ABC1 (top), ABC2 (middle) and ABC3 (bottom).

with respect to x becomes: ∂x → 1/(1 + iσx/ω)∂x. The prefactor allows for an absorp-
tion of the wave function of frequency ω in the PML region. In the simplest 1D case,
it then reads

∂tψ = c∂xφ− σxψ, ∂tφ = c∂xψ − σxφ,

where φ is an intermediate function.
In higher dimensions, PMLs for wave equations are established first thanks to the

Laplace transform in time and Fourier transform in the direction of propagation. Then
a modal solution/ansatz decreasing exponentially in the direction of propagation is
postulated. A new set of equations adapted to the chosen ansatz is then derived in the
external layer, in Laplace and Fourier variables. Finally going back to real time and
space, we get the full set of equations to solve in the PML [17]. Notice that auxiliary
functions may be necessary to localize in time the PML. This concept applied in 2D
[37] to the wave equation: ∂2

t ψ− c2(∂2
x + ∂2

y)ψ = 0 reads as follows. For some function
σx and transformation x→ 1/(1 + iσx/ω)∂x, the PML version is

∂tψ − c∇φ− σxψ + ψ = 0,

with ∂tφx = c∂xψ − σxφx, ∂tφy = c∂yψ and ∂tψ = cσx∂yφy.
Now, for more general wave-like equations, including the Klein-Gordon equation, of

the form

∂tψ −∇2ψ +
∑
k≥0

cku
2k+1 + dk∂tψ

2k+1 = 0,

with ck ≥ 0 , dk ≥ 0, a set of PMLs was established in [17]. This nice paper is a friendly
theoretical as well as numerical presentation of PMLs for nonlinear wave equations.
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We now test the PML approach for the equation : ∂2
t ψ − ∂2

xψ + mc2ψ = 0, with
mc2 = 1. In this case, we implement the PML in [17]

∂2
t ψ − ∂2

xψ +mc2ψ = −σ(x)∂tψ + σ(x)η(2) + ασ(x)−mc2ψ + ∂x
(
σ(x)η(1)

)
,

∂tη
(1) +

(
σ(x) + α

)
η(1) + ∂xψ = 0,

∂tη
(2) + αη(2) + (mc2 + α2)ψ = 0,

where σ is chosen as in [17], i.e. σ(x) = 0 in the interior zone ]0;Lx[ and σ(x) =
σx(1 − δ−1

x (x − L∗x)2)8 in the layer ]Lx;L∗x[, where L∗x = Lx + δx. In this test, PMLs
are implemented in ]Lx;L∗x[ and homogeneous Dirichlet boundary conditions are set
on the left boundary x` := 0 and at x = L∗x. We approximate this system by using
an elementary finite-difference scheme. We take α = 1, Lx = 10, δx = Lx/10 and
σx = 50. The initial data is taken as ψ0(x) = e−(x−Lx/2)2 and the final time is T = 6.
For comparison, we compute the reference solution ψref on a large domain. The space
and time steps are chosen respectively as ∆x = 4 × 10−2 and ∆t = 2 × 10−2. We
first compare in real space in Figure 6 (left) the reference and the PML solutions.
Notice that the PML region is ]Lx;L∗x[=]10; 11[. In this Figure, a line at x = Lx
shows the location of the interface between the PML and the internal region. We also
represent in Figure 6 (right) (in log-scale and as a function of time) the logarithm of the
error between the reference and the PML solutions, i.e. (x, t, log |ψref(x, t)− ψ(x, t)|).
This clearly illustrates the absorption at the right side (for the PML) of the domain,
yielding a correct numerical solution, and the artificial reflection at the left side (for the
homogeneous Dirichlet boundary condition), resulting in a wrong numerical solution.
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Figure 6. PMLs for the 1D TDKGE: comparison between the PML and the reference solutions (left) and

logarithm of the absolute error between the reference and PML solutions (right).

7. ABCs/PMLs for the Dirac equation

In this section, we propose an overview of ABCs and PMLs for the Dirac equation. In
2D, the Dirac equation which models the interaction of a quantum particle with an
external field (A, V ) reads PDψ = 0, with

PD := I4∂t + αx
(
c∂x − ieAx

)
+ αy

(
c∂y − ieAy

)
+ i(Vc + eV )I4 − iβmc2,

where [18, 39]
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• Vc : R2
x,y → R is an interaction (Coulomb) potential.

• V : R2
x,y × R+ → R is a combination of the self-consistent and external electric

potentials.
• A : R2

x,y×R+ → R2 is a combination of the electromagnetic potential generated
by the particle charge and by an external potential.
• m is the mass of the particle, e their charge, c the speed of light.
• ψ : R+ × R2

x,y → C4 is the Dirac wave function.
• the Hermitian Dirac matrices αx, αy, β are defined by

αx =

(
02 σx
σx 02

)
, σx =

(
0 1
1 0

)
,

αy =

(
02 σy
σy 02

)
, σy =

(
0 −i
i 0

)
,

β =

(
β2 02

02 −β2

)
, β2 =

(
1 0
0 −1

)
,

and 02 and I2 are respectively the zero and identity matrices in M2(C). The
following relations hold: α2

x = α2
y = β2 = I4 and {αx, αy} = {αx, β} = {αy, β} =

04.
• J = (Jx, Jy), with Jx = ec

(
ψ, αxψ

)
C4 , Jy = ec

(
ψ, αyψ

)
C4 , denotes the current

density and ρ stands for the particle density which is equal to: e
∑4

i=1 |ψi|2.

In the following, we assume that (A, V ) is given at any time t. The system under
consideration then reads in 2D{

PDψ = 0, (x, y, t) ∈ ΩT = R2
x,y×]0;T [,

ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ R2
x,y.

(34)

7.1. ABCs for the one-dimensional Dirac equation

In the one-dimensional case, the Dirac equation is commonly called in mathemat-
ics a first-order hyperbolic system. Such equations are well-known in fluid dynamics,
mechanical engineering, as well as electromagnetism. This property is a consequence
of the fact that the matrices αx,y,z (and β) are diagonalizable in R. There exists an
extended literature (see for instance [29]) on the derivation and approximation of
boundary conditions modeling outgoing waves. Basically, the derivation of ABCs for
the Dirac equation follows some very similar ideas. However, since the matrix β is
not diagonalizable in the same basis as αx,y,z, even in 1D, it is only possible to derive
ABCs and not TBCs. The strategy to construct ABCs for the Dirac equation is in fact
mathematically equivalent to the one developed for the Klein-Gordon or Schrödinger
equations. This is again nontrivial and it requires some material going beyond the
scope of the present paper. We refer to [15] for the interested and mathematically
inclined reader.

Let us recall that, in 1D, the Dirac equation can be written as a 2× 2 system{
σx∂xψ − imcβ2ψ −

1

c
∂tψ = 0, (x, t) ∈ ΩT := Rx×]0;T [,

ψ(x, 0) = ψ0(x), x ∈ Rx.
(35)
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To explain the principle to build ABCs for the Dirac equation, we first consider the
massless particle case m = 0 and no external field. Then, the Dirac equation reads
∂tψ + αx∂xψ = 0, with ψ = (ψ1, ψ2), i.e.{

∂tψ2 + c∂xψ1 = 0,
∂tψ1 + c∂xψ2 = 0.

If we introduce the two fields φ1 = (ψ1 + ψ2)/
√

2 and φ2 = (ψ1 − ψ2)/
√

2, we get a
system of uncoupled transport/wave equations (first-order wave equations){

∂tφ1 + c∂xφ1 = 0,
∂tφ2 − c∂xφ2 = 0.

(36)

Equivalently, setting αx = ΠxDxΠ−1
x , then the system (36) reads ∂tφ + Dx∂xφ = 0,

where φ = (φ1, φ2) and

Πx =
1
√

2

(
1 −1
1 1

)
, Dx =

(
1 0
0 −1

)
.

At x = xr (resp. x`), we have the following TBC ∂tφ
int + cDx∂xφ

int = 0, x ∈ Ω, t > 0,
φint

2 = φext
2 , x = xr, t > 0,

φint(x, 0) = φ0(x), x ∈ Ω,

where φ0 = Π−1
x ψ0. The exact solution is then reconstructed by setting ψint = Πxφ

int.
Now, if m 6= 0, and more generally when the particle is subject to an external electric
field, the derivation requires more efforts. However, from the above remark when m 6=
0, a first simple ABC reads at x = xr ∂tφ

int + cDx∂xφ
int − imc2Πxβ2φ

int = 0, x ∈ Ω, t > 0,
φint

2 = φext
2 , x = xr, t > 0,

φint(x, 0) = φ0(x), x ∈ Ω.

or equivalently ∂tψ
int + cαx∂xψ

int − imc2β2ψ
int = 0, x ∈ Ω, t > 0,(

Π−1
x ψint

)
2

=
(
Π−1
x ψext

)
2
, x = xr, t > 0,

ψint(x, 0) = ψ0(x), x ∈ Ω.

To improve the absorption at the boundary a finer approach is necessary, where this
time Πx will be replaced by an complex operator Π. A short overview is presented in
the two-dimensional case in the next subsection.

7.2. ABCs for the two-dimensional Dirac equation

The derivation of ABCs for the Dirac equation in 2D is mathematically non-trivial,
so that we will just focus here on the general ideas. Their construction is based on a
diagonalization [15] of the Dirac operator up to a negative order operator (following a
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diagonalization theorem for pseudodifferential hyperbolic systems [3] that generalizes
the idea of factorization). The action of the remaining operator on the solution at
the boundary will be expected negligible at least for high frequencies. To simplify the
presentation, we assume that the domain is a disk of radius R, ΩR = C(0, R), and
we define ΣR

T := ΩR × [0;T ]. The Dirac equation is then formally rewritten in polar
coordinates (r, θ) (

I4∂r + L(r, θ, t, ∂θ, ∂t)
)
ψ = 0, (37)

where L = L1 + L0 is the operator defined through

L1 :=
1

c
α̃x∂t +

1

χr
α̃xα̃y∂θ, L0 :=

1

c
α̃xβ̃, χr :=

1

R+ r
,

with the matrices

α̃x =


0 0 0 e−iθ

0 0 eiθ 0
0 e−iθ 0 0
eiθ 0 0 0

 , α̃y =


0 0 0 −ie−iθ
0 0 ieiθ 0
0 −ie−iθ 0 0
ieiθ 0 0 0

 .

Finally, we set β̃ = iβmc2 + i(eV +Vc)I4− ie(Arα̃x +Aθα̃y). We suppose that Aθ, Ar,
V and Vc are independent of (t, θ). We denote by F(t,θ) the Fourier transform in (t, θ)
with co-variables (τ, ξ). Then Fourier transforming (37) leads to(

I4∂r + F(t,θ)(L)(r, θ, t, ξ, τ)
)
Ft,θ(ψ) = 0. (38)

Again, if α̃x,y and β̃ were diagonalizable in the same basis, it would be easier to
impose TBCs. However, we can show that there exists a transition matrix F(t,θ)(Π) to
F(t,θ)(L), such that one gets an almost exact operator diagonalization: (∂r + Λ)φ ∼ 0,
where

F(t,θ)(Λ) =

(
F(t,θ)(Λ

−) 0
0 σ(Λ+)

)
∈M4(C),

Λ+ (resp. Λ−) representing the outgoing (resp. incoming) wave operator at the bound-
ary. The ABCs, which simply consists of vanishing the incoming waves (inside ΩR),
are given in the following theorem.

Theorem 7.1. The zeroth- and first-order ABCs are

• zeroth-order:
(
Π−1

0 ψ
)

1,2
= 0 on, ΣR

T ,

• first-order:
(
Π−1

1 ψ
)

1,2
= 0 on, ΣR

T ,

where Π−1
0 and Π−1

1 are operators defined as

Π−1
0 =

1

2


−eiθ 0 0 v+

0 −e−iθ v− 0
eiθ 0 0 v−
0 eiθ v+ 0

 , (39)
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with v± =
(
1±

ic

χr
∂θ∂
−1
t

)
, and Π−1

1 =
1

2

(
A1 B1

C1 D1

)
, with

A1 = −
(
b−1
+ eiθ 0

0 a−1
− e−iθ

)
, B1 =

(
0 b1−
a1

+ 0

)
,

C1 =

(
b−1
− eiθ 0

0 a−1
+ e−iθ

)
, D1 =

(
0 b1+
a1
− 0

)
,

setting a1
± = 1 ± (i(Vc + eV ) ± ieAr)It, a

−1
± = 1 ± (i(Vc + eV ) ∓ ieAr)It, b

1
± =

(1± (imc2 ± eAθ)It
)

and b−1
± = (1± (imc2 ∓ eAθ)It

)
.

7.3. Numerical discretization and example of ABC for the Dirac
equation

We propose a simple numerical illustration of the derived ABCs for the 1D Dirac
equation. The quantity which is represented here is again (t, x, log |ψ1(x, t)|) which
shows the reflections at the domain boundary. We first rewrite PD in the form

PD = i∂t − iA∂x +Bmc2,

where

A =

(
c 0
0 −c

)
, B = i

(
0 mc2

−mc2 0

)
.

As explained in Subsection (7.1), a simple and natural condition to impose at x` and
xr is (∂t ± c∂x)ψ1,2 = 0. This boundary condition is called a transport-like boundary
condition, and corresponds in fact to the zeroth-order ABC in Theorem (7.1). The
initial conditions are

ψ1(x, 0) = e−
x2

δ2
+ik0x, ψ2(x, 0) =

ck0

mc2 +
√
m2c4 + c2k2

0

ψ1(x, 0),

where c = 1, k0 = 20, δ = 0.5 and m = 1. The spatial computational domain is
]x`;xr[, with xr = −x` = 5. The final time is T = 7 and ∆t = ∆x = 1/40 (we have 400
segments in space). The one-dimensional ABCs can be deduced from Theorem 7.1. We
consider the following discretization scheme: denoting by (φnj , ψ

n
j ) an approximation

of the exact two-spinors (ψ1(xj , tn), ψ2(xj , tn)) at (xj , tn), for interior points, we have
φn+1
j = φnj + c

∆t

∆x
(φnj+1 − φnj ) + ∆tmc2ψnj ,

ψn+1
j = ψnj − c

∆t

∆x
(ψnj − ψnj−1)−∆tmc2φnj .

At order 0, the transport condition reads at the discrete level φn0 − ψn0 = 0 at the
left boundary, and φnN + ψnN = 0 at the right one. Let us remark that for the very
particular interior scheme which is considered here, Dirichlet boundary conditions
are equivalent to this order 0 condition (transport-like). At the next order, a time-
integral is added to the boundary condition. Stability is trivially satisfied under a
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CFL (Courant-Friedrichs-Lewy) condition [45]. Figures 7 show the propagation of |ψ1|
by imposing the zeroth (top) and improved first-order (bottom) ABCs, from Theorem
(7.1) in its 1D version.
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Figure 7. ABCs for the 1D potential-free Dirac equation: amplitude |ψ1| (log-scale) for the zeroth-order

transport-like (top) and improved first-order transport-like conditions (bottom) obtained in Theorem (7.1).

7.4. PMLs for the Dirac equation

In this section, we briefly describe the application of PMLs to the Dirac equation
following [42] where a detailed presentation is available. As previously mentioned, the
PML approach consists in constructing an absorbing layer surrounding the physical
domain, say in 3D, DPhy :=] − Lx;Lx[×] − Ly;Ly[×] − Lz;Lz[. Denoting by Σ(v) a
continuous, positive and non-decreasing function (usually a quadratic function like
σν0v

2), which is null for negative v, the following nonlinear 3D coordinates stretching
is proposed in [42]: η → η + iω−1(µ−η (η) + µ+

η (η)), with µ±η (v) =
∫ v
±Lη Σ(−Lη ± u)du,

for η = x, y or z. By definition, the change of variable is only active in the thin
layer DPhy surrounding the physical domain and is equivalent to the use of absorbing
functions in the PML approach (the interpretation through coordinates stretching has
been introduced in computational electromagnetism in [24], and is shortly discussed
in Section 6.3). Let us define ση(v) = Σ(−Lη − v) + Σ(v − Lη), η = x, y or z. This
leads to the modified PML Dirac operator

P
(PML)
D = −ic

(
αx∂

(PML)
x + αy∂

(PML)
y + αz∂

(PML)
z

)
+mc2β + V (x)14,
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where

∂(PML)
x ψ = ∂xψ +

i

2π
σx(x)

∫
R

eit

ω − iσx(x)
∂xψ̂(x, ω)dω.

In [42], an accurate finite-difference discretization of these PMLs is proposed coupled
with a time-splitting approach [28, 33]. Homogeneous Dirichlet boundary conditions
are set on the outer boundary. Let us remark that an interesting research direction
would be to adapt the spectral approaches with splitting scheme introduced in Section
5 and [16] for the Schrödinger equation, to the Dirac equation, again imposing periodic
boundary conditions on the exterior boundary of the computational domain D.

To conclude this section, we propose the comparison between the PMLs and complex
AP approaches in 2D. The parameters for the Dirac equation are again: ~ = c = m = 1.
The approximation scheme given in [42] is a leap-frog scheme [33] which partially
avoids fermion doubling and uses splitting as in [28]. The domain is ]− 5; 5[2, T = 10,

∆x = ∆y = 4×10−2 and ∆t = ∆x/2. The initial data is a gaussian: ψ0(x) := e−
|x−x0|
a2 ,

with a = 0.6. The function Σ(v) is null for v ≤ 0 and equal to σ0v
2 otherwise. The

absorption parameter σ0 takes some values between 10−1 and 101. In the first plot of
Figure 8, the abscissa represents the absorption coefficient σ = σ0 and the ordinate
corresponds to the L2(DPhy)-error between the exact and approximate solutions. We
consider three different sizes of the layer: δx(= δy) = 2 (diamond), δx = 1.5 (circle)
and δx = 1 (circle). We clearly observe that the PML approach is extremely accurate
while being simple to implement and yields more accurate results than the complex
AP method. In addition, we also report in Figure 8, the evolution of |ψ| over the time
with PMLs, where the chosen parameters are σ0 = 1 and the layer size is δx = 2.
Again, we observe that the behavior of the field is well-reproduced.

8. Conclusion and perspectives

We presented a simplified and friendly overview of recent developments on ABCs
and PMLs for PDEs arising in atomic, molecular and laser physics. The equations of
interest are the Schrödinger, Klein-Gordon and Dirac equations. In addition to the
main theoretical developments to understand these methods, we also provide some
simulations to illustrate why they are useful and more accurate than standard empirical
truncation techniques designed by physical arguments, e.g. the complex AP method.
Even if many developments have now been achieved, some mathematical and numerical
questions still need to be investigated. Finally, the probably most important step
concerns now the use of these methods for simulations of high-dimensional realistic
situations that arise in atomic and molecular physics. We expect that this paper can
provide a guideline to achieve such a goal.
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Figure 8. PML for the 2D Dirac equation: comparison between the PML (red curves) and AP (blue curves)
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