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Figure 1: Steady flow on an inclined plane

By the form of v, the incompressibility condition (1.7) is trivially satisfied and equation (1.8)
with ˆ

t

v = 0 becomes

(1.12) div‡

dev

= ≠f + Òp,

with ‡

dev

given by (1.10) and

(1.13) f = (g
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sin ◊, 0, ≠g

0

cos ◊),

with g

0

the gravitational constant. We also assume that p = p(y, z). We calculate
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|Òu|, with Òu = (ˆ
y
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u). If we substitute (1.14) in (1.10), equations (1.12)
become, for D(v) ”= 0 or equivalently Òu ”= 0,
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Where the divergence is taken for the coordinates (y, z). If we integrate equation (1.17)
from z to h(y) we get p(y, z) = (h(y)≠z)g

0

cos ◊, but because of equation (1.16) and because
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we have h(y) = h © constant. For simplicity we take h = 0; then the pressure is

given by

(1.18) p(y, z) = |z|g
0

cos ◊.

We are lead to study the following equation
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