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1 Introduction 

 

Active works on polymer-derived ceramics (PDC) have been achieved until recently to 

fulfil high temperature applications in oxidizing environments (e.g., in gas turbines or aeronautic 

engines). For instance, precursors involving up to five different elements (comprising neither H 

nor O) have been synthesized to enhance the oxidation and corrosion resistance of the derived 

ceramics [Muller04]. In most of the studies on PDC, the assessment of the oxidation behaviour is 

only a part. There are only few systematic studies aiming at comparing the properties of different 

ceramic systems and discussing, for example, the effect of the free carbon concentration 

[Brewer99, Chollon00, Modena05] or the addition of a hetero-element [Butchereit00, Muller04, 

Saha04, Wang05]. This is because the comparison is often rendered difficult by the different 

characteristics of the initial ceramic (e.g., specific surface, open porosity…) and the variable 

composition of the resulting oxides. 

The present contribution is not a comprehensive review on the behaviour of PDC in all 

possible oxidizing environments. Neither active oxidation (at high temperature/low pressure) nor 

corrosion (in presence of H2O or other combustion gases) will be treated here, because of the lack 

of reliable data due to the complex control of the gas phase (temperature, partial pressures, gas 

velocity). This work will rather be based on a materials science approach, relating a wide range 

of PDC features to regular (i.e., usually passive) oxidation behaviour. 

First of all, the various experimental procedures used to evaluate the oxidation behaviour 

of PDC will be reviewed. The choice of a certain method among others indeed depends on the 

conditions in service, but is also dictated by the geometry of the specimens (particles, porous 

monoliths, fibres…). In a second step, the oxidation behaviour in pure oxygen or dry air of PDC 
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belonging to various systems will be described, with a growing degree of complexity, i.e., from 

binary to quaternary or even more complex systems. 

 

2 Materials geometry and experimental procedures 

 

 Studies of reference on the oxidation of Si-based ceramics often refer to ideally pure, 

dense, flat and smooth materials (mirror-polished single crystals or polycrystalline CVD 

coatings) [Du89, Ramberg96]. Oxidation kinetics are then assessed using specific tools for flat 

and thin layers of well defined oxide (e.g., ellipsometry, SIMS, RBS). These approaches are 

neither compatible with the application requirements nor the processing constraints of PDC. 

Due to the shrinkage and the gas evolution during pyrolysis, dense PDC monoliths or 

crack-free coatings are hard to obtain. The pyrolysis of the green or cured free standing polymer 

results in relatively coarse and foamy residues, depending on the precursor viscosity and ceramic 

yield. Only post-grinding can eliminate porosity and adjust the specific surface to a certain 

extent. Crack-free monolith can be obtained by hybrid processing, but the open porosity at low 

scale is still present [Raj01]. Alternatively crack-free monolithic Si-C-O can be processed from 

gel-derived precursors [Soraru96, Walter04]. 

If the extent of oxidation is assessed by direct thickness measurements of the oxide layer, 

the geometry of the specimen is only of minor concern. However, it is necessary to avoid a rate 

limitation by gas phase diffusion through the open porosity of the solid. Otherwise, the thickness 

may not be homogeneous and kinetics may be underestimated. This applies for porous materials 

but also for high surface/volume ratios (e.g., powders) and especially at high temperature, at the 

beginning of oxidation, when the oxidation rate is the highest. Furthermore, the thickness of the 

oxide layer may also be altered by the viscous flow at high temperature (particularly for B-rich 

ceramics, see§6). 

Another obvious way to evaluate the oxidation extent is the weight change. This is 

advantageous especially when achieved in situ by TGA [Chollon00]. Within a passive regime, 

the weight change resulting from oxidation can generally be predicted by assuming the formation 

of non-volatile oxides of well-defined composition and the evolution of CO and N2. The case of 

boron-containing ceramics is more delicate as the volatilization of B2O3 is significantly activated 

in dry air beyond 1000°C (see§6). 
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Three parameters characterizing the oxidation extent: the relative weight change, the 

thickness of the oxide layer and the consumed ceramic, can be related one to each other. These 

relations are often linear and involve material features such as a reacting surface constant (e.g., 

initial specific surface, average fibre or particle diameter), the initial weight concentrations of the 

oxide formers and the densities of the initial ceramic and the oxide [Chollon00, Butchereit01b]. 

Two other constants are sometimes considered to compare the behaviour of ceramics having 

different compositions.  is the volume of oxide formed per volume of ceramic oxidized 

[Chollon00] and characterizes the volume expansion during oxidation, favourable to a passive 

regime. , the number of mole of O2 needed to form one mole of oxide, is used to compare the 

parabolic oxidation rates of various ceramics. Kp is indeed preferred to Kp (the oxide thickness 

parabolic constant), as it rather reflects the inward O2 flux (usually limiting in case of a passive 

regime) [Luthra91]. 

 Ideally, the material tested should be homogeneous in terms of chemical composition and 

structure. Its initial reacting surface should be known and the geometry change during oxidation 

of both the oxide layer and ceramic easily predictable. TGA is appreciable but requires specimens 

with high specific surfaces. Fibres are materials of choice, as they are dense, homogeneous and 

have adequate specific surfaces (≥0.1m
2
g

-1
). But the main advantage of fibres compared to 

powders is their higher gas permeability and few contact points limiting coalescence of adjacent 

oxide layers. 

 

3 The Si-C system 

As most of PDC, those belonging to the Si-C system often contain free turbostratic 

carbon. This phase may also be partially hydrogenated when pyrolysed at insufficiently high 

temperature (Tp) [Shimoo03]. The SiC phase is predominantly  and nanometric (≤10nm) or 

submicrometric (≤60nm) in scale. The SiC grain size generally decreases with the amount of free 

carbon and increases with Tp [Ichikawa06]. The SiC+C system is one of the most stable from a 

thermodynamical point of view. 

This intrinsic thermostability gives rise to a regular oxidation behaviour in pure O2 or dry 

air of SiC+C PDC. A parabolic growth regime of a pure silica layer is observed from 800 to 

1400°C with constant activation energy of about 100kJmol
-1

. This behaviour concludes to a 

mechanism limited by the inward permeation of O2 through the growing SiO2 layer, CO diffusing 
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readily outwards [Chollon00, Naslain04]. This mechanism is fundamentally the same as that 

reported for silicon or pure SiC [Ramberg96]. The activation energies are close and the parabolic 

constants Kp depend on the O2 partial pressure [Naslain04] and the carbon content (through . 

Amorphous SiO2 starts to crystallizes into cristobalite at about 1200-1300°C. After few hours at 

1400°C, the layer is substantially crystalline, but this phenomenon does not result in a significant 

increase of the oxidation rate [Chollon00, Naslain04]. 

This behaviour is not obeyed in case of incomplete ceramization. The free carbon phase 

releases hydrogen and the H2O outward diffusion through SiO2 accelerates dramatically the 

initial oxidation [Chollon00, Shimoo03]. Beyond 1400°C, a catastrophic transition in the kinetics 

is usually observed. A successive oxide decohesion is indeed observed, probably due to the CO 

pressure build up at the interface and the high viscosity of the highly crystalline SiO2 layer 

[Chollon00]. 

 

4 Si-C-O sytem 

PDC from the Si-C-O system are usually polycrystalline SiC-based or silicon 

oxycarbides. The former consists mainly of -SiC nanocrystals (2-3nm), whereas the latter is 

essentially amorphous. Both contain an amorphous SiCxO2(1-x) phase and free aromatic carbon 

partially hydrogenated (depending on Tp). The silicon oxycarbide phase is usually more abundant 

and the free carbon amount more variable in glasses than in crystalline ceramics (Fig. 1a). The 

Si-C-O system is thermodynamically unstable compared with SiC+C and decomposes beyond 

1200°C into SiC, SiO and CO. At low temperatures, the material undergoes a structural 

evolution (without chemical change). A redistribution of the mixed tetrahedral environment 

(SiCXO4-X) into SiC4/SiO4 sites and a dehydrogenation/condensation of the free carbon phase are 

noticed when Tp increases [Hurwitz99]. At larger range, a slight SiC crystal growth occurs in 

crystalline Si-O-C, whereas the glass remains amorphous. Such a wide range of chemical 

composition and structure and their intrinsic thermally activated changes during oxidation cause 

singular behaviours. 

As for Si-C PDC, if Si-C-O glasses are pyrolysed at a very low temperature (Tp≤800°C) 

and still contain Si-CH3 and Si-OH groups, their oxidation behaviour is catastrophic beyond 

600°C [Zhang92]. CH3 groups are oxidized into CO before the complete formation of the 

aromatic carbon network and ruins the material. For higher Tp values (Tp=1000-1200°C), the 
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growth of a protective SiO2 layer on a Si-C-(O) fibre is observed but the presence of residual 

hydrogen and the H2O diffusion accelerate the initial oxidation kinetics at 1500°C [Shimoo03]. 
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(a)       (b) 

Figure 1 : Compositions of the various PDC submitted to oxidation tests. (a) Si-(X)-C-(N)-(O) (X 

concentration neglected) and (b) Si-(X)-B-C-N-(O) system (X and O concentration neglected). 

 

Hurwitz and Meador investigated the influence of Tp on the structure of the as-pyrolysed 

and oxidized Blackglas
TM

 [Hurwitz99]. The surface of the powder specimens was controlled so 

that the quantification of the various SiCXO4-X sites by 
29

Si NMR could provide the oxidation 

extent. The oxidation rate is clearly reduced when Tp increases. This behaviour is explained by 

the redistribution of the more oxidation-prone SiC2O2 and SiCO3 sites into SiO4 and SiC4, as Tp 

increases. In this study, the role of the free carbon phase and particularly its dehydrogenation 

(likely significant within Tp=900-1100°C) is not taken into account. Furthermore, the 

morphology and the thickness of the SiO2 layer were not examined to confirm the passive 

oxidation regime and correlate with the RMN data. 

Silicon oxycarbide glasses were obtained from the pyrolysis (Tp=1200°C) of various 

polymers and sol-gels yielding free carbon atomic concentration (xfreeC) ranging from 0 to 

59at% (46wt%) [Brewer99, Modena05]. The oxidation behaviour (from 600 to 1350°C in air) 

was evaluated by weight change and elemental analyses of fine powders (≤100m), morphology 

examinations and thickness measurements of the SiO2 layer and from n-RBS depth profiling of 
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ceramic monoliths [Vomiero03]. The oxidation rate of the ceramics having the highest free 

carbon levels is significantly higher than that of the other specimens at all temperatures, but most 

particularly at the lowest temperatures (600-800°C). The percolation of the oxidizing free carbon 

phase and the too low reactivity of the silicon oxycarbide allow the reaction to proceed 

throughout the entire material [Brewer99]. This phenomenon is lessened at higher temperatures 

(1000-1200°C), the silicon oxycarbide, readily oxidized, forming a more protective silica layer, 

limiting the O2-diffusion into the bulk. The n-RBS profiles reveal that at 1150°C in air, the 

concentration profile at the SiO2/ceramic interface is gradual at the early oxidation stage and 

becomes steep after a long time [Vomiero03]. This suggests a transition in the oxidation 

mechanism from a limitation by a mixed diffusion/reaction mechanism at the early stages of 

oxidation to a pure diffusion mechanism for longer times. The former mechanism is likely 

associated with the presence of free carbon, the transition being faster when xfreeC is higher. A 

parabolic kinetic regime is observed at 1350°C in air for various free carbon contents (from 

xfreeC0 to 47at%) [Modena05]. Kp values are considerably higher than those obtained for SiC or 

Si-C and Si-C-(O) fibres (Fig. 2), possibly due to an insufficient pyrolysis temperature and/or to 

the inherent instability of the oxycarbide phase. A slight increase of Kp is noticed when xfreeC 

increases, which has been related to the carbon activity (actually the atomic concentration) of the 

substrate. This argument, based on a local thermodynamic equilibrium, remains questionable as 

the substrate itself (SiCxO2(1-x)+free C) is not at equilibrium. 

Si-C-(O) fibres with various oxygen (xO=1-16at%) and free carbon(xfreeC=14-23at%) 

concentrations were also submitted to oxidation tests in pure oxygen. All these fibres demonstrate 

a parabolic regime similar to bulk SiC [Chollon00]. However, a catastrophic growth of the 

oxidation rate is observed beyond 1200°C for the oxygen-rich fibres. This behaviour was 

attributed to the thermal decomposition of the SiCxO2(1-x)+free C system, SiO and CO gases 

blowing the SiO2 layer out of the substrate. 

 

5 Si-(X)-C-N-(O) systems 

PDC belonging to Si-C-N-(O) systems are usually processed from commercial or 

experimental [Bahloul92,93] poly(carbo)silazane precursors. The precursors are sometimes 

modified with the introduction of a heteroelement X (X=Zr, Al…) [Saha04, Wang05,06a-b] and 

oxygen can also be introduced simultaneously [Saha04] or during curing to get infusible fibres 
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[Chollon00]. The ceramic obtained after pyrolysis in inert atmosphere generally consists of a 

metastable amorphous silicon oxycarbonitride phase SiCxN4y/3O2(1-x-y)) with a mixed SiCXNYO4-X-

Y tetrahedral environment and free aromatic carbon (Fig.1a) [Chollon00]. A pyrolysis in a NH3 

atmosphere gives rise to a nearly carbon-free Si-N-O ceramic [Bahloul92]. Si-C-N-O materials 

are slightly more stable than those from the Si-C-O system, especially under a N2 atmosphere. 

Beyond 1300°C, they decompose into SiO, CO, N2 and crystalline SiC. Even in absence of 

oxygen, the carbon excess reacts with the silicon nitride phase to form SiC and N2 beyond 

1480°C [Monthioux96, Nickel99, Seifert02]. 
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Figure 2 : Effect of temperature on the parabolic oxidation rate Kp, the various PDC (see Fig. 1). 

Experiments performed in air (except #: in pure O2), P=100kPa. *initial rate (non stationary). 

 

Bahloul et al. studied the oxidation behaviour of Si-C-N ceramic powders with different 

carbon contents and at different Tp, by mean of TGA and mass spectrometry analysis 

[Bahloul92,93]. They showed that the mechanism of oxidation depends on the initial 

microstructure, itself influenced by the pyrolysis conditions. The selective oxidation of free 
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carbon facilitates the oxygen diffusion and the oxidation of the silicon carbonitride. This 

phenomenon is enhanced by a larger amount of free carbon but also by increasing Tp. At 

Tp=1400°C, the segregation of the free carbon/Si3N4 phases and the ceramic microcracking 

improve the accessibility to oxygen. Conversely at Tp=1200°C, the carbon phase is dispersed in 

the silicon carbonitride and is therefore less vulnerable to oxidation. Furthermore, the presence of 

residual hydrogen may also activate the formation of silica protecting free carbon from further 

oxidation. A similar trend is noticed for substantially crystalline Si-C-N ceramics obtained at 

much high temperatures (Tp=1540°C/N2), the coarser microstructure and the larger pore channels 

indeed resulting in enhanced oxidation rates [Ziegler99]. 

For the reasons stated in §2, the TGA of porous monoliths or fine powders gives rise to 

complex weight gains versus time. These functions were however modelled using exponential 

and Z-L-T equations, respectively [Raj01]. A parabolic constant Kp was deduced from the latter 

for the oxidation of Si-C-N ceramic at T=1350°C in ambient air, which approaches that for pure 

Si3N4 (Fig. 2 ). Other authors studied the oxidation of dense Si-C-N-O monoliths and fine fibres. 

These studies showed the formation of a dense and continuous oxide layer (without bubbles or 

cracks), with a sharp oxide/ceramic interface and revealed parabolic e(t) and m/m0(t) laws 

within the whole experimental domain (T=800-1400°C, P=100kPa of O2 or air) [Chollon 00, 

Bharadwaj04]. The parabolic constants and the activation energies (Ea) were found to fall in with 

the values obtained for pure SiC and Si3N4 (Fig. 2). Whereas the oxygen and free carbon 

concentrations have only a little influence, the increase of the nitrogen ratio y (and the decrease 

of the carbon ratio x) in the silicon oxycarbonitride phase induces a significant decrease of Kp at 

low temperatures and increase of Ea (up to about 300kJmol
-1

) [Chollon00]. This specific property 

of nitrogen-containing PDC was related to the well distinct oxidation behaviour of SiC and Si3N4 

and particularly the significantly higher Ea value for the latter [Du89, Ogbuji95, Ramberg96]. 

The oxidation behaviour of Si-C-N-(O) ceramics was attributed to a complex O2-

permeation/reaction limited kinetic regime involving the formation of an intermediate silicon 

oxynitride layer, as already asserted for Si3N4 [Sheldon96]. 

Recently, Wang et al. reported on the oxidation resistance of Si-Al-C-N ceramics obtained 

by the modification of a commercial precursor with an aluminium alkoxide [Wang05-06a-b]. 

Variable amounts of aluminium were introduced in the ceramic (up to 4at% after pyrolysis). The 

oxidation kinetics were measured in dry air at 900-1400°C and compared to those of the Al free 
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Si-C-N ceramic. Whereas the latter shows a typical parabolic behaviour, the oxidation rate of the 

Si-Al-C-N materials is non-parabolic for T≥1000°C and decreases more rapidly with time, at a 

negligible level [Wang05]. At T=1400°C, a stationary parabolic rate is observed for t>20h, with 

parabolic constants about ten times lower than those of the Si-C-N specimen (Fig. 2) [Wang06a]. 

This anomalous behaviour was attributed to the Al atoms, (partly) sitting in the six-membered 

SiO4 rings, impeding the O2 permeation and therefore reducing the oxidation rate. Recent SIMS 

analyses of the 
18

O tracer diffusion at 1050°C confirmed that the oxidation of Si-Al-C-N 

ceramics, as for Si-C-N, is controlled by interstitial diffusion and that the diffusion rate is much 

lower in the Al-containing silica than in pure SiO2 formed on Si-C-N [Wang06b]. 

Alternatively, Saha et al. compared the oxidation of Si-Zr-C-N-O fibres and Si-C-N 

ceramic, in air at 1350°C [Saha04]. A parabolic regime was observed for both materials and Kp 

for Si-Zr-C-N-O was about half the value for Si-C-N. In contrast to Wang et al. for Si-Al-C-N, 

these authors explain the lower oxidation rate by the lower carbon activity (in fact the lower 

carbon content) in the starting ceramic, as already proposed for Si-C-O glasses of various free 

carbon concentrations (see §4) [Modena05]. 

 

6 The Si-(X)-B-C-N system 

Extensive works on Si-B-(C)-N ceramic precursors were carried out mainly by German 

and few other research groups [Baldus95,97,99, Jansen97,02, Weinman00, Bernard05a-b]. These 

precursors were successively spun into fibres and coatings, or hot pressed, and subsequently 

pyrolyzed. The pyrolysis is achieved under a N2 or NH3 atmosphere, yielding Si-B-C-N or Si-B-

N ceramics, respectively [Baldus95]. Most of the compositions are located in the 

Si3N4+SiC+C+BN tetrahedral phase field, few of them (“SiBN3C”-type) lying near the 

Si3N4+C+BN section (Fig. 1b) [Seifert02]. The most remarkable feature of Si-B-C-N PDC, 

compared to Si-C-N, is that they remain chemically stable and nearly amorphous in a N2 

atmosphere up to very high temperatures (Tp~1900°C). For compositions near the Si3N4+C+BN 

section, 
29

Si, 
11

B and 
15

N NMR analyses evidenced a fourfold SiN4 tetrahedral and a BN3 trigonal 

planar coordination of Si and B atoms, respectively [Jansen97,02]. Carbon atoms are rather sp
2
 

hybridized and incorporated apart from the previous Si-B-N network, in free aromatic carbon, as 

for the Si-C-N system (as suggested by Raman spectroscopy [Butchereit98]) and/or in a 
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turbostratic B-C-N phase (C-N bonds being evidenced by X-ray photoelectron spectroscopy 

[Baldus97]). 

The first reports on the oxidation of on Si-B-C-N alleged an outstanding oxidation 

resistance. A parabolic growth rate was observed up to 1600°C in air, with Kp constants lower 

than those for Si3N4 and SiC [Baldus95]. Kp is shown in Figure 2 for B-rich PDC, considering 

either only SiO2 or both SiO2 and B2O3 in the oxide. This high oxidation resistance was attributed 

to the formation of a dual surface layer resulting from oxidation (i.e., a SiO2 outer layer 

containing B and C traces and a B-N-O inner layer with traces of Si and O), assumed to be more 

protective from O2-inner diffusion than a pure SiO2 layer. Several authors failed to evidence such 

a double layer [Butchereit00,01]. It was however confirmed and further detailed by few others, 

who examined “SiBN3C”-type fibres oxidized at 1500°C by TEM [Braue01, Cinibulk01], as well 

as predicted by thermodynamic calculations [Nickel99]. 

Contrasting with Si-C-N and Si-C PDC, the TGA shows that Si-B-C-N ceramics undergo 

much lower weight gains for T<1200-1300°C and sometimes a slight weight loss increasing at 

higher temperatures [Baldus97, Butchereit98, Bernard05a, Jaschke04]. This is explained by the 

lower Si content of the initial ceramic, reducing the SiO2 yield with respect CO and N2, but also 

by the superficial volatilization of B2O3 from the borosilicate layer, activated at high temperature. 

The oxidation behaviour of various Si-B-C-N PDC has been extensively studied by 

Butchereit et al. Insufficient pyrolysis temperature (Tp=1000-1100°C) leads to a catastrophic 

oxidation behaviour beyond 1250°C [Butchereit98]. Residual hydrogen is released, producing 

H2O, altering the properties of the borosilicate and accelerating the volatilisation of B2O3. Even 

after stabilization (Tp=1320°C), the oxidation behaviour remains complex due to multiple 

interacting effects. Bubble formation is observed preferentially on dense monolithic ceramics 

(rather than smaller foamy fragments), at the sharp edges and at high temperature 

[Butchereit98,00,01a-b]. This heterogeneous behaviour is likely related to the particularly low 

viscosity of the oxide (due to the incorporation of B2O3 in the silica). The oxide flows away from 

the edges and accumulates in pores, cracks and contact points. The oxide-depleted edges are 

therefore more exposed to O2 and a high reaction rate at the interface may result in a pressure 

build up of product gases. Furthermore, the superficial volatilization of B2O3 induces a local 

increase of viscosity and can give rise to devitrification into cristobalite at high temperature. The 

discrepancy between monoliths and foamy fragments with high specific surface might be due to 
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the stagnation of product gases (N2, CO or volatilized B2O3) over the surface, limiting the O2 

inward diffusion or B2O3 volatilization in the latter case. 

The oxidation rates of three different Si-B-C-N ceramics were assessed by oxide thickness 

measurements after isothermal tests in air at 1500°C and compared to those of two Si-C-N 

ceramics [Butchereit01a-b]. Parabolic growth rates were observed only for two Si-B-C-N 

specimens. Compared to SiC and Si3N4, the parabolic constants Kp were found higher for Si-C-N 

and lower for Si-B-C-N (Fig. 2). However, the calculated recession rate of Si-B-C-N equals that 

of Si3N4. These data were correlated with weight change measurements. All the Si-B-C-N 

specimens showed negligible weight change, confirming that the predictable gain due to the 

formation of the borosilicate was at least partially counteracted by the B2O3 volatilization 

[Nickel99, Jacobson01]. 

Recently, a Si-B-C-N precursor was modified to introduce various amounts of Al (3-

7at.%) [Butchereit03, Muller04]. TGA oxidation tests of ceramic particles in O2 revealed a 

moderate weight gain increasing from 1100 to 1500°C. At 1500°C, a similar test on a monolith 

showed a weight loss, suggesting again a rate limitation by gas diffusion through the porosity. 

Contrasting with Si-B-C-N ceramics, the oxide is well adherent and bubble free. A nearly 

parabolic law is observed at 1500°C, but with a Kp value higher than those for SiC and Si3N4 

(Fig. 2). 

 

7 Conclusion 

For all chemical systems, regular (parabolic) oxidation rates are observed provided PDC 

are inherently stable, i.e. (i) Tp is sufficiently high to avoid the H2/H2O release from the pre-

ceramic and (ii) the system is thermochemically stable to prevent decomposition, e.g., of 

oxycarb(onitr)ides+free C into SiO, CO, (N2). For instance, oxygen-rich Si-C-O ceramics should 

not be used over about 1200°C [Chollon00, Modena05]. Also, whereas a passive oxidation 

regime is observed for Si-C-N up to 1400°C, the severe increase of the oxidation rate at 1500°C 

[Butchereit01b] is likely due to the reaction between silicon nitride and free carbon. The thermal 

stability of the Si-B-C-N system is significantly higher [Seifert02]. The bubble formation in the 

oxide observed at 1500°C [Butchereit98, 00, 01a-b] is more likely related to the overpressure of 

oxidation products at the interface, than that of decomposition gases. A harmful oxidation regime 

of the ceramic may also be observed if the free carbon phase is too abundant, segregated (for high 
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Tp), if the silicon oxycarb(onitr)ide reactivity is too low and the oxide not protective (i.e., at low 

temperature) [Brewer99, Bahloul92,93]. 

Within the intrinsic thermal stability domain, the parabolic rate Kp depends essentially on 

the nature of the oxide. All Si-C-(O) PDC display similar oxidation behaviours (Ea~100kJmol
-1

). 

Conversely, the increase of the nitrogen concentration in Si-C-N-(O) ceramics gives rise to an 

increase of Ea (up to~300kJmol
-1

) and decrease of Kp (or Kp) at low temperatures, close to the 

values for Si3N4 [Chollon00, Raj01].  

The influence of further heteroelements is variable. Only a slight decrease of Kp was 

noticed at 1350°C after the addition of ZrO2 in Si-C-N PDC, assigned to a free carbon 

concentration effect [Saha04]. Conversely for T≥1000°C, the addition of aluminium in Si-C-N 

PDC leads to a remarkable decrease of the oxidation rate after a transient stage, which was 

explained by the modification of the SiO2 network [An04, Wang05,06a]. However, this peculiar 

high temperature transitory regime and particularly the high initial oxidation rates, close to those 

for SiC, still have to be fully elucidated. 

The role of boron in the oxidation rate of Si-B-C-N ceramics is particularly complex. The 

exceptionally low oxidation rates initially reported [Baldus95] might have been somehow 

underestimated for several reasons, e.g., the low oxide/ceramic volume ratio, the borosilicate 

viscous flow and/or the B2O3 volatilization …) [Nickel99, Jacobson01]. Furthermore, the dual B-

N-O/SiO2 layer, though observed by few authors, was not clearly demonstrated to slow down the 

O2-inward diffusion. More recent studies reported Kp (or Kp) values close to those for SiC and 

Si3N4 at 1500°C [Butchereit01a-b], concluding to a common rate limiting regime, though 

significantly complicated by the combination of the above-mentioned effects (e.g., bubble 

formation). A further addition of aluminium in the Si-B-C-N ceramic was detrimental to the 

oxidation resistance at 1500°C [Butchereit03], indicating no sign of B2O3 stabilization. Clearly 

there is a lack of data on the oxidation behaviour of Si-(X)-B-C-N PDC at low and intermediate 

temperatures (800-1000°C). This is regrettable since the use of these borosilicate formers may be 

valuable in crack healing within this particular temperature range. 

Several other features besides plain oxidation should be carefully examined to appraise a 

new PDC composition for a high temperature structural application. In real use, this component is 

likely to be associated with different materials, submitted to other corrosive species than O2 and 

often to stress. The reactivity between the oxide products and the other nearby materials, the 
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corrosion under a H2O environment and the delayed fracture in these aggressive media appears 

therefore particularly worth considering [Nickel99, Jacobson01]. 
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