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Joint Segmentation and Deconvolution of
Ultrasound Images Using a Hierarchical
Bayesian Model Based on Generalized

Gaussian Priors

Ningning Zhao, Student Member, IEEE, Adrian Basarab, Member, IEEE, Denis Kouamé, Member, IEEE,
and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper proposes a joint segmentation and
deconvolution Bayesian method for medical ultrasound (US)
images. Contrary to piecewise homogeneous images, US images
exhibit heavy characteristic speckle patterns correlated with the
tissue structures. The generalized Gaussian distribution (GGD)
has been shown to be one of the most relevant distributions for
characterizing the speckle in US images. Thus, we propose a
GGD-Potts model defined by a label map coupling US image
segmentation and deconvolution. The Bayesian estimators of the
unknown model parameters, including the US image, the label
map, and all the hyperparameters are difficult to be expressed in
a closed form. Thus, we investigate a Gibbs sampler to generate
samples distributed according to the posterior of interest. These
generated samples are finally used to compute the Bayesian
estimators of the unknown parameters. The performance of
the proposed Bayesian model is compared with the existing
approaches via several experiments conducted on realistic
synthetic data and in vivo US images.

Index Terms—Bayesian inference, ultrasound imaging,
image deconvolution, segmentation, Gibbs sampler, generalized
Gaussian Markov random field.

I. INTRODUCTION

LTRASOUND (US) imaging is a well-established med-
Uical imaging modality widely used for clinical diagnosis,
visualization of anatomical structures, tissue characterization
and blood flow measurements. The popularity of US imaging
compared to other imaging modalities such as computed
tomography (CT) or magnetic resonance imaging (MRI) is
mainly due to its efficiency, low cost and safety [1]. Despite
these advantages and the recent advances in instrumenta-
tion [2] and beam-forming [3], it also has some limitations,
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mainly related to its poor signal-to-noise ratio, limited contrast
and spatial resolution. Furthermore, US images are contam-
inated by speckle, which considerably reduces their quality
and may lead to interpretation issues. For this reason, several
despeckling methods can be found in the US literature [4], [5].
Despite its negative effect, speckle has also been extensively
used as a source of information in applications such as image
segmentation and tissue characterization [6], [7]. Specifically,
it has been shown that the statistical properties of the speckle
are strictly correlated with the tissue structures [8], [9]. Thus,
methods allowing image restoration using the statistical prop-
erties of the speckle noise are also an interesting research track
in US imaging [8], [10].

A. Problem Statement

Under the first order Born approximation and the
assumption of weak scattering classically assumed for soft tis-
sues [11], the radio-frequency (RF) US images can be modeled
as the convolution between a blurring operator/point spread
function (PSF) and a tissue reflectivity function (TRF) (see,
e.g., [8], [10]-[13]). The resulting linear model is given by

y(r)=hr)®@xr)+nr), reR (1)

where ® is the two dimensional convolution operator, y(r)
is the observed image pixel at the location r, x(r) is the
TRF to be estimated, i(r) is the system PSF, n(r) is the
measurement noise and R is the image domain. Equivalently,
after lexicographical ordering the corresponding images y(r),
x(r), n(r) and forming the huge matrix H € RV*V associated
with h(r), we obtain the following equivalent model

y = Hx +n. 2)

Due to the physical corrections related to image formation
(e.g., time gain compensation, dynamic beamforming), in
most of soft tissues, 4(r) can be assumed shift invariant.
Moreover, cyclic convolution is considered in this paper for
computational purpose, leading to a block circulant matrix
with circulant blocks (BCCB) H.! Note that the PSF is

1Some existing works [8], [10], [14], [15] assume that the PSF in
US imaging is shift-variant mainly along the axial direction. In this case,
US images are generally divided into several local regions along the
axial direction. In each region, the local PSF is assumed shift-invariant.
The global blurring matrix is built in this case by combining these local
shift-invariant PSFs.



unknown in practical applications and that its estimation has
been extensively explored in US imaging. A typical approach
in US imaging, also adopted in this paper, is to estimate the
PSF in a pre-processing step before applying the deconvolution
algorithm (see, e.g., [8], [11]).

B. Related Work

US image deconvolution aims at estimating the TRF x
from the RF data y, which is a typical ill-posed problem.
Imposing a regularization constraint is one traditional way to
cope with this problem. The regularization constraint usually
reflects the prior knowledge about x. In US imaging, Gaussian
and Laplacian distributions have been widely explored as
prior information for the TRF x, leading to £3-norm [16] and
¢1-norm [13], [17] constrained optimization problems.

Due to the tight relationship between image deconvolu-
tion and segmentation, it is interesting to consider these
two operations jointly. This idea has been recently exploited
for piecewise homogeneous images using the Mumford-Shah
model [18]-[20], the Potts model [21], [22] or generalized
linear models [23] in Bayesian or variational frameworks.
Moreover, segmentation-based regularizations have been con-
sidered in [24] to improve the image reconstruction perfor-
mance. However, due to the intrinsic granular appearance of
US data, these methods are not efficient to simultaneously
restore and segment US images. In order to develop US image
deconvolution and segmentation methods, it is common to
take advantage of the statistical properties of the TRF. Except
the traditional Gaussian and Laplace distributions mentioned
above, distributions that have been considered for US images
include the homodyned K [25], Nakagami [26] and generalized
Gaussian distributions [27]. Alessandrini et. al. recently inves-
tigated a deconvolution method for US images based on gen-
eralized Gaussian distributions (GGDs) using the expectation
maximization (EM) algorithm [8], [28]. This method assumed
that the US image can be divided into different regions
characterized by GDDs with different parameters. Despite its
accuracy when compared to several state-of-the-art US image
deconvolution methods, the framework in [28] has two major
drawbacks that we propose to tackle in this paper. First, it
is well-known that the EM algorithm can easily converge
to a local minimum of the cost function and is sensible to
the initial values of the parameters to be tuned, which may
lead to inaccurate estimates. Second, the EM algorithm can
only be applied to cases where a mask (or label map) of
the homogeneous regions is available. Note that a US image
deconvolution method based on Markov chain Monte Carlo
(MCMC) methods was recently investigated in [29]. However,
this method required using an a priori label map for the
different image regions. Due to the tight relationships between
segmentation and deconvolution, we think that combining
these two operations can increase their performance, which
is the objective of this paper.

C. Proposed Method

Compared with the US image deconvolution method of [29],
this paper defines a Potts Markov random field for the hidden
image labels, assigns GGD priors to the image TRF, and

investigates a joint segmentation and deconvolution method
for US images. Thus, the proposed algorithm generalizes the
results of [29] to situations where a label map is unknown.
Additional motivations for the proposed model are provided
below. First, it uses a GGD-Potts model to regularize the
ill-posed joint deconvolution and segmentation problem.
Second, it exploits the local statistical properties of different
image regions, which are usually related with the anatomical
image structures. Finally, the proposed model is able to capture
the spatial correlations between neighboring pixels. To our
knowledge, the proposed method represents a first attempt
for a joint segmentation and deconvolution in US imaging.
The complicated form of the resulting posterior distribution
makes it too difficult to compute closed form expressions of
the corresponding Bayesian estimators. Therefore, a MCMC
method based on a Gibbs sampler is investigated to sample
the posterior distribution of interest and build the estimators
of its unknown parameters.

The rest of the paper is organized as follows. The statistical
hierarchical Bayesian model proposed for image segmentation
and deconvolution is introduced in Section II. Section III
studies a hybrid Gibbs sampler, which generates samples
asymptotically distributed according to the posterior distrib-
ution of this model. Simulation results obtained on synthetic
data, realistic simulated and in vivo US images are presented
in Section IV. Conclusions are finally reported in Section V.

II. BAYESIAN MODEL FOR JOINT DECONVOLUTION
AND SEGMENTATION

This section introduces the Bayesian model investigated
for the joint deconvolution and segmentation of US images.
We assume that the US TRF x = (xq,--- ,xN)T can
be divided into K statistical homogeneous regions, denoted
as {Ri1,..., Rk} and we introduce a hidden label field
z = (z1,--,zy)T € RN mapping the image into these K
regions. More precisely, z; = k if and only if the correspond-
ing pixel x; belongs to the region Ry, where k € {1,---, K}
and i € {l,---, N}. The conditional distribution of pixel x;
is then defined as

xilzi = k ~ GGD(xi; &k, yi) 3)

where & and p; are the shape and scale parameters of
the GGD associated with the region R;. We remind that a
univariate GGD with shape parameter ¢ and scale parameter y
denoted as GGD(&, y) has the following probability density
function (pdf),
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Assuming that the pixels are independent conditionally

to the knowledge of their classes, the TRF is distributed
according to a mixture of GGDs with the following pdf,

K
pxi) = D weGGD(&: yi) with wi = P(zi = k). (5)
k=1

In addition, we assign a Potts model to the hidden field z to
exploit the dependencies between pixels that are nearby in the



image [7], [21], [30]. The resulting model is referred to as
GGD-Potts model. In the following, we define a hierarchical
Bayesian model based on this GGD-Potts model for the joint
segmentation and deconvolution of US images. Using the
Bayes rule for the joint posterior of the unknown parameters,
the following result can be obtained

p(x,z,0]y) « p(y|x, 0) p(x|z, 0) p(z|6) p(0) (6)

where o« means “proportional to", @ is a vector containing all
the model parameters and hyperparameters except x and z,
i.e., the noise variance, the shape and scale parameters. The
likelihood p(y|x, #) depending on the noise model and the
prior distributions p(x|z, #), p(z|@) based on the GGD-Potts
model are detailed hereinafter.

A. Likelihood

Assuming an additive white Gaussian noise (AWGN) with
a constant variance a , the likelihood function associated with
the linear model (2) is

pylx, o) ! exp( Ly Hx||2) @)
,0' — A~ I - 2
" Qra)N/? 202

where || - ||2 is the Euclidean €-norm.

B. Prior Distributions

1) Tissue Reflectivity Function (TRF) x: As explained
beforehand, a mixture of GGD priors is assigned to the TRF.
Assuming that the pixels are independent conditionally to the
knowledge of their classes, we obtain the following prior for
the target image

p(x[z,§,y)

K Ni

-1

1 ( |x,-|fk)
exp | —
29, /5T (1 +1/&0) i
1 ! o[- i il
/é N P Vk
=1 (204 ra+ e
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K Sk
I1 ! exp(——@) ®)
i [ ra @] 7
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where & = (&1,---,¢x)T and y = (1, ---
yi are the shape and scale parameters of the kth region Ry,
Ny is the number of pixels in Ry, X; contains all the pixels
assigned to Ry, I'(-) is the gamma function and ||xllz =
(Z |x;|)1/< denotes the £z-norm.

2) Nozse Variance a > In the presence of an AWGN, it is
standard to assign a conjugate inverse gamma (ZG) prior to
the noise variance, i.e.,

p(@?) ~ IG(a,v)

= Fy e (—%) Tri(@?) 9

where 74 is the indicator function on the set A. This prior has
two adjustable parameters a, v which make it very flexible and
thus appropriate to the variance of most statistical models. The
values of a and v have been fixed by cross validation in our
experiments leading to (a,v) = (0.1,0.1).

3) Labels z: A Potts model (generalization of the Ising
model) is considered as prior for the hidden image label field.
The Potts Markov random field (MRF) has been shown to
be appropriate for image segmentation [30], [31]. It estab-
lishes dependencies between pixels that are nearby in an
image [7], [30]. More specifically, adjacent labels of the image
are dependent and tend to belong to the same class. The
conditional distribution of z,, (associated with pixel x,) for
the Potts MRF is defined as

P(znlz—n) = p(znlzy ) (10)

where z_, = (z1,...,2Zn—1,Zn+1, ..., 2n) and V(n) contains
the neighbors of label z,. In this paper, a first order neighbor-
hood structure (i.e., 4 nearest pixels) is considered. The whole
set of random variables z forms a random field.

Using the Hammersley-Clifford theorem [32], the prior
of z can be expressed as a Gibbs distribution, i.e.,

p()-c(ﬁ)ep Z > BoGa—zw)

n=1n'eV(n)

where £ is the granularity coefficient, J(-) is the Kronecker
function and C(f) is the normalizing constant (often referred
to as partition function). The value of f has been fixed by
cross validation, leading to f = 1.

4) Shape and Scale Parameters: The prior used for the
US TRF defined in (8) depends on the shape and scale
parameters of the GGD, which are usually referred to as
hyperparameters. Following the works in [33], we have chosen
the following priors for these hyperparameters

(1)

K K
1
p) = H p&) = H 3710316 (12)

p(y) = Hp(yk) = H Im(n)

k=1
where k € {1,..., K}. Note that the range [0, 3] covers all
the possible values of & and that p(yx) is the uninformative
Jeffreys prior for yy.

13)

C. Joint Posterior Distribution

The joint posterior distribution of the unknown parameters
X, a ,&,y,z can be determined as follows

p(x, 07, &, y,2ly) < p(ylx, o n,§ v, 2)p(x, 07, &, 7, Z)
o p(ylx, o2, &, v,2)p(xI&, ¥,2) p(o))
Xp(El)p(y)p(Z)

1
x W exp (——zlly - HXll%)

v/af)

( ;
oo )

N
xexp[z z Po(zn— zni|

n=1n'eV(n)

(0-2)a+1 exXp

_I[O,3l(§k)y_kIR+()’k)] (14)
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Fig. 1. Hierarchical Bayesian model for the parameter and hyperparameter
priors, where the TRF x is modeled by a mixture of GGDs, the hidden label
field z follows a Potts MRF and the parameters appearing in the boxes are
fixed in advance.

Algorithm 1 Hybrid Gibbs Sampler

1 Sampling the noise variance o2 according to the
conditional distribution (15).

2 Sampling the shape parameter £ according to the
conditional distribution (17) with an RWMH algorithm.

3 Sampling the scale parameter « using (19).

4 Sampling the labels z according to the normalized
conditional distribution (23).

5 Sampling the TRF x using an HMC method.

SR S
27T (141780 _ ‘
supposed to be a priori independent. Fig. 1 summarizes the

proposed hierarchical Bayesian model as a directed acyclic
graph (DAG), in which the relationships between the parame-
ters and hyperparameters are indicated.

where ay and the hyperparameters are

III. SAMPLING THE POSTERIOR AND COMPUTING
THE BAYESIAN ESTIMATORS
Computing closed-form expressions of the minimum mean
square error (MMSE) or maximum a posteriori (MAP) esti-
mators for the unknown parameters X, anz, &, y,z from (14)
is clearly complicated. In this case, a possible solution is to
consider MCMC methods in order to generate samples asymp-
totically distributed according to the distribution of interest
and to use the generated samples to build estimators of the
unknown parameters. In this section, a hybrid Gibbs sampler
is investigated to generate samples asymptotically distributed
according to (14). These samples are used to compute the
Bayesian estimators of the US TRF x, hidden label field z,
noise variance 0,% and GGD parameters &, y.

A. Hybrid Gibbs Sampler

The proposed hybrid Gibbs sampler is a 5-step algorithm
summarized in Algorithm 1. These steps are explained in detail
in what follows.

1) Sampling the Noise Variance: The conditional distri-
bution of anz|y, X,&,p,z is the following inverse gamma
distribution whose expression is derived in Appendix A

ploly. x. & y,2) x p(ylx, o7, &, v, 2)p(o;)
1
=17G (a +NJ2, 9+§|Iy - Hx||§). (15)

Generating (15) is

forward.
2) Sampling the Shape Parameter Vector &: The conditional

distribution of the shape parameter vector & satisfies the
following relation

samples according to straight-

pEly.x, 02, y,2) o« p(ylx,02, &, 7,2 p(xI&, ¥, 2) p(€)
o p(x|&,y,2)p(E). (16)

Assuming that the shape parameters are a priori independent,
we have

pCkIX, v, 2, & ;) o< p(Xk|Sk, vk» 2k) p(Ek)
e |
o apt eXp(— :jk <k )1[0,3]@) (17)

where §_;, = (¢1, ..., &—1,Ck+1,...,¢k) fork € {1, ..., K},
X contains the pixels belonging to class k and z; is built
from the corresponding labels. Unfortunately, the conditional
distribution (17) is not easy to sample directly. Thus, we pro-
pose to consider a random walk Metropolis Hastings (RWMH)
move [34]. More implementation details about this move and
the resulting algorithm are given in Appendix B.

3) Sampling the Scale Parameter Vector y: The conditional
distribution of the scale parameter vector y satisfies the
following relation

2

p(yly,x, 02, 2

,2) < p(ylx,0,,&,v,2)p(x|§,y,2)p(y)
x p(x|&, y,2)p(p). (18)

Assuming that the scale parameters are independent, we have

p(klx, &, 2,y i) o p(Xklk, vk, 2) P (i)
Nk g
o IG (— ||Xk||'k)
& Ck

where y_, = (y1,.-.s Vk=1> Vkt1,..., k) for k €
{1, ..., K}. Drawing samples from the inverse gamma distrib-
ution (19) is straightforward. More details about the derivation
of (19) are provided in Appendix A.

4) Sampling the Labels z: The conditional distribution of
the labels z can be computed using Bayes rule

19)

pzly,x, 02, &,y) « p(ylx, 07, & v, 2) p(x|§, y,2)p(2)
o p(x|&, y,2)p(2). (20)

Considering the dependency between a label and its neighbors,
the conditional distribution of the label z,, (corresponding to
the image pixel x,) is given as follows

P(zn =klz—pn, X, &, ¥) < p(xplzn =k, &, ¥) p(zn = klZy ()
2D

where z_,, is the vector z whose nth element has been removed
and zy(, represents the neighbors of label z,. Note that
a 4-pixel neighborhood structure has been adopted in this
paper. Denoting the left hand side of (21) as m, x, we have

)exp D otk —zw)

n’eV(n)

Xn |fk

Tk O i €XP (_ 22)



The normalized conditional probability of the label z, is
defined as

g = —omek (23)
nk = g -

Zle Tn,k
Finally, the label z, can be drawn from the set {1,..., K}

with the respective probabilities {7, 1, ..., Tn K}
5) Sampling the TRF x: The conditional distribution of the
target image we want to estimate is defined as follows

K

Sk
ly — Hx||? Xk [l
P(X|Y»0',%95,7,Z)0(3XP(_72_Z—-k .

20, = %
(24)

Sampling according to (24) is the critical point of the proposed
algorithm. Due to the high dimensionality of x, classical Gibbs
or MH moves are inefficient. Thus we propose to implement
an efficient sampling strategy referred to as Hamiltonian
Monte Carlo (HMC) method. The principles of this method
have been presented in [35] with an application to neural net-
works. It is widely reported that HMC generally outperforms
other standard Metropolis-Hastings algorithms, particularly
in high-dimensional scenarios [36]. This empirical observa-
tion is in agreement with recent theoretical studies showing
that HMC has better scaling properties than the Metropolis
adjusted Langevin algorithm (MALA) and RWMH [37]. The
main steps of the HMC method with details about the way to
adjust its parameters are reported in Appendix C.

B. Parameter Estimation

Bayesian estimators of the unknown parameters are com-
puted using the generated samples obtained by the hybrid
Gibbs sampler. Since the labels are discrete variables, mar-
ginal MAP estimators are chosen for the labels. The MMSE
estimators for the other variables (the TRF x, noise variance
O‘,% and GGD parameters &, y) are calculated. For example,
the MMSE estimator of the TRF x is computed by

mMsE|Zvap = E{x|z = Zmap} = / p(X|z = ZmaP)dX.
(25)

For each pixel, we can approximate this estimator as follows

M

Xn,MMSE|Zn,MAP =~ % ;JC,(,’)IZ,(,’) = Zn,MAP (26)
where M is the number of iterations after the so-called burn-in
period (see Section IV-B devoted to the sampler convergence
for more details) that satisfy z,(,l) = Zn,MAP, the superscript i
represents the ith generated sample and the subscript n is
used for the nth pixel. Note that Zyap is the marginal MAP
estimator of the label map and that Xymsg is the MMSE
estimator of the reflectivity. Note also that a similar estimator
was implemented in [38] for image blind deconvolution.

C. Computational Complexity

The computational cost of the proposed Gibbs sampler is
mainly due to the generation of the TRF x and the label map z.
In each sampling iteration, the computational complexity for

sampling the TRF x using the HMC is of the order O((L +
1)Nlog N), where L is the number of Leapfrog iterations
and N is the number of image pixels. The computational
complexity for sampling the label map z is of the order
O(K N), where K is the number of label classes. Thus, in total,
the computation complexity for drawing a cycle of samples in
the Gibbs sampler is of the order O((K + (L + 1)log N)N).
Note that in general (L + 1) log N > K. Thus, the most time
consuming step is for sampling the TRF.

IV. EXPERIMENTAL RESULTS

This section presents several experiments conducted on
simulated and real data using our algorithm. We have also
compared our approach with several existing deconvolution
algorithms previously applied in US imaging. All the exper-
iments have been conducted using MATLAB R2013a on a
computer with Intel(R) Core(TM) i7-4770 CPU @3.40GHz
and 8 GB RAM.

A. Evaluation Metrics

Different evaluation metrics were considered for simulated
and in vivo US images since the TRF ground truth is only
available for simulated images. These metrics are presented
below.

1) Simulated US Images:

a) Image deconvolution: The performance of the
TRF estimation is assessed in terms of improvement in
SNR (ISNR), normalized root mean square error (NRMSE),
peak signal-to-noise ratio (PSNR) and image structural simi-
larity (MSSIM). The metrics are defined as follows

Ix —y|?
ISNR = 10log; ——>— 27
Ogl() ||X—)2||2, ( )
Cx—&12
NRMSE = | — ", (28)
lIx[12

max(x, X)?

PSNR = lOlOglO W, (29)
1 w

MSSIM(x, X) = W > SSIM(x;, %) (30)

j=l1

where the vectors Xx,y, X are the ground truth of the TRF,
the RF image and the estimated TRF, respectively. Note that
W is the number of local windows, x; and X j represent the
local reflectivities of x and X located in one of these windows
and SSIM is the structural similarity measure of each window
(defined in [39]).

b) Image segmentation: The performance of the label
estimator is assessed using the overall accuracy (OA), defined
as the ratio between the number of correctly estimated labels
over the total number of labels.

2) In Vivo US Images: Since the ground truth of the TRF
and the label map are not available for in vivo US data,
the quality of the deconvolution results is evaluated using
two other metrics commonly used in US imaging: the
resolution gain (RG) [17] and the contrast-to-noise
ratio (CNR) [40], [41]. RG is the ratio of the normalized
autocorrelation (higher than —3 dB) of the original RF US
image to the normalized autocorrelation (higher than —3 dB)



of the deconvolved image/restored TRF. The definition of the
CNR is defined as

_ [i1 — pal

2 2
\/ O +02

where i1, (2, o1 and g7 are the means and standard deviations
of pixels located in two regions extracted from the image. The
two regions are manually chosen so that they belong to dif-
ferent tissue structures. Moreover, as in most US studies, they
are at the same depth in order to avoid issues related to wave
attenuation. Note that the higher the values of RG and CNR,
the better the deconvolution performance.

CNR 31

B. Sampler Convergence

The convergence of the proposed Gibbs sampler can be
monitored by determining the so-called burn-in period which
refers to the first elements of the Markov chain that are
discarded and not used to compute the estimators. The poten-
tial scale reduction factor (PSRF) [42] is classically used to
determine the burn-in period. It requires to run several chains
in parallel with different initializations and is defined by

M —1 C+1B
PSRF, =~ + " i
v

where C is the number of Markov chains considered, M is
the number of iterations after the burn-in period, B, and W,
are the intra-chain and inter-chain variances of the variable v,
whose definitions are given by

(32)

v &
By= 2 0=, (33)
c=1
W= e X () o
C
coM-13
where o = &3 bc, be = & 20, o and v is the

ith sample of the variable v in the cth chain. Values of the
PSRF below 1.2 indicate a good convergence of the sampler
as suggested in [42]. In this work, we checked that the PSRFs
of all the variables of interest were below 1.2.

C. Synthetic Data

1) Deconvolution: We first study the deconvolution perfor-
mance on synthetic data with controlled ground truth, which
allows the quality of the different estimators to be appreciated.
Precisely, three groups of 2D synthetic images with the same
image size N = 50 x 50 were generated assuming that the
image pixels are independent and identically distributed (i.i.d.)
according to GGDs with different shape and scale parameters,
as reported in Table I. Each image was corrupted by a 5 x 5
Gaussian blurring kernel with variance o, = 3 and an AWGN.
The level of AWGN is characterized by the blurred signal-to-
noise ratio (BSNR) expressed in decibels as follows

IHx — E(Hx)n%)

No? (35)

BSNR =10 loglo(

where E(-) is the empirical average and N is the total
number of image pixels. The BSNR was set to 40 dB

|
Lo
L o n e

(a) (b) (©)

Fig. 2. Deconvolution results for one column of the synthetic image (the
red curves are the observed lines, the blue curves are the ground truth
and the green curves are the restored signals using the proposed method).
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Fig. 3. Estimated marginal posterior distributions (histograms) of the noise
variance o‘nz (a)-(c), the hyperparameters ¢ (d)-(f) and y (g)-(j). The vertical
lines represent the ground truths of the corresponding parameters. Each
column corresponds to a given image.

for the synthetic data. Regarding the MCMC algorithm,
50 chains of 6000 iterations including a burn-in period of
2000 iterations were run for each simulation scenario. In each
Monte Carlo chain, the stepsize was initialized to € = 105
and the number of leapfrog steps was uniformly sampled in the
interval [50, 70].

The typical deconvolution performance for one column of
each of the three observed images is depicted in Fig. 2.
These results show a good performance of the proposed image
deconvolution algorithm. Fig. 3 shows the histograms of the
generated samples from one single Markov chain for the noise
variance, the GGD parameters and the hyperparameters of
three synthetic images. These histograms are clearly in good
agreement with the true values of the parameters indicated by
the vertical lines. More quantitative results of the parameter
estimation are reported in Table I.

2) Segmentation: This section evaluates the performance of
our method for the segmentation of two regions of the same
size (128 x 64) using the overall accuracy (OA). Given that
pixels in both regions have a zero-mean GGD, the difference
between the two regions is controlled by the ratios of the



TABLE I
PARAMETER ESTIMATIONS FOR THE SYNTHETIC DATA

Group Parameters True values | MMSE | Standard
deviation
02 (x1077) 3.72 3.65 0.35
Group 1 13 2 1.98 0.04
5 2 2.00 0.05
a2 (x1077) 322 3.63 0.61
Group 2 1.50 1.41 0.09
vy 1.26 1.16 0.09
a2 (x1079) 3.13 4.15 0.60
Group 3 0.60 0.59 0.03
5 0.37 0.37 0.02
1
0.9
0.8
So7
0.6
05
0.4 [=B=15

2
5, A

Fig. 4. OA versus the ratios of the GGD parameters (left: scale parameters
y1 = y2 = 20, right: shape parameters {1 = & = 1).

shape or scale parameters in the two regions. The values
of OAs obtained for different ratios of GGD parameters are
displayed in Fig. 4. Comparing the two graphs in Fig. 4, the
variations of OA are clearly sharper for the left figure, showing
that the segmentation accuracy is more sensitive to the shape
parameters.

D. Joint Deconvolution and Segmentation

1) Comparison With Existing Methods:

a) Simulated US images: The proposed joint deconvo-
lution and segmentation algorithm (denoted as “Jointpcemc™)
was compared to the technique proposed in [28] (that
performs US deconvolution with GGD priors using the
EM algorithm, denoted here by “Deconvgy’™) on simu-
lated data. Since “Deconvgy” was proposed for statistical
homogeneous regions, we assumed that the labels associated
with the statistically homogeneous regions were known for
“Deconvem”. In order to test the robustness of our method
to label estimation errors, we also implemented the proposed
algorithm using the true labels (denoted as “Deconvycmc”).
In this case, similar to “Deconvgy”, only the deconvolution
process was performed, without label estimation. Finally, we
compared our results with the £> and €1 norm constrained
optimization solutions. For the £{2-norm optimization problem,
a numerical solution is given by

x=HH+ D 'Hy (36)

where /1 is the regularization parameter. Concerning the
{1 norm optimization problem, numerous dedicated algo-
rithms, e.g., ISTA [43], FISTA [43], TWIST [44] or GEM [45]
are available in the literature. The conjugate gradient (CG)
method was considered in this work. Note that the regulariza-
tion parameters were fixed manually by cross validation for
the £ and €1 norm optimization problems.
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Fig. 5. Group 1: (a) and (b) are the histograms of shape parameters & for
the pixels inside and outside the inclusion; (c) and (d) are the histograms of
scale parameters y for the pixels inside and outside the inclusion; The red
and green vertical lines are the MMSE estimates and the true values of the
parameters &, y, respectively.

b) In vivo US images: Due to the fact that the ground
truth for the label map is not available for in vivo US data,
we were not able to test the methods “Deconvgy” and
“Deconvycmce” for these images. Instead, we considered
Gaussian and Laplacian priors that have been extensively used
in the US image deconvolution literature [13], [16], [17].
The analytical solution for the £2-norm optimization problem
is given by (36). The GPSR (gradient projection for sparse
reconstruction) [46] algorithm is implemented for the £1-norm
constrained optimization problem for the real data, where
the regularization parameter is chosen as 0.1|H”y|s, as
suggested in [46].

2) Joint Deconvolution and Segmentation for Simulated
US Images: Experiments were first conducted on three
groups of simulated US images with a simulation scenario
inspired by [10]. The PSF was simulated with a realistic
state-of-the-art ultrasound simulator Field II [47] correspond-
ing to a 3.5 MHz linear probe as shown in Fig. 6(a). All images
were simulated with the same PSF. All the simulation results
presented hereinafter were obtained using 6000 Monte Carlo
iterations, including a burn-in period of 2000 iterations.

a) Group 1: The TRF x mimicking a hyperechoic (bright)
round inclusion into an homogeneous medium was blurred
by the simulated PSF and contaminated by an AWGN with
BSNR = 30 dB. The simulated images are of size 128 x 128.
The pixels located inside and outside the inclusion, indicated
by the label map in Fig. 6(c), are distributed according
to GGDs with parameters (£,y) = (0.6,1) (inside) and
(&, 7) = (1.8,2) (outside) as highlighted in Fig. 6(b). The
simulated observed B-mode image (log-compressed envelop
image of the corresponding beamformed RF data which is
commonly used for visualization purpose in US imaging) is
shown in Fig. 6(d). The quality of the deconvolution can
be appreciated by comparing the estimated TRFs shown in
Figs. 6(e)-6(i) obtained with the methods €3, {1, Deconvgpm,
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Group 1: (a) Simulated PSF; (b) Ground truth of the TRF; (c) Ground truth for label map; (d) Observed B-mode image; (e)-(i) Estimated TRFs in

B-mode form obtained with methods ¢», €1, Deconvgyg, Deconvyicme and the proposed Jointycmcs (j) Estimated label map obtained with the proposed
method (regularization parameters for the {» and £| methods set to 0.01 and 0.1).
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Fig. 7. Group 2: (a) Ground truth of the TRF; (b) Ground truth for label map; (c) Observed B-mode image; (d)-(h) Estimated TRFs in B-mode form obtained
with the methods £, €1, Deconvgy, Deconvyicmce and the proposed Jointyiomc; (i) Estimated label map obtained with the proposed method (regularization

parameters for the {7 and €1 methods set to 0.1 and 1).

Deconvyemce and the proposed Jointmemc. The quality of
the segmentation can be observed in Fig. 6(j), which shows
the estimated label map obtained with the method Jointycomc.-
Finally, the performance of the GGD parameter estimators is
illustrated by the histograms of the generated GGD parameters
(&, y) displayed in Fig. 5, where the red and green vertical
lines indicate the MMSE estimates and the true values of the

parameters, respectively.
b) Group 2: The TRF x is an homogeneous medium with

two hypoechoic (dark) round inclusions (see Fig. 7(a)) that was
blurred by the same simulated PSF and contaminated by an
AWGN. The size of the US reflectivity image is 100 x 100
and BSNR = 30 dB. The pixels located inside and outside the
inclusions are distributed according to GGDs with parameter
vectors (&, y) = (0.8,10) (inside) and (£,y) = (1.5,1)
(outside) as highlighted in Fig. 7(a). The simulated observed
B-mode image is shown in Fig. 7(c) whereas the ground truth
of the label map is given in Fig. 7(b). Figs. 7(d)-7(h) show the

TABLE II
HYPERPARAMETER ESTIMATIONS FOR SIMULATED DATA (GROUP 2)

Method &1 I Y1 Y2
Ground truth 0.8 L5 10 1
Deconvgm 0.60 | 096 | 21.10 | 0.42

Deconvyicmc 0.80 | 2.15 10.05 1.50
Jointyiomc 0.82 1.37 11.24 | 0.82

estimated TRFs obtained with the methods ¢», {1, Deconvgm,
Deconvyemce and the proposed Jointycmc, confirming the
good performance of Jointpcmc for the deconvolution of US
images. The estimated label map obtained with the method
Jointpemc is shown in Fig. 7(i), confirming its good segmen-
tation performance. Finally, the hyperparameter estimates of
Group 2 are shown in Table II, confirming the good estimation
performance.

¢) Group 3: The third simulated image was obtained by
using a clean TRF x of size 275 x 75 (see Fig. 8(a)) blurred
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Fig. 8. Group 3: (a) Ground truth of the TRF; (b) Ground truth for label map; (c) Observed B-mode image; (d)-(h) Estimated TRFs in B-mode form obtained
with methods ¢;, €1, Deconvgy;, Deconvyicmce and the proposed Jointyiomc; (i) Estimated label map obtained with the proposed method (regularization

parameters for the £, and £1 methods set to 0.1 and 1).

TABLE III
DECONVOLUTION QUALITY ASSESSMENT FOR SIMULATED DATA

G’ Method ISNR | NRMSE | PSNR | MSSIM | OA
(dB) (dB)

lo 12.83 0.52 33.19 0.98 N/A

12 12.83 0.52 33.19 0.98 N/A

1 Deconvenm 13.04 0.46 33.74 0.98 N/A

Deconvyicme | 16.21 0.35 36.57 0.99 N/A

Jointaiomc 16.01 0.36 36.37 0.99 0.99

lo 10.63 0.69 21.02 0.61 N/A

121 12.75 0.54 23.30 0.79 N/A

2 Deconvenm 14.31 0.45 24.70 0.82 N/A

Deconvypcmc | 15.09 0.41 25.39 0.88 N/A

Jointpiomc 15.00 0.42 25.26 0.88 0.99

lo 9.96 0.70 21.92 0.64 N/A

12 11.49 0.59 23.45 0.76 N/A

3 Deconvem 12.21 0.54 24.16 0.78 N/A

Deconvyicme | 12.40 0.52 24.40 0.80 N/A

Jointpiomc 12.38 0.53 24.37 0.79 0.98

bRepresents Group.

by the same simulated PSF and contaminated by an AWGN
such that BSNR = 30 dB. A more realistic geometry of
the simulated tissues was considered, inspired by one of the
in vivo results provided in the next section (see Fig. 10(i)).
Three different structures were generated mimicking the skin,
the tumor and the surrounding tissue (green, red and blue
regions in Fig. 8(b)). The pixels in the different regions
are distributed according to GGDs with different parameters:
(&,7) = (0.5,1) for the blue region, (£,y) = (1,30) for
the green region and (&,y) = (1.8,2) for the red region.
Figs. 8(d)-8(h) show the estimated TRFs obtained with the
methods €5, €1, Deconvgm, Deconvviemc and Jointyiomc. The
estimated label map obtained with the method Jointycmc
is also shown in Fig. 8(i). Visually, we remark that all the
three methods provide images with better object boundary
definition (better spatial resolution) than the observed B-mode
images. The quantitative results reported in Table III con-
firm that given the same conditions (knowledge of the true

Fig. 9. Estimated TRF (left) and label map (right) for a two-class image
with K =3 (ISNR = 14.46 and OA = 0.8).

label map), our approach “Deconvypemc” iS more accurate
than the existing ‘“Deconvgy;”. Moreover, we can note that
the proposed technique “Jointpicmc” is able to estimate the
label map with a precision of more than 98% and with a small
quality loss for the estimated TRF.

d) Influence of the number of classes: While most of the
hyperparameters are automatically estimated in our Bayesian
method, the number of classes K has to be tuned manually.
This section studies the influence of the parameter K on
the segmentation and deconvolution. For this purpose, we
reconsider the simulated image of Group 2 by setting K = 3,
while the TRF only contains two classes of pixels. The
corresponding estimated TRFs and label maps are shown in
Fig. 9. A visual inspection as well as the obtained ISNR show
that the restored TRF in Fig. 9 (left) is similar to the result
in Fig. 7(h) that was obtained by setting K = 2. A slight
degradation of the estimated label field can be observed, as
highlighted by the OA that decreases from 0.99 to 0.8.

3) Joint Deconvolution and Segmentation for In Vivo US
Images: Three groups of experiments have been conducted to
evaluate the performance of the proposed method for in vivo
US images. The images were acquired with a 20 MHz single-
element US probe. In contrast to the simulation scenarios
studied previously, the PSF and the TRF were not available for
in vivo experiments. For this reason, the PSF was estimated
from the RF image using the method of [14]. The regions
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Fig. 10. From up to down: Ist row corresponds to the mouse bladder; 2nd row is for the skin melanoma; 3rd row is for the healthy skin tissue. From left
to right: Observed B-mode image, Restored B-mode images with {7-norm, ¢1-norm and the proposed method. The regions selected for computing CNR are

shown in the red boxes in the observed B-mode images, i.e., (a), (e), (i).

selected for the computation of CNR are shown in the red
rectangles in Figs. 10(a), 10(e), 10(i). All the estimated TRFs
are shown in B-mode form, after envelope detection and log-
compression. The envelope detection is generally performed
by considering the magnitude of the analytic signal in US
imaging. While it is adapted to bandlimited modulated RF
signals, this envelope detector may generate artifacts on TRFs.
To avoid this phenomenon, we have used a different envelope
detection method for the restored TRE, i.e., the method of [48]
based on the detection and interpolation of local maxima.

a) Group 1 - Mouse bladder: The observed B-mode
image of size 400 x 256 is shown in Fig. 10(a) and displays
a mouse bladder. The US transducer was placed into a small
water container to ensure an efficient transmission of the US
waves into the tissues. As there is no US scatterer in the
water, the region located in the upper part of the image in
Fig. 10(a) appears dark (no signal). It is also the case for the
region located inside the bladder that also contains a fluid with
poor reflection for the US waves. The number of homogeneous
regions was set to K = 3 in this experiment, which is sufficient
to represent the anatomical structures of the image. The num-
ber of Monte Carlo iterations was fixed to 10 000 (including
5 000 burn-in iterations). The parameters of the HMC method
for the in vivo data were adjusted to the same values as in
the previous experiments. The regularization parameters for
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Fig. 11. Vertical profiles passing through the skin tumor, extracted from the
observed and restored images of Fig. 10(e) and 10(h).

the £>-norm and £;-norm optimization problems were set to
10 and 54.39 by cross-validation. Figs. 10(b)-10(d) display the
restored TRFs obtained with the £», {1 optimization algorithms
and the proposed method. The proposed method provides
better restoration results, especially with clearer boundaries.
Fig. 12(a) shows the marginal MAP estimates of the labels,
which segment the estimated image into several statistically
homogeneous regions. The different anatomical structures of
the image can be clearly recovered. Note that the two regions
corresponding to fluids are identified with the same estimated
label.



TABLE IV
DECONVOLUTION QUALITY FOR THE REAL US DATA

[ Group [ group I - Mouse bladder | group 2 - Skin melanoma | group 3 - Healthy skin tissue |
[ Metrics | RG | CNR | Time () | RG | CNR | Time () | RG | CNR | Time (5) |
Observation - 1.08 - - 1.17 - - 1.30 -
2 3.82 1.00 0.006 3.01 1.09 0.007 1.07 | 3.01 0.007
2 3.29 1.11 5.07 4.63 1.19 3.53 2.09 | 247 22.30
Proposed 3.94 | 0.94 3904.8 10.01 1.35 1303.4 2.59 | 2.23 6585.8
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Marginal MAP estimates of labels. (a) is the label map for the mouse bladder. The labels in red correspond to liquid regions whereas the other

labels represent tissue regions with different statistical properties. (b) is the label map for the skin melanoma. The yellow region shows the water-based gel
ensuring an efficient contact between the US probe and the skin, the red pixels correspond to the tumor and the healthy skin tissues appear in blue. (c) is the

label map for the healthy skin tissue. The skin tissue appears in red.

b) Group 2 - Skin melanoma: The second in vivo image
(of size 400 x 298) represents a skin melanoma tumor acquired
in the same conditions as previously, shown in Fig. 10(e).
Water-based gel was placed between the US probe and the skin
of the patient. It represents the dark regions in the upper part
of the image in Fig. 10(e). The rest of the tissues corresponds
to the skin layers. The number of homogeneous regions was
fixed to K = 4. The number of Monte Carlo iterations was
fixed to 20000 (including 10000 burn-in iterations) for this
example. The regularization parameters for the £>-norm and
£1-norm optimization problems were set to 1 and 1.2 x 103 by
cross-validation. Figs. 10(f)-10(h) display the restored TRFs
with the different methods (€2, €1 optimization algorithms and
proposed method). Note that Fig. 10(h) shows an improved
contrast between the tumor and the healthy skin tissue when
compared to the observed B-mode image in Fig. 10(e). The
tumor boundaries are better defined on the deconvolved image
with the proposed method compared to the observed B-mode
image. To better visualize the improved transition between
the tumor and the healthy skin tissue, we show in Fig. 11
two vertical profiles passing through the tumor, corresponding
to the blue line in Fig. 10(e), extracted from our result
and observation. One can remark the sharper slopes obtained
on the deconvolved image in the neighbourhood of tumor
boundaries, i.e. around positions 200 and 300. The marginal
MAP estimates of the labels for this image are shown in
Fig. 12(b). The four estimated labels correspond to the water-
gel (light blue), the tumor (yellow) and the skin tissues (the
two shades of red).

c) Group 3 - Healthy skin tissue: The last in vivo US data
represents a healthy skin image shown in Fig. 10(i), which is
of size 832 x 299. The number of homogeneous regions was
set to K = 2. The number of Monte Carlo iterations was
fixed to 6000 including a burn-in period of 2000 iterations).

The regularization parameters for the £3-norm and ¢j-norm
optimization problems were set to 10 and 1.5 x 10* by cross-
validation. The restored TRFs obtained with the different
methods (€2, €1 optimization algorithms and the proposed
method) are displayed in Figs. 10(j)-10(1). The marginal MAP
estimation of the label field is shown in Fig. 12(c).

In addition to the visual inspection, the deconvolution results
were evaluated using the RG and CNR criteria and the CPU
time, as reported in Table IV. Despite its higher computational
complexity, the visual impression and the numerical results
confirm that a better contrast and more defined boundaries
between the different tissues is achieved with our method.
It is interesting to note that in addition to the restored image,
our algorithm also provides a segmentation result. To our
knowledge, there is no other existing method in US imaging
able to achieve this joint segmentation and deconvolution
performance.

V. DISCUSSIONS

The main drawback of the proposed method is its compu-
tational complexity, which limits its use in real-time appli-
cations. However, the proposed algorithm is interesting for
numerous off-line applications. For example, improving the
readability of US images (e.g., spatial resolution, contrast,
SNR) off-line allows the clinician to better appreciate the
anatomical structures, especially when very accurate mea-
surements are required (e.g., for cancer detection) or when
very small structures must be identified (e.g., vessel walls).
Computer-aided detection, often performed off-line and based
on a quantitative analysis of the images, could also take
advantage from the deconvolved images provided by our
approach, see, e.g., [8]. Finally, we would like to emphasize
that the main objective of this paper is to validate the proposed
joint segmentation and detection strategy on simulated images



with a controlled ground truth and to show its applicability
to real US data. Performing a deeper clinical evaluation is
obviously an interesting and essential perspective that will be
conducted in future work.

VI. CONCLUSIONS

This paper proposed a Bayesian method for the joint
deconvolution and segmentation of ultrasound images. This
method assumed that the ultrasound image can be divided into
regions with statistical homogeneous properties. Based on this
assumption, a Potts model was introduced for the image labels.
Independent generalized Gaussian priors were also assigned to
the tissue reflectivity functions of each homogeneous region
of the image. The proposed method showed very interesting
restoration results when compared to more classical optimiza-
tion methods based on {;-norm or ¢1-norm regularizations.

Future work includes the estimation of the point spread
function within the Bayesian algorithm, resulting into a
blind segmentation and deconvolution approach. The spa-
tially varying nature of the PSF could also be considered
with more sophisticated block-wise techniques ensuring the
continuity and regularity of the estimated tissue reflectiv-
ities. The automatic estimation of the number of classes,
which is manually tuned in this work, is also an interesting
perspective that could be addressed using a Bayesian non-
parametric approach. Finally, combining our MCMC approach
with deterministic optimization methods (such as the PMALA
approach [49]-[51]), exploring parallel techniques such as [52]
and applying the algorithm to demodulated I/Q data are inter-
esting research areas, which should allow the computational
cost of our algorithm to be reduced.

APPENDIX A
DEVIATIONS OF THE CONDITIONAL DISTRIBUTIONS OF
THE NOISE VARIANCE AND SCALE PARAMETERS

A. Inverse Gamma Distribution

A univariate inverse gamma distribution with shape para-
meter o and scale parameter § denoted as ZG(a, ) has the
following pdf

[

T(a)

pic(x) = ~*lexp (—g) , xeRt. (37

The conditional distributions of the noise variance and
GGD scale parameters of the joint posterior distribution,
i.e., (15) and (19) are inverse gamma distributions that are
derived hereinafter.

B. Conditional Distribution of the Noise Variance
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We can recognize the following inverse gamma distribution
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C. Conditional Distribution of the Scale Parameters
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APPENDIX B
SAMPLING THE SHAPE PARAMETERS
WITH AN RWMH ALGORITHM

In order to sample the shape parameter & following (17), we
generate a candidate using a proposal and accept or reject this
candidate with an appropriate acceptance ratio. The proposal
used in this paper is a truncated Gaussian distribution whose
mean is f,it) (the value of the parameter generated at the
previous iteration) and whose variance J is adjusted in order
to obtain a suitable average acceptance ratio, i.e.,

&~ NED, OT0.3(E).

This candidate is then accepted or rejected according to the
following ratio

(38)

p(é:];klxa V,Z, Efk)
p(élux» Y.z, S—k) ’

We propose to adjust the stepsize J every 100 iterations to
achieve a reasonable acceptance rate (30%—90%) [49]. Specif-
ically, if the acceptance ratio during the previous 100 iterations
is larger than 90% (respectively smaller than 30%), the vari-
ance 0 is decreased (respectively increased) of 20% compared
to its previous value. Note that to ensure the homogeneity
of the Markov chain after the burn-in period, this tuning
procedure is only executed during the burn-in period. The
stepsize is then fixed during the following iterations.

The algorithm used to sample & is finally divided into three
procedures that are summarized in Algo. 2.

p = min i (39)

APPENDIX C
SAMPLING THE TRF USING AN HMC ALGORITHM

A. HMC Algorithm

The main idea of the HMC algorithm is to introduce a
vector of momentum variables p € R" that is independent
of x and to sample the pair (x, p) instead of just sampling x.
The conditional distribution of (x, p) can be written

p(x,ply, 02, &, v,2) = p(xly, a2, &, v,2) p(p).



Algorithm 2 Adjusted RWMH Algorithm

Algorithm 3 Adjusted HMC Algorithm

/* Initialization */
1 Choose an initial value &p;
/* Candidate Generation */

2 fort=1:Nyc do

* t *
3| G~ NED )T 0 ()
/* Accept/Reject Procedure */

4 if rand < p then

t+1 .
5 | ) — g
6 else

(t+1) _ (D).
7 ‘ koo =60
8 end
9 Adjust ¢ in order to obtain a suitable acceptance rate.

10 end

The Hamiltonian of the system is defined as

H(X’ p) £ _logp(xa plya O-nzag’ }’,Z) = U(X) + V(p)

where V(p) and U (x) are the kinetic and potential energies
of the Hamiltonian system. They are defined as

1
V(p)=3p'p and UKX) = —loglp(xly. o, &, ¥, 1.

At the iteration #t, the HMC consists of two steps

« generate a candidate pair (p(*),x(*)) from the current
state (p@, x®)) using a discretizing method, such as the
leapfrog and Euler methods;

« accept or reject the candidate with the probability p

p = minfexp[H (p), x") — H(@™,xM)], 1}. (40)

In our experiments, we have considered the leapfrog discretiz-
ing method due to its better performance compared to the Euler
method, also noticed in [35]. The three steps of the leapfrog
method are defined as

oU
Pilt +¢/2) = pil0) — 55 [x(1)
X;
Xi(t +€) =x;(t) +€p;(t +€/2)
e oU
pi(t +e€) =pi(t +€/2) — - —[x(t +€)]
25Xi

where € is a so-called stepsize and L is the number of leapfrog
iterations. We should note that U(x) is not differentiable

when & < 1. To deal with this problem, a smoothing
approximation has been considered, ie., | - | =~ V-2 +e,

with ¢ <« 1. The algorithm based on the leapfrog dis-
cretization and this approximation is summarized in Algo. 3.
Compared to other MCMC algorithms, the HMC method has
the noticeable advantage to generate efficiently a candidate
x even in the case of a high dimensional and complicated
distribution.

B. Tuning the Parameters € and L

The performance of the HMC algorithm mainly depends
on the values of the parameters € (stepsize) and L (number of
leapfrog steps). Fortunately, these two parameters can be tuned
independently in most applications [35]. It is recommended to

/* Initialization %/

1 X(O) =Yy;
2fort=1: Nyc do

/+ Candidate generation */
3 p(t,O) ~ N(O,INXN);

/* Leapfrog Method x/
4 fori=1:L do
5 Set p(t,Z) _ p(t,z) o 568(({” X(t,z);
p Set x(t) = x(t:) 4 ep(i),;
7 Set p(tvi) — P(t’i) — %aa_Ux(tﬂ)’

X

8 end
9 p(*) — p(t1L);
10 X(*) — X(t»L);

/+ Accept/Reject Procedure */

11 Compute p with (40)
12 if rand < p then

13 | x(tH) = x();

14 else

15 | xtHD = x®);

16 end

17 Adjust € in order to obtain a suitable acceptance rate.
18 end

select a random number of leapfrog steps L to avoid possible
periodic trajectories [35]. In our algorithm, L is sampled
uniformly in the interval [50, 70]. The leapfrog stepsize € is
adjusted in order to ensure a reasonable average acceptance
rate any 100 iterations. Specifically, when the acceptance
rate is too large, € is decreased and vice versa. The range
of the acceptance rate has been set to 30% — 90% in the
burn-in period. Note that the tuning of € is just carried
out during the burn-in period to ensure the Markov chain
is homogeneous after the burn-in period. The acceptance
rate generally belongs to the interval 60% — 80% when the
Markov chain has converged, while the acceptance rate is
around 25% in standard MH moves for high dimensional target
distributions [53].
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