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Abstract In some applications of machine learning and information retrieval (e.g., medical
diagnosis, image recognition, pre-classification...), it can be preferable to provide less in-
formative but more reliable predictions. This can be done by making partial predictions in
the form of class subsets when the available information is insufficient to provide a reliable
unique class. Imprecise probabilistic approaches offer nice tools to learn models from which
such cautious predictions can be produced. However, the learning and inference processes
of such models are computationally harder than their precise counterparts. In this paper,
we introduce and study a particular binary decomposition strategy, nested dichotomies, that
offer computational advantages in both the learning (due to the binarization process) and
the inference (due to the decomposition strategy) processes. We show with experiments that
these computational advantages do not lower the performances of the classifiers, and can
even improve them when the class space has some structure.

Keywords: multi-class classification, binary decomposition, imprecise probabilities, in-
determinate prediction, ordinal regression

1 Introduction

The classification task consists in allocating new observations, described by a set of features,
to one predefined category, or class, from a set of possible ones. The usual task of supervised
machine learning algorithms is to learn, from a training set of data containing observations
associated with a known category, a mapping (or the classifier) that will provide the best
recognition rate on new data. However, classification error frequently occurs when multiple
classes have high and similar probabilities of occurrence (uncertainty due to ambiguity), or
when training data are in insufficient quantity (uncertainty due to a lack of information).

Both cases suggest that it is possible to increase classifiers reliability by allowing their
outputs to better reflect these uncertain situations. Indeterminate classifiers [del Coz and
Bahamonde, 2009; Corani et al., 2012], which are able to predict more than one class in
case of high uncertainty, have been introduced for this purpose. For example, in a problem
of obstacle recognition for smart vehicles, a classifier could state that there is an obstacle on
the road, without being able to decide if it is a pedestrian or a bicycle.

Address(es) of author(s) should be given
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Fig. 1 Illustration of ambiguous vs uninformative situation

The idea of indeterminate prediction is close to the idea of classification with reject
option [Chow, 1970]. In this latter approach, the classification of a new observation may
simply not be performed (i.e., rejected) when a classification error is likely to occur. The
decision concerning the rejected observation is then left to a more specialized classifier or to
a human expert. Rejection can therefore be seen as a very extreme indeterminate classifier,
where only determinate and completely uninformative predictions (corresponding to the set
of all classes) are allowed.

Different ways have been proposed to make indeterminate predictions other than com-
pletely uninformative ones. A first approach, directly inspired from the reject option, is to
integrate costs of indeterminacy in the decision making [del Coz and Bahamonde, 2009].
One drawback of this approach is that it does not really differentiate between rejection due
to ambiguity (almost uniform probabilities of classes estimated from lots of data) and rejec-
tion due to lack of information (probability issued from little and/or imprecise data). In fact,
it may well produce determinate predictions even when having little information, provided
that the inferred (precise) probability is not uniform. Also, how to mix misclassification
costs (e.g., of predicting no obstacle when there is a human) with indeterminacy costs (e.g.,
costs of partial predictions like “human or bicycle”) remains a quite tricky question. A sec-
ond approach is to consider imprecise probability estimates rather than precise ones. In this
case, the lack of information is represented by probability intervals, or by convex proba-
bility sets, the size of the intervals or sets reflecting the amount of available information
(the smaller the set, the more the information). Several extensions of classical classifiers
have been proposed in this framework, like the Credal C4.5 algorithm [Mantas and Abellan,
2014], the Naive Credal Classifier [Zaffalon, 2002] that extends the Naive Bayes Classifier,
or the Credal Model Averaging [Corani and Zaffalon, 2008] that extends Bayesian Model
Averaging. In comparison with indeterminacy through costs, imprecise probabilistic models
may well differentiate ambiguity (narrow intervals with close highest probabilities) from
lack of information (wide intervals). Figure 1 illustrates the two situations that result in
very different models. However, imprecise probabilistic approaches may be computation-
ally costly, either to learn or to take a decision from, while cost-based methods are most of
the time designed to remain tractable.

In this paper, we explore the extension of nested dichotomies [Fox, 1997] to the im-
precise probability framework. Nested dichotomies are binary decomposition methods that
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transform a multiclass problem into a set of two-class problems deemed easier to solve
than the original one [Dietterich and Bakiri, 1995; Allwein et al., 2000]. They are so-called
meta-classifiers, as each two class problem can be solved by any classifier. In light of the
previous remarks, this approach allows to limit the computational burden of learning and
inferring from imprecise probabilistic model, making them more practical, and this whether
misclassification costs exist or not.

The rest of this paper is organized as follows. We first establish the theoretical layout
related to our approach in Section 2. This will allow us to detail how to adapt the nested
dichotomies to the framework of imprecise probabilities, along with the expected advantages
and drawbacks in Section 3. Experiments in Section 4 will show how the approach performs
and compares to other approaches.

2 Classification, imprecision and binarisation

This section introduces the notations and tools used in this paper, in particular the basics of
imprecise probabilities as well as of binarization approaches.

2.1 Classical classification problems

In a standard classification problem, the goal is to assign a class ω ∈ Ω to an observation x
from the input feature space X = X1 × · · · ×Xm. We also assume that a misclassification
cost is specified: for all potential predictions ŷ ∈ Ω, there is a cost function cŷ : Ω → R
such that cŷ(ω) is the cost of predicting ŷ ∈ Ω when ω ∈ Ω is the true class. The cost
functions over all predictions ŷ and all classes ω can be summarized into a (|Ω| × |Ω|)
misclassification cost matrix (we denote by |A| the cardinal of the set A).

Example 1 We consider as a running example the problem of obstacle recognition where a
smart vehicle needs to recognize in a situation x whether it faces a human (h), a bicycle (b)
or nothing (n) (i.e., Ω = {h, b, n}).

In reality, as both human and bicycle are obstacles to be avoided, the confusion between
h and b has little impact (but not null, as their movement patterns are different). However,
predicting h or b when there is nothing becomes more costly (the vehicle makes an unnec-
essary manoeuvre). Finally, predicting n when there is an obstacle h or b is a big mistake
that could cause an accident. This kind of information can easily be expressed using generic
cost functions. Table 1 provides cost functions modelling this information, as well as their
difference (to be used in decision making).

Table 1 Example of misclassification costs for the obstacle recognition example

truth
cŷ(ω) ω = h ω = b ω = n
ch 0 1 2
cb 1 0 2
cn 4 4 0

cn − ch 4 3 -2
cn − cb 3 4 -2
cb − ch 1 -1 0
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In a probabilistic framework, a conditional probability function p(·|x) : Ω → [0, 1] of
the classes given x is first learned or estimated, from which predictions are then made. For
simplification purpose, we will note p(ω|x) by p(ω) when there is no risk of confusion.
Once these probabilities are learned, a decision regarding a new observation can be made by
comparing expected costs E[cŷ] for all possible outcomes ŷ:

E[cŷ] =
∑
ω∈Ω

p(ω)cŷ(ω). (1)

Making prediction is then done by establishing a preference order � over the expected
costs of possible predictions to find the least costly one. Consider two predictions ŷ1 and ŷ2,
we say that ŷ1 is preferred to ŷ2 (noted ŷ1 � ŷ2), if the expected cost of predicting ŷ1 is less
than the one of ŷ2 :

ŷ1 � ŷ2 ⇔ E[cŷ1 ] < E[cŷ2 ]. (2)

Since E is linear, ŷ1 � ŷ2 is also equivalent to:

ŷ1 � ŷ2 ⇔ E[cŷ2 − cŷ1 ] > 0. (3)

Eq. (3) can be interpreted as follows: ŷ1 is preferred to ŷ2 when exchanging ŷ1 for ŷ2 as
prediction is costly (i.e., has a positive expected cost). The selected class ŷ∗ is the maximal
element of the ordering �:

ŷ∗ = arg min
ŷ∈Ω

E(cŷ). (4)

The most common costs used in classification problems are the unitary costs, or 0-1
costs, defined by cŷ(ω) = 1ŷ 6=ω where 1A is the indicator function of event A (= 1 if
A happens, 0 otherwise). In this latter case, Eq. (3) is equivalent to compare the proba-
bility estimates p(ŷ1), p(ŷ2) (ŷ1 � ŷ2 if p(ŷ1) > p(ŷ2)), and the predicted class ŷ∗ =
arg maxŷ∈Ω p(ŷ) is simply the most probable one,

Note that the misclassification costs are only used here in the decision-making step, and
not in the model learning process [Elkan, 2001; Masnadi-Shirazi and Vasconcelos, 2010],
since we use probabilistic based models. This means that the estimation of the “objective”
knowledge we have about the classes (i.e., the probabilities estimates) is separated from
the subjectivity of decision-makers involved in the predictions (decision based on our risk
aversion about car accidents). Yet, getting a reliable estimate of p(ŷ) can be challenging, for
at least two reasons:

1. the data from which p(ŷ) must be estimated are scarce or of poor quality, in which case
our estimate may be far from the true distribution;

2. estimating directly a distribution over the whole space Ω may be difficult, especially
when |Ω| is high.

The first problem can be addressed by using imprecise probabilities (Section 2.2), while
the second can be addressed by decomposing the initial problem into several, easier binary
learning problems (Section 2.3).
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Fig. 2 Example 2 probability set in Barycentric coordinates.

2.2 Imprecise probabilities

Getting a reliable estimate p̂ of the true distribution p is a challenging problem, as the true
probability can never be perfectly identified (e.g., due to noises, biases, lack of data, . . . ).
An alternative solution is not to consider one estimate, but a (convex) set P of them, that
may well contain the true one, and to adopt probabilistic mechanisms to such a setting. This
is the goal of imprecise probability theory, whose basics we now recall (we refer to Walley
[Walley, 1991] or Levi [Levi, 1983] for a detailed exposure). In the rest of the paper, P will
be called credal set, as it represents our belief or knowledge about the class.

Example 2 We consider the obstacle recognition case in Example 1, in which a standard
probabilistic classifier could yield an estimate such as

p(h) = 0.1, p(b) = 0.3, p(n) = 0.6.

In the imprecise probabilities framework, these estimates could be interval-valued and be-
come, for example,

p(h) ∈ [0; 0.2], p(b) ∈ [0.3; 0.4], p(n) ∈ [0.4; 0.6],

with the width of the intervals reflecting the amount of information we have (the narrower
the intervals, the more information/data we use). The corresponding credal set P is then the
set of all precise probabilities (p(h), p(b), (p(n)) within these interval bounds. As P is a
convex set, it can be described by considering the convex hull (noted CH) of its extreme
points, which in our case is

P = CH{(0, 0.4, 0.6); (0.2, 0.3, 0.5); (0.2, 0.4; 0.4); (0.1, 0.3, 0.6)}.

Finding these vertices can be done by using classical tools of convex geometry [Grunbaum
et al., 1967], or by specific algorithms. The set P is represented in Figure 2 in barycentric
coordinates.

Within the imprecise probabilistic setting, the notion of expectation is replaced by the
notion of lower expectation E[c] of a function c : Ω → R, which is defined as the minimum
expectation value obtained by considering distributions within P:

E[c] = min
p∈P

E[c] = min
p∈P

∑
ω∈Ω

p(ω)c(ω). (5)
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The concept of upper expectations E[c] is obtained by replacing min by max in Eq. (5), or
by using the duality relation E[c] = −E[−c]. Computing E[c] generally requires solving a
linear program, which may be computationally costly if |Ω| is high or if P is defined by
numerous constraints.

using lower (or upper) expectations, there are several ways to extend Equations (2)-(3)
in order to take a decision. They can be divided into two groups depending on the type of
decision: some rules give a unique output class, other may give a set of possible optimal
classes (we refer to Troffaes [Troffaes, 2007] for a detailed exposure of the various decision
rules and their relations). In our work, we concentrate on the second one, as we are inter-
ested in allowing indeterminate predictions. More precisely, we will consider the notion of
maximality, that consists in constructing a partial order � over classes and then to select the
maximal (i.e., non-dominated) ones in this partial order:

Definition 1 (Maximality) Under the maximality criterion,

ŷi �M ŷj ⇔ E[cŷj − cŷi ] > 0. (6)

This criterion extends Eq. (3), and can be interpreted as follows: ŷi is preferred to ŷj if
exchanging ŷi for ŷj has a positive lower expected cost. To see that this is indeed a cautious
rule and a robust version of Eq. (2), note that ŷi �M ŷj if and only if E[cŷj ] > E[cŷi ] for
all p ∈ P . In particular, it reduces to Eq. (3) if P contains only one probability distribution.
The (possibly) imprecise decision ŶM obtained from this criterion is

ŶM =
{
ŷi ∈ Ω |6 ∃ŷj : ŷj �M ŷi

}
. (7)

Note that obtaining the order � requires to perform at worst K(K − 1) computations
(K = |Ω|), one for each pair of classes. Also, while maximality has strong theoretical justi-
fications [Walley, 1991, Sec. 3.9.], other decision criteria such as interval dominance [Yang
et al., 2014] (also extending Eq. (2)) may be preferred if computational time is an important
issue (e.g., when the number of classes is high).

Example 3 Let us use the maximality criterion on the interval-valued probabilities given in
Example 2 and the costs given in Example 1 to infer ŶM.

Let us first consider the pair {b, n} and the difference cn − cb. We have

E[cn − cb] = min
(
3p(h) + 4p(b)− 2p(n)

)
= 3 ∗ 0.1 + 4 ∗ 0.3− 2 ∗ 0.6 = 0.3

which is obtained for the extreme point (0.1, 0.3, 0.6) of Example 2. As this is positive, we
can infer b �M n. Furthermore, for the pair {h, b} we have

E[ch − cb] = min
(
− 1p(h) + 1p(b) + 0p(n)

)
= −0.2 + 0.3 = 0.1

obtained for the extreme point (0.2, 0.3, 0.5). This is again positive, so b �M h, and b ends
up being the only non-dominated class, hence Eq. (7) gives us ŶM = {b}.

Roughly speaking, imprecise probability allows one to include in a knowledge model
the amount of information it is based on. It means that if the amount of information is suffi-
cient, it will behave as a classical model, and will only remain cautious when information is
insufficient to make a precise inference or prediction. Using such models however imply an
increase in computational complexity, or at least a complexity as high as the one of precise
models.
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Fig. 3 Multi-class problem and binary reduction

2.3 Reduction through binarization

Binary reduction/decomposition techniques [Dietterich and Bakiri, 1995; Rokach, 2006]
have proved to be powerful approaches to efficiently solve multi-class problems. Their main
idea is to decompose the original (potentially difficult) multi-class problem into a set of
simpler, easier-to-solve binary problems. They also result in easier-to-interpret models that
can be trained in parallel (allowing a computational gain). Figure 3 provides an illustration
where the decision boundary (left side) of the original multi-class problem is much more
complex than the pairwise boundaries involving two classes (right side). The downside of
reduction techniques is that the results of sub-problems (for instance the boundaries “a vs
b” and “c vs d” in Figure 3) need to be recombined in the end to find the global model.

Computationally speaking, there are at least two good reasons to use binary classifiers:
it allows to use techniques providing probability bounds that are specific to binary prob-
lems (e.g., SVM evidential calibration [Xu et al., 2015], logistic regression [Corani and
Mignatti, 2015]) in a multi-class problem, and many learning methods are computationally
more tractable when the output space is binary (e.g., computing entropy bounds in credal
decision trees [Abellán and Masegosa, 2012] is a lot simpler for binary spaces).

Formally speaking, binary decomposition consists in forming ` pairs of events {Ai, Bi}
(i ∈ [1, `]) where Ai ∩ Bi = ∅ and Ai, Bi ⊆ Ω and to estimate whether the true class ω
belongs toAi orBi for all i = 1, . . . , l instead of directly estimating the joint model overΩ.
In a probabilistic setting, this means that we must provide estimates p̂(Ai | {Ai, Bi}) = αi
and p̂(Bi | {Ai, Bi}) = 1−αi, using what is usually called a base classifier for each binary
problems. From these conditional estimates can be derived the constraints

∑
ω∈Ai p̂(ω) = αi

∑
ω∈Ai∪Bi p̂(ω) (i = 1, . . . , l)∑

ω∈Ω p̂(ω) = 1 (8)

on the joint probability overΩ.Generally, those constraints will be inconsistent [Hastie et al.,
2009; Wu et al., 2004; Destercke and Quost, 2011], in the sense that no feasible solution to
Eq. (8) will exist. How to solve this inconsistency is not an obvious problem and there is
no unique best solution, even when one relax the constraints by allowing probabilities to
become interval-valued [Destercke and Quost, 2011], in which case p̂(Ai | {Ai, Bi}) and
p̂(Bi | {Ai, Bi}) are only known to lie in intervals. A usual strategy, in the precise case, is
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Ω = {h, b, n}

C = {h, b}

{p}

p(h | C) ∈ [0.6; 0.7]

{b}

p(b | C) ∈ [0.3; 0.4]

p({h, b}) ∈ [0.5; 0.8]

{n}

p(n) ∈ [0.2; 0.5]

Fig. 4 Imprecise probabilistic nested dichotomy tree

to find a joint probability by minimizing a given distance [Hastie and Tibshirani, 1998; Wu
et al., 2004] to the estimates p̂(y | {Ai, Bi}). This however requires to solve an optimization
problem at each classification.

One particular type of binary decomposition does not face this issue, as it always pro-
vides probability estimates resulting in consistent constraints: nested dichotomies [Fox,
1997], on which we will focus. As the constraints induced by this decomposition are en-
sured to be consistent, we will use the notation p instead of p̂ in the rest of the paper. In
summary, nested dichotomies present the same advantages as binary decompositions, with-
out sharing their main drawback.

3 Imprecise nested dichotomies

The principle of nested dichotomies is to form a binary tree structure with the classes, which
determines the binary sub-problems to be solved. The technique consists in recursively par-
titioning a tree node C ⊆ Ω into two subsets A and B (a dichotomy), until every leaf-node
corresponds to a single class value (|C| = 1). The root node is the whole set of classes Ω.

Therefore, each node C is associated with a binary classification problem (solved by
a chosen base classifier) where we should decide if the class belongs to the set A or B.
If a standard (precise) probabilistic base classifier is used, then we obtain the conditional
probabilities p(A|C) and p(B|C) = 1 − p(A|C), resulting in what we call precise nested
dichotomies.

If an imprecise probabilistic base classifier is used, each node C is associated to an
interval p(A|C) ∈ [p(A | C); p(A | C)] rather than a single value. By duality of imprecise
probabilities [Walley, 1991, sec.2.7.4.], we have p(B | C) = 1− p(A | C) and p(B | C) =
1−p(A | C). Precise nested dichotomies are retrieved when p(A | C) = p(A | C) for every
node C, meaning that imprecise nested dichotomies generalize the precise case. Figure 4
pictures a nested dichotomy tree together with its conditional probability constraints.

Let us also note that local models can be trained independently: once the tree structure
is determined, the computation of conditional probabilities by base classifiers can be done
simultaneously, for both training and testing. Even if we do not make copies of the data set,
we may still parallelise the computation for tree nodes of the same depth as they work on
disjoint parts of the data.

Making decisions with precise nested dichotomies by evaluating Eq. (3) is very easy,
using the nested structure. Assume we have a split {A, B} of a node C, then given a real-
valued function c defined over {A,B} the expected cost of the node C is defined as

EC(c) = p(A | C)c(A) + p(B | C)c(B) (9)
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and Eq. (9) remains true for imprecise nested dichotomies [De Cooman and Hermans,
2008], in the sense that the lower expectation EC(c) can simply be computed by:

EC(c) = min

(
p(A | C)c(A) + p(B | C)c(B);

p(A | C)c(A) + p(B | C)c(B)

)
. (10)

with p(A | C),p(A | C) estimated by the local model of node C. As Eq. (10) consists
in applying Eq. (9) twice, computations with imprecise nested dichotomies are only twice
as costly as with precise ones, a quite acceptable increase.

If A,B are singletons (leaf nodes), then c(A), c(B) take as values their associated cost
functions. If A,B are inner nodes, then c(A), c(B) correspond to the expected cost of the
nodes A,B which can be computed recursively. Therefore, the expected cost of the global
model can be obtained easily by backward recursion starting from the leaf nodes to the root.
This again remains true in the imprecise case [De Cooman and Hermans, 2008]. If we use
the maximality criterion for decision-making, then function c at the leaf nodes corresponds
to the difference of two cost functions cŷ1 − cŷ2 (ŷ1, ŷ2 ∈ Ω).

We can derive a recursive algorithm for computing EΩ . For clarity purpose, we only
write the algorithm in the precise case, which derives Algorithm 1 from Eq. (9). In the
imprecise case, we just replace every return statement by the corresponding one in Eq. (10).

Algorithm 1: Function E (computing the global expectations of c)
Input: Cnode=current node, which is initiated to the whole set Ω
A,B ← children node of Cnode;
if A and B are singletons then

return p(A|Cnode)c(A) + p(B|Cnode)c(B)
else if A is singleton then

/* recursion over node B:computing E(B) */
return p(A|Cnode)c(A) + p(B|Cnode)E(B)

else if B is singleton then
/* recursion over node A:computing E(A) */
return p(A|Cnode)E(A) + p(B|Cnode)c(B)

else both children nodes are not singletons
/* recursion over both A,B:computing E(A),E(B) */
return p(A|Cnode)E(A) + p(B|Cnode)E(B)

end

Example 4 We show in this example what can be said about the preference relation between
the classes b and h with the imprecise conditional probabilities given in Figure 4.

Using the maximality criterion, we compute recursively the expected cost EΩ [cb − ch]
(see Fig. 5). We first compute Eq. (10) for the node C = {h, b}:

E{h,b}[cb − ch] = min
(
0.6− 0.4; 0.7− 0.3

)
= 0.2,

and we can now apply it to the node {h, b, n}, as both its children have a precise value. this
gives

E{h,b,n}[cb − ch] = min
(
0.2 · 0.8 + 0 · 0.2; 0.2 · 0.5 + 0 · 0.5

)
=0.1 > 0.
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Y = {h, b, n}

C = {h, b}

h

[0.6; 0.7]

b

[0.3; 0.4]

p(h, b) ∈ [0.5; 0.8]

n

[0.2; 0.5]
E{h,b,n} =

0.1

cb(h)− ch(h) = 1 cb(b)− ch(b) = −1

cb(n)− ch(n) = 0
E{h,b} =

0.2

Fig. 5 Computation of the expected cost E[cb − ch] with imprecise probabilities

Therefore, we can conclude that the class “human” is preferred to “bicycle” using the max-
imality criterion in this example.

As Example 4 and Eq. (10) show, computing with imprecise nested dichotomies re-
mains quite tractable whatever the cost function is, therefore not facing the tractability issue
associated to other imprecise probabilistic approaches.

Imprecise nested dichotomies are therefore quite attractive computationally speaking,
but as their tree structure is not uniquely defined (in contrast with other decomposition
methods such as one-vs-one or one-vs-all), there is a need to provide a method to do so.
This will be discussed in our experiments.

4 Experiments

In Section 3, we have discussed the computational advantages of imprecise nested dichotomies,
but it now remains to test whether they can provide good classifiers in terms of predictions.

This is the purpose of this section, where we perform experiments, first on standard
multi-class problems (Section 4.3), then on ordinal classification [Frank and Hall, 2001]
(Section 4.4), this latter problem having the particular feature that Ω has some structure.

Before presenting our results, we explain how the problem of tree structure is tackled
in Section 4.1, and provide our general experimental set-up (base classifier and evaluation
measures) in Section 4.2.

4.1 Choosing a dichotomy structure

Two common solution to the problem of choosing a dichotomy structure is to use a set
or ensemble of classifiers [Frank and Kramer, 2004], or to select a structure providing a
good accuracy. Indeed, picking the optimal tree structure is not an easy task, as the number
of such structures grows very fast with the size of Ω [Frank and Kramer, 2004, Sec 3.].
How we implemented the first and second solutions is explained in Sections 4.1.1 and 4.1.2,
respectively.

4.1.1 Forest of nested dichotomies

One way around the issue of finding/building an optimal tree structure is that we can use
a set of Λ randomly and uniformly generated trees instead. In this case, the decision pro-
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cess specified in Section ?? has to be adapted, as the results of the different trees need to
be aggregated. There are two main usual ways to perform this aggregation: voting scheme
over the decisions made by each classifier, or aggregating the (imprecise) probabilities pro-
vided by each classifier, from which can then be deduced the decision. Both ways will be
investigated in our experiments.

Voting techniques are widely used in the literature for ensemble learning methods [Rokach,
2010]. In our experiments, we base our aggregation on the majority voting technique. Let
(Ŷ λ)λ∈Λ be the predictions obtained by each tree given the input features x, we define the
final prediction set as

Ŷ =
{
ω ∈ Ω :

∑
λ∈Λ

1Ŷ λ(ω) > |Λ|2

}
if not empty, or Ω otherwise. (11)

Ŷ contains classes which are predicted by more than half of the classifiers in the set (or all
classes in case none reaches majority). As each classifier may vote for more than one class,
then Ŷ may be imprecise, and we may hope that the votes of bad classifiers will be less
important.

To aggregate imprecise probability estimates, we will simply use a standard average or
arithmetic mean, which is equivalent to compute the sum of expected costs. If we denote
by Eλ the lower expected cost associated to a tree-structure λ, then the aggregated lower
expected cost and the resulting decision are given by

ŷ1 �M ŷ2 ⇔
1
|Λ|
∑
λ∈Λ

Eλ[ŷ2 − ŷ1] > 0 (12)

Contrary to the majority voting, this approach takes the strength of belief of the estimations
(i.e., the values of expected costs) into consideration. For instance, if one classifier estimates
a very high expected cost for a preference (so, in a sense, we can say that it is sure about its
estimation), then another classifier stating a weak disagreement (a slightly negative expected
cost) about the same preference will not cancel out the belief of the first classifier. This
particularity may be either beneficial or detrimental depending on the capacity of the base
classifier to give accurate probability estimations.

Another issue is then to determine what is a good number Λ of trees to use. Our experi-
ments suggested that this is highly correlated with the size of Ω: an higher number of trees
seem desirable when |Ω| increases. In our experiments, we fixed this number to 50, which
gave better results than the 20 recommended by Frank and Kramer [Frank and Kramer,
2004] on the data sets counting more then 5 classes. Note that we could have sought to op-
timize the parameters of our ensemble approach, however this would be out of the scope of
these paper experiments, as (1) we want to estimate the efficiency of nested dichotomies, not
of ensemble techniques and (2) how to properly optimise ensemble techniques in imprecise
probability settings largely remains an open issue.

4.1.2 Building a single dichotomy structure

While forests of nested dichotomies avoid the issue of choosing one structure, they do not
solve it. Yet, it may be useful to know whether a single structure can perform as well as
(or better) than other classifiers or than an ensemble approach. Indeed, a single structure
is far easier to read and interpret. Furthermore, it could also be derived from some expert
opinions: family of genes, species of animals, images containing the same objects.
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It is clear that in benchmark experiments, we cannot derive the tree structure from ex-
pert information, and that problem structures will not be specific enough to pick a single
structure (it may discard some particular structures, though, as we shall see in Section4.4).
One possibility is then to use statistical measures to separate the classes, many of which are
reviewed by Lorena and De Carvalho [2010], yet there are no theoretical guarantees that one
measure will provide a better structure than another, and the performance of a given measure
may greatly vary between data sets.

In our experiments, we simply selected, out of the forest of 50 nested dichotomies, the
one obtaining the best performance (according to the evaluation measure of Section 4.2.2)
on the training set in a cross-validation setting. Again, we could probably think of more
powerful selection techniques, yet we will see that this simple approach already provides
quite good performances.

4.2 Experimental set-ups

We will now detail the rest of our experimental setup, in particular our choice of base clas-
sifier to be trained for each node of the nested dichotomies, and the measure we use (that
extends classical accuracy) to evaluate indeterminate classifiers.

4.2.1 Choice of base classifier

In principle any base classifier returning probability bounds can be combined with nested
dichotomies. Our particular choice of base classifier was guided by two considerations: first,
it had to be a probabilistic classifier that could be applied directly to multi-class problem (to
compare it with its decomposed counterpart) and that had an imprecise counter-part (to
evaluate the benefits of adding imprecision in estimates); second, it had to be relatively
simple to train, as decomposition techniques involve training a set of binary classifiers (one
for each node).

For these reasons, we use the Naive Credal Classifier (NCC) [Zaffalon, 2002] which is
an extension of the Naive Bayesian Classifier (NBC) to the imprecise probability framework.
These classifiers are known to provide good predictive accuracy despite their simplicity.
Technical details about this classifier are given in Appendix A. In every use of the NCC, we
set s = 2 as value of its hyper-parameter .

As NCC cannot handle continuous variables natively, all continuous features in data
sets were discretized by dividing their domain in 5 intervals of equal width. We did not
use a supervised discretization method [Fayyad and Irani, 1993], since the involved classes
change between the initial multi-class problem and each binary sub-problem.

4.2.2 Performance evaluation criterion

Comparing classifiers that return indeterminate predictions with classifiers returning deter-
minate ones is a complex problem. Indeed, compared to the usual setting where all classifiers
are determinate, measures of performance have to include the informativeness of the predic-
tions in addition to the accuracy. Zaffalon et al.[Zaffalon et al., 2012] discuss this issue in
details under a unitary loss assumption, using a betting interpretation. They show that the
discounted accuracy, which rewards a cautious prediction Ŷ class with 1/|Ŷ | if the true class
is in Ŷ , and zero otherwise, is a measure satisfying a number of appealing properties.
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Fig. 6 Quadratic utility function u65 obtained from the discounted accuracy

However, they also show that the discounted accuracy makes no difference between
an imprecise classifier providing indeterminate predictions and a random classifier: for in-
stance, in a binary setting, supposing an imprecise classifier which always returns both
classes, then it would have the same discounted accuracy as a classifier picking the class
at random, yet the imprecise classifier displays a lower variance (it always receives 1/2 as
reward, while the random one would receive a reward of 1 half of the time, and 0 the other
half).

This is why a decision maker that wants to reward cautiousness and reliability should
consider modifying the discounted accuracy by a risk-averse utility function [Zaffalon et al.,
2012]. Here, we consider the u65 function: let (xi, yi), i = 1, . . . , n be the set of test data
and Ŷi our (possibly indeterminate) predictions, then u65 is

u65 = 1
n

n∑
i=1

−0.6d2
i + 1.6di, (13)

where di is the discounted accuracy di =
1Ŷi

(yi)
|Ŷi|

, and 1Ŷi the indicator function of Ŷi.
The reason of this specific utility function is that we want to define a quadratic function

which keeps some appealing properties of the discounted accuracy: when the correct class is
not in Ŷ the accuracy should stay at 0, and when the prediction is both precise and accurate
(|Ŷ | = 1, yi ∈ Ŷ ) then the accuracy should be 1. Moreover, this utility function should
express our risk-aversion by giving a higher reward to imprecise but correct predictions
compared to the discounted accuracy. We choose to retain the u65 score, that gives a reward
of 0.65 for a prediction having a discounted accuracy of 0.5. u65 is a quadratic function,
shown in Figure 6, satisfying these properties.

It has been shown by [Zaffalon et al., 2012] that this approach is consistent with the use
of F1 measures proposed by [del Coz and Bahamonde, 2009] as a way to measure the quality
of indeterminate classifications. Also, u65 is less in favour of indeterminate classifiers than
the F1 measure, meaning that we remain quite fair to the determinate classifier.

4.3 Results on multiclass problems

Our first batch of experiments concern the classical multi-class problem. We will first presents
the data sets and methods compared, before analysing the obtained results.
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Table 2 Data sets details for multiclass problems

Name (C)ont/(D)isc features # instances # classes
balance-scale D 625 3

wine C 178 3
iris C 150 3
car D 1728 4

lymph D 148 4
grub-damage C 155 4

nursery D 12960 5
page-blocks C 5473 5

glass C 214 6
zoo D 101 7

segment C 2310 7
ecoli C 336 8

pendigits C 10992 10
soybean D 562 15

4.3.1 Data sets and methods

For this first set of experiments, we took 14 data sets of the UCI machine learning reposi-
tory [Lichman, 2014], whose details are given in Table 2. They are presented in increasing
order of the number of classes.

We note that these are general purpose machine learning data sets: there is no predefined
structure for the classes (no prior information nor expert opinion) and no misclassification
costs. As it is hard to compute non unitary cost functions using NCC, contrary to the nested
dichotomies, we have used exclusively data sets with unitary costs.

Once the continuous attributes were discretised (in 5 intervals of equal width), we ap-
plied the following methods

– ND+NBC: nested dichotomies with the naive Bayes classifier as base classifier of each
node,. The selected structure is the one obtaining the best accuracy out of 50 randomly
generated ones, as specified in Section 4.1.2;

– NCC: the naive credal classifier used as a reference multi-class classifier;
– DC: the method developed by [del Coz and Bahamonde, 2009] to derive imprecise pre-

dictions from precise probability estimates (provided by ND+NBC). See Appendix B
for a more detailed presentation of the method;

– ND+NCC: same as ND+NBC, but with NCC as base classifier, thus predictions can be
imprecise;

– Forest(vote): ensemble of nested dichotomies with the NCC where the majority voting
technique is used as shown in Section 4.1.1;

– Forest(mean): same as above but with the mean of expected costs as aggregator.

This allows us to perform three kinds of comparisons: (1) precise (ND+NBC) vs impre-
cise dichotomies, (2) imprecise nested dichotomies vs their imprecise multi-class counter-
part (NCC) and (3) indeterminate predictions derived from imprecise nested dichotomies vs
indeterminate predictions derived from precise nested dichotomies (DC).

4.3.2 Comparison of performances

The results in terms of u65 are presented in Table 3. The results are obtained from a 10-fold
cross validation and using 50 dichotomy trees. To make the table more readable, the best
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Table 3 Comparison of discounted accuracy (u65)

u65 score expressed in percentage (rank)
ND+NBC NCC DC ND+NCC Forest(vote) Forest(mean)

balance-scale 90.72 (5) 90.78 (3) 84.39 (6) 90.88 (1) 90.77 (4) 90.82 (2)
wine 95.51 (6) 97.07 (2.5) 95.84 (5) 96.13 (4) 97.07 (2.5) 97.16 (1)
iris 93.33 (5) 93.27 (6) 93.5 (3) 93.7 (1) 93.5 (3) 93.5 (3)
car 88.37 (2) 86.16 (4) 86.35 (3) 89.03 (1) 85.85 (5) 85.46 (6)

lymph 82.64 (2) 70.07 (6) 84.36 (1) 82 (3) 73.46 (5) 75.48 (4)
grub-damage 47.52 (6) 52.48 (2) 49.86 (5) 50.44 (4) 52.2 (3) 52.9 (1)

nursery 91.54 (2) 90.46 (4) 88.17 (6) 91.73 (1) 90.34 (5) 90.57 (3)
page-blocks 91.67 (3) 91.17 (6) 92.03 (1) 91.83 (2) 91.56 (5) 91.61 (4)

glass 53.74 (2) 51.38 (6) 58.7 (1) 51.81 (5) 53.38 (3) 52.37 (4)
zoo 91.73 (2) 83.79 (5) 92.38 (1) 85.22 (3) 84.68 (4) 81.6 (6)

segment 86.58 (5) 89.92 (1) 86.84 (3.5) 86.4 (6) 86.84 (3.5) 88.34 (2)
ecoli 80.95 (4) 79.47 (5) 82.22 (1) 78.41 (6) 81.24 (2.5) 81.24 (2.5)

pendigits 81.41 (6) 85.81 (1) 82.13 (4) 81.42 (5) 82.73 (3) 84.48 (2)
soybean 87.37 (5) 90.26 (1) 87.62 (4) 82.99 (6) 89.27 (2) 88.01 (3)

average rank 3.93 3.75 3.18 3.43 3.61 3.11

scores are indicated in bold and the ranks of the methods are also given (if there are ties,
then tied elements are given the averaged rank).

To statistically verify the differences between the algorithms, we follow the approach
suggested by Demšar [Demšar, 2006] and we apply the Friedman test [Friedman, 1937] on
the ranks obtained by the algorithms for each data set. We find a p-value of 0.84 so that we
can not reject the null hypothesis. It means that all methods have comparable performances
in terms of accuracy and the differences are not statistically significant.

We can notice that our approaches have generally a very different behaviour compared
to the DC method: the difference of ranks (and of performance) on a given data set is often
very important. It is also interesting to note that the single dichotomy tree method seems to
perform well when there are few classes (equal or less than 5), and becomes less efficient
when data sets have more than 5 classes. This is likely due to the fact that the “optimal”
tree structure is determined with 50 trees only, which is poorly representative of the set of
possible structures when the number of class is high. This indicates that a single tree may
provide results as good as a forest of trees, provided an optimal or good dichotomy structure
can be identified.

Finally, it is also useful to notice that both forests and binary decompositions offer more
room to improve classification accuracies: one could, in principle, optimize the aggregation
procedure (similarly to what is done in other methods based on sets of models [Corani and
Zaffalon, 2008; Cesa-Bianchi et al., 1997]) or optimize the base classifier for each binary
sub-problem.

4.3.3 Gain of accuracy on indeterminate predictions

The main goal of imprecise classifiers is to make indeterminate predictions including the
true class on cases (and ideally only on those) where the determinate classifier fails. To
show that this is indeed the case here, Figure 7 displays, on the instances where indeter-
minate predictions are made by the imprecise classifier (DC, ND+NCC, Forest(vote) and
Forest(mean)), the percentages of times the true class is within the predictions, both for the
imprecise classifier and the precise ND+NBC.

While it is trivial that the imprecise classifier is always more accurate than its precise
counterpart, it is important to note that the accuracy of the precise classifier on these inde-
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Fig. 7 Non-discounted accuracy of the precise method “ND+NBC” vs different imprecise classifiers when a
indeterminate prediction is made by the latter.

terminate predictions is usually much lower than their accuracy on the whole data set (see
Table 3). One of the most illustrative case is the wine data set (number 2 in Fig. 7), where the
accuracy of both precise and imprecise classifiers are above 90% on the whole data set, but
the accuracy of precise classifier drop to approximatively 50% on the data instances where
indeterminate predictions are made by the imprecise classifiers.

This drop of performance for the precise classifier, when we restrain to instances where
indeterminate predictions are made, indicates that they are among the “hard to classify”
instances for the precise method. All four studied imprecise classifiers share this property.
However, if we consider the number of data sets where the gain of accuracy is more than
30% (points above the dotted line in Fig. 7), then it seems that DC (11 data sets above
the dotted line) and ND+NCC (10 data sets above) succeed slightly better at finding these
“hard to classify” instances than the two ensemble learning methods (8 for “vote” and 7 for
“mean”).

Finally, one can notice that some points have very different positions in the graph corre-
sponding to Del Coz et al. approach (on the top-left of Fig. 7) and in the graphs correspond-
ing to imprecise probabilistic models. This difference can be explained by the fact that Del
Coz et al. approach will produce indeterminate predictions only in case of ambiguity (see
Figure 1), while imprecise probabilistic ones will be indeterminate in both cases of ambi-
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Table 4 Percentage of indeterminate predictions made by imprecise classifiers

Percentages of imprecise predictions
NCC DC ND+NCC Forest(vote) Forest(mean)

balance-scale 10,4 30,24 7,68 8,48 8,8
wine 6,18 2,25 5,06 6,18 5,62
iris 4 3,33 4,67 3,33 3,33
car 5,38 33,91 3,7 4,05 5,27

lymph 50 7,43 16,89 39,86 34,46
grub-damage 52,9 20 40 50,32 51,61

nursery 1,07 27,48 1,1 0,54 0,59
page-blocks 1,86 5,28 2,74 1,48 1,24

glass 61,21 34,11 30,37 48,13 49,53
zoo 23,76 1,98 20,79 25,74 26,73

segment 3,07 7,58 3,51 4,89 4,63
ecoli 22,62 8,04 12,5 17,86 17,56

pendigits 1,16 8,01 1,61 0,66 1,17
soybean 8,72 3,02 18,86 12,99 15,12

guity and lack of information. A significant difference between the placement of points for
these two approaches therefore provides useful indications to the decision maker about the
data sets, for example:

– for the balance-scale data set (number 1 in Fig. 7), and to a lesser extent for the nurs-
ery data set (number 7), we can see that the precise approach still has a high accuracy
(around 70 − 80%) on those instances for which Del Coz et al approach make inde-
terminate prediction, while this accuracy drops on the instances for which imprecise
probabilistic approaches make indeterminate prediction (respectively around 20% and
40%). This indicates that “hard to classify” instances for these data sets are mainly those
for which we lack information. Therefore, trying to collect more data may significantly
improve our results;

– for the soybean data set (number 14), the situation is reversed, indicating that for this
data set, “hard to classify” instances are mainly those for which some ambiguity arises.
In such cases, trying other classifiers and/or adding more discriminating features may
prove more useful than collecting new data.

4.3.4 Comparison of indeterminacy

We show the percentages of indeterminate predictions made by the imprecise classifiers in
Table 4. We can see that our methods are most of the time more determinate than NCC.

We can again notice that the behaviour of our approach is very different from the ap-
proach of Del Coz et al.. Indeed, even if the performance of both approaches have similar
u65 scores, the imprecision level is very different for nearly all data sets. They even seem to
be antagonistic: every time one method has a low imprecision level, the other method would
have a several times higher one.

Table 4 also shows that the level of imprecision range from very low (around 1% for
pendigits) to very high (around 50% for grub-damage), which shows that the imprecise
probabilities is well capable of adapting the level of imprecision according to the data set.
Also, there is no apparent correlation between the performance and the imprecision level: a
higher level of imprecision does not imply a higher u65 accuracy, which supports the fact
that u65 remains a fair criterion for comparing precise and imprecise classifiers.
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Finally, this table also allows us to give some insights about the different ways to build
dichotomy trees. We can see that using a single dichotomy tree (ND+NCC) allows to obtain
more determinate predictions while achieving a good predictive accuracy, as the average im-
precision level is lower than the one of forests and the performance is similar. This suggests
that using a single tree induced by expert opinion or by the class structure will not nec-
essarily lessen the performances (in fact, we will see in Section 4.4 that the performances
can even be increased). On the other hand, using forest of dichotomy trees allows for more
cautious predictions, and can be very efficient at dealing with problems where there is no
available information about the structure of the classes.

4.4 Results on ordinal classification problems

In the second set of experiments, we consider the problem of ordinal classification and
related data sets. Compared to multiclass problems, ordinal classification has the particular
feature that some structure exist between the classes, as these latter are ordered. For instance,
the rating of movies can be one of the following labels: Very-Bad, Bad, Average, Good, Very-
Good that are ordered from the worst situation to the best.

This particular structure can be accounted for when building nested dichotomies: as the
classes are ordered, it makes poor sense to make binary split where one (or both) subset con-
tains non-adjacent classes. For instance, given the labels {Bad, Average, Good}, grouping
Bad and Good together and leaving Average is contradictory to the given order. Therefore,
given a nodeC of a dichotomy tree, it only makes sense to split the set of labels {ωi, . . . , ωj}
into A = {ωi, . . . , ωk} and B = {ωk+1, . . . , ωj} with i ≤ k < j.

4.4.1 Data sets and methods

As there is a general lack of benchmark data sets for ordinal classification data, we used re-
gression problems that we turned into ordinal classification by discretizing the class variable,
except for the data sets LEV that has 5 ordered classes and ESL, ERA that have 9 ordered
classes. The details of the 15 data sets of the UCI machine learning repository [Lichman,
2014] are given in Table 5.

The results reported have been obtained with a discretisation of the class into 7 class
values of equal width. We also performed experiments with 5 and 9 discretised classes,
obtaining the same conclusions.

Applying a similar procedure than in multiclass problems, the results in this section are
obtained from a 10-fold cross validation and using the u65 score with 50 dichotomy trees.
We compare six methods :

– logreg: ordinal logistic regression used as a baseline classifier to compare our results.
We use the Python implementation made by [Pedregosa, 2013].

– ND+NBC: same as for the multi-class setting, except that splits of generated tree respect
the adjacency constraint.

– ADC [Alonso et al., 2008]: method which allows to derive imprecise predictions from
precise probability estimates. The approach follows the same guidelines as the the one
detailed in Appendix B, except that only predictions in form of adjacent classes are
allowed.

– ND+NCC: same as ND+NBC, but with NCC as base classifier, thus predictions can be
imprecise.
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Table 5 Data sets details for ordinal classification

Name #instances #features #classes
autoPrice 159 16 7

bank32NH 8192 33 7
boston housing 506 14 7

california housing 20640 9 7
delta ailerons 7129 6 7

elevators 16599 19 7
delta elevators 9517 7 7

friedman 40768 11 7
house8L 22784 9 7

house16H 22784 17 7
kinematics 8192 9 7
puma32H 8192 33 7

ERA 1000 4 9
ESL 488 4 9
LEV 1000 4 5

– Forest(mean): forest of nested dichotomies with arbitrary splits (not necessarily respect-
ing the adjacency constraint).

– Forest(ordinal): forest of nested dichotomies with splits respecting the adjacency con-
straint.

This setting allows us to compare determinate methods (ND+NBC, logreg) to indeter-
minate ones (the 4 other methods). But most importantly, we are interested in evaluating
the impact of adding this prior knowledge about the ordinal class structure. This is why
we evaluate the forest approach with and without taking this information into considera-
tion. The method developed by Alonso et al. is used as a state of art reference to compare
performance.

4.4.2 Test results

Table 6 shows the obtained results in terms of u65 (that reduces to classical accuracy for the
two determinate methods) as well as the rank of each classifier. As the compared methods
are similar to the ones used in the multi-class case, interpretations of Section 4.3.3 and 4.3.4
about the gain of accuracy and indeterminacy remain true. Therefore, we will only focus on
what differs from the multiclass case.

By applying the Friedman test on the ranks of the algorithms for each dataset, we obtain
a p-value lower than 10−4 so that the null hypothesis can be safely rejected. It means that
the performances of the classifiers are significantly different.

This confirms that in average the introduced indeterminacy in the predictions is not
too important and is compensated by more reliable predictions. As the null hypothesis has
been rejected, we use a Nemenyi test [Nemenyi, 1963] as a post-hoc test (see Fig. 8), and
obtain that two classifiers are significantly different (with a significance level of 0.10) if the
difference between their mean rank is higher than 1.8. Therefore, our approach with a single
dichotomy tree outperforms the baseline (logistic regression) and is competitive with similar
state of art methods.

The most remarkable point is that, while using forest of nested dichotomies allowed
us to obtain very good performance in the multi-class case, they yield significantly worse
performance than the state of art method in the case of ordinal problems, especially if the
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Table 6 u65 scores (and ranks) for different methods on ordinal data sets

u65 scores expressed in percentage (rank)
Data set Logreg ND+NBC ADC ND+NCC Forest(mean) Forest(ordinal)

auto Price 62.89 (4) 63.52 (3) 63.93 (2) 64.21 (1) 62.54 (5) 61.23 (6)
bank32NH 75.89 (3) 75.84 (4) 76.43 (1) 76.4 (2) 75.59 (5) 69.44 (6)

boston housing 44.47 (6) 51.38 (4) 51.99 (2) 51.8 (3) 52.5 (1) 45.84 (5)
california housing 38.36 (6) 43.08 (3) 45.07 (1) 43.26 (2) 41.67 (5) 42.18 (4)

delta ailerons 53.71 (6) 75.16 (2) 74.91 (3) 75.27 (1) 74.66 (4) 74.61 (5)
elevators 77.61 (1) 63.78 (4) 64.26 (2) 63.84 (3) 61.39 (6) 61.58 (5)

delta elevators 55.84 (6) 66.29 (5) 66.51 (2) 66.44 (4) 66.5 (3) 66.8 (1)
friedman 46.37 (6) 60.82 (2) 60.33 (3) 60.96 (1) 56.84 (5) 58.42 (4)
house8L 84.3 (1) 82.78 (4) 83.04 (2) 82.8 (3) 82.68 (5) 82.6 (6)

house16H 82.09 (1) 80.05 (4) 80.47 (2) 80.08 (3) 79.84 (5) 79.81 (6)
kinematics 37.46 (6) 39.9 (3) 42.77 (1) 40.66 (2) 38.48 (5) 39.85 (4)
puma32H 36.33 (6) 51.27 (5) 53.03 (3) 53.07 (1) 53.05 (2) 51.91 (4)

ERA 23.2 (6) 24.4 (5) 25.65 (4) 26.56 (1) 26.52 (2) 26.31 (3)
ESL 47.75 (6) 62.7 (5) 63.44 (3) 63.27 (4) 65.54 (1) 64.84 (2)
LEV 46.3 (6) 59.4 (3) 60.33 (1) 59.48 (2) 57.94 (4) 56.49 (5)

Average rank 4.67 3.73 2.13 2.2 3.87 4.4

1 2 3 4 5

Logreg
Forest(ordinal)

Forest(mean)ND+NBC
ND+NCC

ADC

Fig. 8 Nemenyi post-hoc test results on algorithms. Groups of algorithms that are not significantly different
(at a significance level of 0.10) are linked with a bold line

ordinal structure is taken into consideration. On the other hand, our approach using one sin-
gle dichotomy tree selected among the forest remains competitive. Since ensemble learning
techniques requires the majority of component to be competent, a possibility is that the re-
sults are affected by classifiers with bad performance. This is most likely what happened
here, despite that the forest contains adequate dichotomy structures (including the one used
for ND+NCC, the single tree approach), the final results of the forest are strongly biased by
non-adequate dichotomy structures.

In the multiclass case, there is no strong presumption about the structure of the classes,
so the ensemble approach is well-suited. Here in ordinal classification, choosing a specific
dichotomy structure to integrate the prior knowledge becomes much more interesting and
significant.

5 Conclusion

In this paper, we have proposed a method to learn indeterminate classifiers, in the sense that
they provide indeterminate predictions when information is insufficient to provide reliably
a determinate one. More precisely, this approach extend the nested dichotomies, a special
binary decomposition technique which guarantee consistency of solutions, to the imprecise
probability framework. The extension consists in representing probabilities with interval-
valued estimates rather than precise ones, the width of the interval reflecting the lack of
knowledge.
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Our experiments on different data sets show that allowing for indeterminacy can in-
crease the reliability and the cautiousness of predictions, which is interesting or even crucial
for many application fields. More specifically, the added indeterminacy tends to focus on
those instances that are hard to classify for determinate classifiers. Moreover, combining
nested dichotomies with classical imprecise methods allowed us to reduce the level of inde-
terminacy while maintaining the same level of accuracy. Besides, we showed that a wise use
of prior knowledge in the case of ordinal classification can be beneficial and can increase
significantly the performance of our approach.

We could probably improve both the efficiency of inferences, e.g., by studying exten-
sions of labeling trees to imprecise trees [Bengio et al., 2010], or their accuracy by using
more complex classifiers, e.g., credal averaging techniques [Corani and Zaffalon, 2008]. Yet,
as the advantages of using binary decompositions are usually lower when using complex es-
timation methods, the benefits of such extensions would be limited and counter-balanced by
their computational complexity.

In our experiments, we have focused on unitary misclassification costs and their exten-
sions to indeterminate predictions, since it is not obvious how to compare determinate and
indeterminate classifiers with generic cost functions. Yet, our approaches can easily handle
generic costs (in contrast with the multiclass naive credal classifier [Zaffalon, 2002] and the
method of Del Coz et al.), as shown in Section 2.2 and Section ??. However, there are many
problems where unitary costs are not the most natural ones, this is the case for instance
in ordinal classification problems, where costs should integrate the structure of the classes
(using, for example, absolute error). Our future efforts will therefore focus on determining
meaningful ways to compare determinate and indeterminate classifiers using non unitary
cost functions.

A Presentation of the Naive Credel Classifier

The NCC preserves the main properties of the Naive Bayesian Classifier, such as the assumption of attribute
independence conditionally to the class. For the standard NBC, the assumption of attribute independence can
be written as:

p(x1, . . . , xm | ω) =
m∏
i=1

p(xj | ω), (14)

where (x1, . . . , xm) ∈ (X1, . . . , Xm) are the input features and ω ∈ Ω.

In binary problems where we have to differentiate between two complementary events (set of classes)
A and B, the NCC consists in using lower/upper bounds of prior probabilities to estimate the posterior ones
[Zaffalon, 2002]:
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p(A|x1, . . . , xm) = min



p(A)
m∏
i=1

p(xi | A)

m∏
i=1

p(xi | A)p(A) +
m∏
i=1

p(xi | B)p(B)

,

p(A)
m∏
i=1

p(xi | A)

m∏
i=1

p(xi | A)p(A) +
m∏
i=1

p(xi | B)p(B)


= 1− p(B|x1, . . . , xm). (15)

The lower probability p(B|x1, . . . , xm) = 1 − p(A|x1, . . . , xm) can be obtained in the same way.
Using the Imprecise Dirichlet Model (IDM) [Bernard, 2005], we can compute these probability estimates
using the training data by simply counting occurrences :

p(xi | A) =
occi,A

occA + s
, p(xi | A) =

occi,A + s

occA + s
, (16)

p(A) =
occi,A

occA,B + s
, p(A) =

occi,A + s

occA,B + s
, (17)

where occi,A is the number of instances in the training set where the attribute Xi is equal to xi and the class
value is in A. occA is the number of instances in the training set where the class value is in A. occA,B is the
number of training sample whose class is either in A or B. The hyper-parameter s sets the imprecision level
of the IDM and is usually equal to 1 or 2 [Walley, 1996]. In our experiments, we will set s to 1 every time
NCC is involved.

We also note that when s is set to 0, the lower and upper bounds coincide, and the model then reduces to
a standard NBC with a Dirichlet prior. Therefore we can easily pass from the imprecise method to the precise
one by changing s to 0, and this is how we obtain the estimates of NBC in our experiments.

B Method developed by Del Coz et al.

[del Coz and Bahamonde, 2009] propose to derive indeterminate predictions from precise probability esti-
mates by adapting the well-known Fβ measure to do so. Their proposal results in the formula

Fβ(Ŷ , ω) =
1 + β2

β2 + |Ŷ |
× 1ω∈Ŷ . (18)

In most cases, the parameter β is set to 1, hence the F1 measure.
The method then consists in predicting the set of classes Ŷ which minimizes the expected cost E[cŶ ]

where

cŶ :
{
Ω → R+

ω → 1− Fβ(Ŷ , ω) (19)

Del Coz et al. show that, for a prediction Ŷr composed of r classes, the expected cost can be expressed as:

∆r = E[cŶr ] = 1−
1 + β2

β2 + r

∑
ω∈Ŷr

p(ω). (20)

We can see that if an indeterminate prediction is composed of r classes, then those must be the r classes with
the highest probabilities. Indeed, for a fixed number r, Eq. (20) is minimized if

∑
ω∈Ŷr

p(ω) is maximized.
This important feature allow Del Coz et al. to propose a simple algorithm, linear in the number of classes, to
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find the best prediction. The principle is first to sort the classes according to their posterior probabilities, so
that we have a descending order (ω1, . . . , ωK)(K = |Ω|) where, if i < j ∈ [1;K] then p(ωi) > p(ωj).
An indeterminate prediction of size r is defined as Ŷr = {ω1, . . . , ωr}; The algorithm consists in computing
the sequence of values ∆r (starting from r = 1 and incrementing r) and then to retain the Ŷr minimizing
the sequence. Note that it is not necessary to compute ∆r for all values of r, as the algorithm stops as soon
as an increase is detected in the sequence.

We can note that, due to the definition of Fβ , every wrong prediction yields zero reward (or conversely,
a cost of 1), which means that this method is only valid in the unitary misclassification cost setting. The
problem of treating non-unitary costs is not mentioned in [del Coz and Bahamonde, 2009].
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