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Abstract— 1In this article, we propose an original way to
characterize information content in Online Signatures through
a client-entropy measure based on local density estimation by a
Hidden Markov Model. We show that this measure can be used
to categorize signatures in visually coherent classes that can be
related to complexity and variability criteria. Besides, the
generated categories are coherent across four different
databases: BIOMET, MCYT-100, BioSecure data subsets DS2
and DS3. This measure allows a comparison of databases in
terms of clients’ signatures according to their information
content.

Keywords; On-line signature; entropy; complexity; variability;
signature categorization

1. INTRODUCTION

In all the existing biometric modalities, performance
evaluation of recognition systems is performed on databases,
and systems themselves are tuned in development subsets of
data according to a given protocol. This “algorithm
evaluation framework™ found in Pattern Recognition tasks in
general, has made of databases one of the major concerns of
the scientific community. As an illustration of this, only in
the field of Biometrics, significant efforts have been carried
out to collect databases and define evaluation protocols for
algorithm comparison in several modalities. This has been
done since a long time by the U.S. National Institute of
Standards and Technology (NIST) [1] and launched recently
in Europe by the European BioSecure Network of
Excellence [2].

Now focusing in the Automatic Online Signature
Verification field, two international evaluations have been
carried out on databases of very different types. One is that
of the First International Signature Verification Competition
in 2004 (SVC’2004) [3, 4], that was acquired on a digitizing
tablet and mixes different cultural types of signatures,
namely asian and western signatures; the other is the Online

Signature Database of the BioSecure Multimodal Evaluation
Campaign in 2007 (BMEC’2007), denoted as DS3 (for
Third Data Set of the whole data collection), acquired on a
mobile platform thanks to a Personal Digital Assistant
(PDA) [5]. These evaluations have been very stimulating
and positive for the community; nevertheless, it is still
difficult to understand their scope, since the quality of client
signatures has not been measured.

Our aim in this paper is to go one step forward in this
direction by proposing a novel intra-personal measure of the
degree of “disorder” or “chaos” associated to the signature
of a person, opposed to its “information content”. A possible
way to tackle this question is to use an entropy measure [6].
The entropy measure that we propose is not designed to
quantify the discriminative qualities of a given signature
with respect to other signatures, as a relative entropy
measure can do [6]; it is actually designed to assess whether
a signature contains or not enough information to be
processed by any recognition system. This explains why
only client signatures are used to generate the intra-personal
entropy measure that we propose in this paper.

Entropy measures the uncertainty related to a random
variable, relying on its distribution. The first question raised
is how to model an online signature by a random variable;
the second question is how to estimate its distribution. The
random variable is discrete in this case, and we choose to
consider as possible values the raw Cartesian coordinates
(x,y) as these are the only available features in all types of
databases, whether acquired on fixed platforms (as digitizing
tablets) or on mobile platforms (as Personal Digital
Assistants). Now concerning the second question, as the
online signature is piecewise stationary, it is natural to
estimate the probability density locally, namely on portions
of the signature. To that end, we propose to use a Hidden
Markov Model [7] (HMM) as a local estimator of the
probability density. To our knowledge, it is novel to measure
the information content of an online signature by using the
concept of entropy. However, entropy has been exploited in



the document analysis literature to measure the complexity
of a character image database [8], by defining the entropy
related to each pixel in the image.

Nevertheless, some authors have tried to analyze in
terms of other measures than entropy, the variability and
complexity in signatures. In [9], both complexity and
variability criteria were proposed for off-line signature
verification by a human expert. Indeed, a human operator
labels signatures according to both criteria and their impact
on performance is studied. In [10], off-line signature
legibility and complexity were proposed as criteria to
categorize signatures manually by a human expert, in 3 or 5
categories respectively. Then, using two machine experts,
the influence of such criteria on performance was studied.
Both of these works have in common that the labeling of
signatures according to their complexity or variability in [9]
and the categorization of signatures in terms of legibility and
complexity in [10] are carried out by a human expert
manually, not automatically. One of the major interest of our
approach is to propose a quantitative measure for such
categorization, following this way the road opened by other
authors with different criteria. Indeed, the stability of
signatures is computed in [11] by elastic matching. In the
same spirit, measures of the distortion between two dynamic
signatures have been proposed [12], involving the concepts
of “static” and “dynamic” distortions and merging them by
different strategies. On the other hand, signature analysis
was also performed by means of fractal geometry leading to
the emergence of complexity and legibility criteria [13].

In general, in databases, several instances of a person’s
signature are available. We may compute entropy on each
instance independently or on an ensemble of instances. In
this work, as our aim is to study relative quality of databases,
we chose to consider a measure of “client-entropy”
computed on several instances of a person’s signature.

Four databases are used in our study: the most two
widely used in the Online Signature Verification literature,
BIOMET Signature subset [14] and the freely available
subset of 100 users MCYT-100 of MCYT database [15],
and two data sets containing the same 104 users but differing
by the type of acquisition platform (digitizing tablet vs.
mobile platform), the DS3 (mobile) and DS2 (fixed
platform) subsets acquired in the framework of BioSecure
Network of Excellence. The aim of using these two
databases DS3 and DS2 is to analyze the impact of mobility
conditions on the client-entropy measure that we propose.
Our methodology is the following: we first analyze
signatures in each database in terms of the proposed “client-
entropy” measure, generating “categories” of signatures. On
the other hand, we compare the distribution of such client-
entropy measures across databases in terms of two other
criteria based on signature complexity and variability.

This paper is organized as follows: Section 2 presents
the client-entropy measure, Section 3 focuses on the analysis
of genuine signatures across databases and in particular on

the generation of categories of signatures in terms of client-
entropy, Section 4 is concerned with database classification
in terms of our measure and Section 5 gives the conclusions
of our work.

II. MEASURING “CLIENT-ENTROPY” WITH A
HIDDEN MARKOV MODEL

As mentioned above, signatures are described by their
raw coordinates (x,y). We generate one HMM for each client
using 10 genuine signatures and we consider each signature
as a succession of portions, generated by its segmentation
via the client-Hidden Markov Model (HMM) [7]. Therefore,
we obtain as many portions in each signature as there are
states in the client-HMM. Then we consider each point (x,y)
in a given portion as the outcome of one random variable
that follows a given probability mass function. Thus, the
entropy associated to a given portion of a signature is
represented by the entropy of an ensemble of outcomes of a
random variable Z. Such random variable is discrete since its
alphabet 4 has a finite number of values, as many as found
in the Cartesian product XxY of all possible values of
ordered pairs (x,y). The cardinal of 4 is of course related to
the resolution of the acquisition surface that may be a
digitizing tablet or a Touch Screen in the case of a mobile
acquisition platform as a Personal Digital Assistant (PDA).
Each outcome of Z=(x,y) has a probability value attached to
it; if Z has as probability mass function p(z) = Pr(Z = z)
where z belongs to A, its entropy is defined as:

H(Z)==) p(2).log(p(z)) (1)
zed
where log denotes the logarithm to the base 2.

Although the random variable Z=(x,y) is discrete, we
take advantage of the continuous emission probability law
estimated on each portion by the client-HMM. Such density
is a mixture of Gaussian components. This choice is
motivated by the fact that the discrete version of entropy and
the continuous one (called Differential Entropy) are directly
related when the density is Riemann integrable [6], which is
the case as we have a linear combination of Gaussian
densities. Also, a more orthodox version of H(Z) could have
been computed by quantizing the domain of Z in bins and
using as probability mass function, the density value
obtained by the Mean Value Theorem in each bi-
dimensional bin. But as the quantization is actually very fine
because of the fine resolution of acquisition devices (at least
1 million pixels), we can assume that the continuous density
value is close to the quantized one (the density value
obtained by the Mean Value Theorem).

To compute client-entropy, we consider several genuine
signatures of a given user or client, namely 10, and a
personalized number of states for each HMM, computed as:
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where T7o1q is the total number of sampled points available
in the training signatures, and M=4 is the number of
Gaussian components per state.

We ensure this way that the number of sample points per
state is at least 120 in order to obtain a good estimation of
the Gaussian Mixture in each state (four Gaussian
components). Then, we compute following (1) the entropy
per portion first (after segmentation performed by the client-
HMM), by using all the sample points belonging to each
portion across the 10 instances of the person’s signatures.
We then average the entropy over all the portions of a
signature and normalize the result by the average length of
the ten signatures considered to generate the client-entropy
measure. Indeed, the discrete assumption for the random
variable Z=(x,y) makes us consider as alphabet the actual
realizations of Z=(x,y) in each portion ( when considering
the 10 genuine signatures) instead of considering all the
possible values of Z=(x,y) per portion.

We compared for client-entropy computation the HMM
above described with a Gaussian Mixture Model (GMM)
[16]. This interesting study revealed that density estimation
with a GMM remains too coarse for a proper
characterization of signatures in terms of the entropy
measure that we propose. Indeed, the HMM allows a more
precise estimation of the required probability density,
because it carries out such estimation locally, on portions of
the signature, this way complying with the local temporal
dependencies existing on signatures. Indeed, with a GMM,
the temporal ordering and the resulting local temporal
dependencies present in signatures cannot be taken into
account because density estimation is carried out globally.

ITII. ANALYSIS OF GENUINE SIGNATURES IN TERMS
OF CLIENT-ENTROPY

A. Databases description

We used four databases in this work: the freely
available MCYT subset of 100 persons [15], the BIOMET
signature sub-corpus of 84 persons [14], and subsets of the
Online Signature Databases acquired in the framework of
the BioSecure Network of Excellence [2], DS3 (for Third
Data Set of the whole data collection), acquired on a mobile
platform, a Personal Digital Assistant (PDA) and DS2 (for
Second Data Set of the whole data collection), acquired on a
digitizer [5]. The subsets of DS2 and DS3 that we use in this
work both contain data from the same 104 persons. The
whole BioSecure Signature Subcorpus DS3 and DS2 are not

yet publicly available but, acquired on several sites in
Europe, they are the first on-line signature multisession
databases acquired in a mobile scenario (on a PDA) for DS3
and on a digitizer for DS2. DS3 contains the signatures of
713 persons, acquired on the PDA HP iPAQ hx2790, at the
frequency of 100Hz and a touch screen resolution of
1280*960 pixels. Three time functions are captured from the
PDA: x and y coordinates and the time elapsed between the
acquisition of two successive points. The user signs while
standing and has to keep the PDA in his or her hand. Two
sessions were acquired spaced of around 5 months, each
containing 15 genuine signatures. The donor was asked to
perform, alternatively, three times five genuine signatures
and twice five forgeries. For skilled forgeries, at each
session, a donor is asked to imitate five times the signature
of two other persons. In order to imitate the dynamics of the
signature, the forger visualized on the PDA screen the
writing sequence of the signature he/she had to forge and
could sign on the image of such signature in order to obtain
a better quality forgery both from the point of view of the
dynamics and of the shape of the signature.

On the other hand, DS2 contains data from 667 persons
acquired in a PC-based offline supervised scenario and the
digitizing tablet WACOM INTUOS 3 A6. The pen tablet
resolution is 5080 lines per inch and the precision is 0.25
mm. The maximum detection height is 13 mm and the
capture area is 270mm (width) x 216mm (height). Signatures
are captured on paper using an inking pen. At each sampled
point of the signature, the digitizer captures at 100 Hz
sampling rate the pen coordinates, pen pressure (1024
pressure levels) and pen inclination angles (azimuth and
altitude angles of the pen with respect to the tablet). This
database contains two sessions, acquired two weeks apart.
Fifteen (15) genuine signatures were acquired at each
session as follows: the donor was asked to perform,
alternatively, three times five genuine signatures and two
times five skilled forgeries. For skilled forgeries, at each
session, a donor is asked to imitate five times the signature
of two other persons.

B. Analysis of genuine signatures: client categories

We performed on the four databases a K-Means for
different values of K and reached a good separation of
signatures with K=3 on all databases as shown in Figures 1
to 4, respectively on MCYT-100, BIOMET, DS2 and DS3.
We notice visually that on the four databases, the first
category of signatures, those having the highest client-
entropy, contains short, simply drawn and not legible
signatures, often with the shape of a simple flourish. At the
opposite, signatures in the third category, those of lowest
client-entropy, are the longest and their appearance is rather
that of handwriting, some are even legible. In between, we
notice that signatures with medium client-entropy (second



category) are longer and sometimes become legible, often
showing the aspect of a complex flourish.

This categorization of signatures by client-entropy
shows a link with the complexity of the hand-draw and the
variability of instances of signatures. In the next section, we
formalize this remark by defining two criteria.

C. Complexity and Variability criteria for comparison

The first criterion that we use in our comparative
analysis with the proposed client-entropy measure is related
to the complexity of the signature. It consists of a vector of
five components: the number of strokes obtained by
computing the number of local extrema (points where the
speed estimation in the y-direction is zero), the number of
cusps (points where both speed on the x and y directions are
zero), the number of crossing points, the length of the
signature, and the number of changes in pen direction. We
consider the Euclidean norm of the vector as the indicator of
complexity for each signature. We then average such
measure on the 10 genuine signatures in order to generate a
complexity measure for a given client.

The other criterion is related to the variability of a
client’s signature. We use Dynamic Time Warping [6] to
this end because it uses a local paradigm to measure
distortions. We compute the distances between all the
possible couples of genuine signatures (45 as we consider 10
genuine signatures) and average the obtained distances to get
the indicator of signature variability.

The plots in Figure 5 show for the four databases client-
entropy vs. the complexity criterion and the variability
criterion. We notice that signatures of highest client-entropy
are highly variable according to our DTW-based criterion
and of rather low complexity (spread along the variability
axis). At the opposite, signatures of lowest client-entropy are
more complex (spread along the complexity axis) and more
stable (show low variability). We observe this is true for all
the databases here considered.

Figure 1: Examples of signatures from MCYT-100 of (a) highest, (b)
medium and (c) lowest client-entropy
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Figure 2: Examples of signatures from BIOMET of (a) highest, (b) medium
and (c) lowest client-entropy
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Figure 3: Examples of signatures from DS2 of (a) highest, (b) medium and
(c) lowest client-entropy

Figure 4: Examples of signatures from DS3 of (a) highest, (b) medium and
(c) lowest client-entropy

IV.DATABASE CLASSIFICATION ACCORDING TO
CLIENT-ENTROPY

A. Fixed platform (DS2) vs. mobile platform (DS3)

We recall that BioSecure DS2 and DS3 subsets contain
signatures from the same users. This allows us to analyze the
impact of switching from a fixed platform to a mobile one in
terms of client-entropy.

Table 1 shows that the distribution of the same users in
the three entropy-based categories differs in the two data
sets with 46% of users who switched categories. Indeed,
some users that had a low client-entropy when signing on the
fixed platform (digitizing tablet) have a higher client-entropy
when signing on the mobile platform (PDA). We show in
Figure 6 an example of two users that do not belong to the



same category in terms of client-entropy when signing on a
fixed platform or a mobile one.

MCYT-100 database MCYT-100 database

To go further, as shown in Figure 7, the complexity of
signatures in DS2 is far more important than that of DS3.
Indeed, signing on a mobile platform shortens the signatures,
makes them more variable and favors less complex hand-
draw.

TABLE 1: THE 4 DATABASES (MCYT-100, BIOMET, BIOSECURE DS2 AND
DS3 SUBSETS) IN TERMS OF NUMBER AND PERCENTAGE OF USERS IN THE 3
CLIENT-ENTROPY CATEGORIES

Number and MCYT | BIOMET DS2 DS3
percentage of clients | -100

with highest 6 6 7 16
entropy (6%) (7.14%) (6.73%) (15.38%)
with medium 27 26 26 33
entropy (27%) | (30.95%) (25%) (31.73%)
with lowest 67 52 71 55
entropy (67%) | (61.91%) | (68.27%) | (52.89%)
Number of clients 100 84 104 104
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Figure 5: Client-entropy vs. Complexity (left) and Client-entropy vs.
Variability (right) on the 4 databases MCYT-100, BIOMET, BioSecure
DS2 and DS3 subsets for the 3 client-entropy categories : (o) stands for
highest, (+) for medium, (.) for lowest client-entropy

@ (b)

Figure 6: Signatures of two users that change of category on DS2 and DS3;
(a) from medium (left) to high client-entropy (right) and (b) from low (left)
to medium client-entropy (right)
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Figure 7: Variability vs. Complexity on DS2 (left) and DS3 (right) for the 3
client-entropy categories: (o) stands for highest, (+) for medium, (.) for
lowest client-entropy

B. Comparing MCYT-100 and BIOMET databases

These two databases are the most widely used in the
online handwritten Signature Verification literature
nowadays. Our aim is to compare them in terms of client-
entropy. Table 1 shows that the percentage of users with the
highest client-entropy is almost twice more important in
BIOMET database than in MCYT-100 database; also, the
percentage of users with the lowest client-entropy is more
than half of the population in MCYT-100 while it represents
only one third of the population in BIOMET.

From this entropy study, we can infer that signatures in
BIOMET are more variable and of lower complexity than
those of MCYT-100. This is confirmed by the plot in
Figure8. This makes of BIOMET a more difficult database



in terms of modeling intra-class variance compared to
MCYT-100.
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Figure 8: Variability vs. Complexity on MCYT-100 (left) and BIOMET
(right) for the 3 client-entropy categories: (o) stands for highest, (+) for
medium, (.) for lowest client-entropy

V. CONCLUSIONS

We have proposed in this work a novel measure of
client-entropy based on Hidden Markov Model. Such
measure allows obtaining categories of signatures which are
coherent across several databases of different sorts. Three
main categories appear opposing in the extremes highly
variable, short and low information content signatures (high
client-entropy) to stable, longer and complex signatures with
the aspect of handwriting (low client-entropy). This
interpretation is the outcome of the link that we made
between client-entropy on one side and complexity and
variability measures on the other side. The same behavior is
observed on BIOMET, MCYT-100 and BioSecure sub-
corpuses DS2 and DS3. Also, the impact of shifting from a
fixed acquisition platform to a mobile one was measured in
terms of increase of client-entropy on the same persons,
when measured on DS2 and DS3.

Finally, we compared the client-entropy on MCYT-100
and BIOMET data sets, the most used databases in the
literature. We conclude that BIOMET, as it mostly contains
users showing rather high client-entropy, makes client
characterization more difficult than MCYT-100.

Future work will focus on other ways of estimating
client-entropy.
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