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ON THE FIRST HITTING TIMES FOR ONE-DIMENSIONAL ELLIPTIC DIFFUSIONS

NOUFEL FRIKHA, ARTURO KOHATSU-HIGA, AND LIBO LI

Abstract. In this article, we obtain properties of the law associated to the first hitting time of a threshold by a

one-dimensional uniformly elliptic diffusion process and to the associated process stopped at the threshold. Our

methodology relies on the parametrix method that we apply to the associated Markov semigroup. It allows to
obtain explicit expressions for the corresponding transition densities and to study its regularity properties up to the

boundary under mild assumptions on the coefficients. As a by product, we also provide Gaussian upper estimates

for these laws and derive a probabilistic representation that may be useful for the construction of an unbiased Monte
Carlo path simulation method, among other applications.

1. Introduction

In this article, we consider the following one-dimensional stochastic differential equation (SDE in short)

(1.1) Xu,x
t “ x`

ż t

u

bpXu,x
s qds`

ż t

u

σpXu,x
s qdWs, t ě u ě 0, x P R

where pWtqtě0 stands for a one-dimensional Brownian motion on a given filtered probability space pΩ,F , pFtqtě0,Pq.
Our main interest is to study the law of the first hitting time of the level L (or equivalently the exit time of the
open set p´8, Lq) by the one-dimensional process X defined by

τu,x “ inf tv ě 0, Xu,x
u`v ě Lu

and the associated killed diffusion process pXx
τu,xt

qtě0. Here, we write τu,xt :“ τu,x^pt´uq. In various applications,

such as ruin probability, mathematical finance [MR05] or neurosciences [DIRT15], one is interested in results related
to the existence of a density for τu,xt or the vector pτu,xt , Xx

u`τu,xt
q and if it exists its regularity properties as well as

sharp upper-bounds for the density and its derivatives.
Several results concerning existence and smoothness properties (as well as some Gaussian bounds) for the densities

of the exit time of one-dimensional diffusion processes and the associated killed diffusions have been established in
the literature. When the coefficients are smooth, we refer e.g. to [Pau87] for the existence and smoothness of a
first-passage density using a Lamperti transformation technique combined with Girsanov theorem. We also refer to
the recent unpublished note [DIRT13] for some Gaussian upper-bounds in the case of a non-homogeneous smooth
drift coefficient and a constant diffusion coefficient using a PDE point of view of the parametrix method.

On the other hand, in a multi-dimensional setting and for a domain D such that BD is smooth and nonchar-
acteristic, Cattiaux [Cat91] developed a Malliavin’s calculus approach to prove that the semigroup associated to a
process killed when it hits the boundary BD admits an infinitely differentiable kernel under a restricted Hörmander
condition on the vector fields. Gaussian bounds on this kernel are also established in small time. We also refer the
reader to Ladyzenskaja and al. [LSU68], Friedman [Fri64] and Garroni and Menaldi [GM92] for constructions of
Green functions related to a class of Cauchy-Dirichlet value problems in a uniformly elliptic setting using a partial
differential equation framework.

In order to study this problem, one is naturally led to define the collection of linear maps pPtqtě0, acting on
BbpRq, as follows

(1.2) @pu, xq P R` ˆ R, Pthpu, xq “ E
”

hpu` τu,xu`t, X
u,x
u`τu,xu`t

q

ı

.

From the above definition, one realizes that the main problem to analyse the above quantity is that the probability
measure generated by the couple pτu,xu`t, X

u,x
u`τu,xu`t

q is singular. Indeed, if the process X does not reach the boundary

in the interval ru, u` ts, the law of τu,xu`t is concentrated on time t. Conversely, if the process exits the domain before
time u` t, the law of Xu,x

u`τu,xu`t
will have a point mass at L.
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To investigate this problem, we rely on a perturbation technique, known as the parametrix method, that we
apply to the process pu` τu,xu`t, X

u,x
u`τu,xu`t

qtě0 in order to obtain an expansion of Pthpu, xq as an infinite series. The

main interest for introducing the linear maps pPtqtě0 is that it allows to include the first exit time and the related
killed diffusion in the same analysis. From this representation, we obtain the existence of a transition density for
pPtqtě0 on R` ˆ p´8, Lq under mild smoothness assumption on the coefficients. As a by product, we study its
regularity properties and derive Gaussian upper-bounds.

The parametrix method is a classical perturbation technique used in partial differential equation (PDE in short)
theory that allows to give an expansion in infinite series of iterated kernels of the fundamental solution of an elliptic
or parabolic PDE as exposed e.g. in Friedman [Fri64] or McKean and Singer [MS67]. Its success is due to its
robustness and flexibility as it can be invoked for a wide variety of PDEs both for theoretical goals such as density
estimates, see e.g. Delarue and Menozzi [DM10], Kohatsu-Higa & al. [KHTZ16] and for numerical approximations
see e.g. Konakov and Mammen [KM00] and Frikha and Huang [FH15] among others. Though its application
seems to be restricted to Markov processes, it notably allows for coefficients to be less regular than in the Malliavin
calculus approach for the study of transition densities.

Recently, Bally and Kohatsu-Higa [BKH15] used a semigroup approach to the parametrix method in order to
obtain a probabilistic representation for the transition density of the solution to elliptic diffusion processes and some
Lévy driven SDEs. Let us note that the case of stable-like driven SDE with Hölder continuous coefficients has been
handled in [KHL16]. Although a difficult aspect of the problem lays in the singular behavior of the joint law of
pu` τu,xu`t, X

u,x
u`τu,xu`t

qtě0, we try to follow the approach initiated in [BKH15] by considering two kinds of techniques,

namely the forward parametrix method and the backward parametrix method which require different smoothness
assumptions on the coefficients and provide different properties on the underlying density.

Roughly speaking, the forward parametrix method consists in approximating the process pu` τu,xu`t, X
u,x
u`τu,xu`t

qtě0

by the proxy process pu` τ̄u,xu`t, X̄
u,x
u`τ̄u,xu`t

qtě0 where pX̄u,x
u`tqtě0 has dynamics given by (1.1) with diffusion coefficient

frozen at the initial point x and with zero drift, τ̄u,x being its associated exit time. In order to make the argument
of the forward parametrix approach works properly, one has to assume that the drift coefficient1 is C1

b pRq and that
the diffusion coefficient is bounded, uniformly elliptic and C2

b pRq. Then conclusions on the regularity of the density
with respect to the terminal point are obtained.

On the other hand, a backward parametrix expansion, usually uses an Euler scheme with coefficients frozen at
the terminal point of the density as proxy process. For this reason, the method is called backward. This method
can be applied if the drift coefficient is measurable and bounded and the diffusion coefficient is bounded, uniformly
elliptic and Hölder-continuous. Regularity properties with respect to the starting point x can be established. Under
the mild smoothness assumptions of the backward parametrix framework (see assumption (H2) in Section 4), we
were unable to find references on the existence, regularity properties and Gaussian estimates for the density of the
couple pτu,xu`t, X

u,x
τu,xu`t

q up to the boundary value L. Although it may be possible to link pt, u, xq ÞÑ Pthpu, xq to the

unique classical solution of a Cauchy-Dirichlet PDE thanks to a Feynman-Kac representation formula, this will
require additional smoothness on the coefficients that we do not want to impose here.

As explained before, in our case, the situation is more challenging than in the standard diffusion or Lévy driven
setting studied in [BKH15], since we have to deal with two processes which have a singular behavior with respect
to each other. Another technical difficulty (compared to the standard diffusion setting investigated in [BKH15])
that appears in the backward setting lies in the proof of the convergence of the parametrix series corresponding to
the first hitting time since the singularity in time induced by the exit time distribution of the frozen process is of
higher order. As it will become clear later on, when dealing with the part corresponding to the exit time, the key
idea is to use an Euler scheme with coefficients frozen at the barrier L whereas, when using this approach for the
stopped process, as in the case studied in [BKH15], one has to use a standard Euler scheme with coefficients frozen
at the terminal point of the density.

In conclusion, the main advantage of the parametrix expansion is that it allows to prove the existence of the
density for the couple pu`τu,xu`t, X

u,x
u`τu,xu`t

q and to study its regularity properties under such rather mild assumptions

on the coefficients. We believe that the methodology and the collection of results established here may be extended
to certain type of multi-dimensional smooth domains. This will be taken up in future works.

One of the main advantages for considering the forward parametrix expansion and not only the backward method
is that it allows to obtain regularity of the transition density with respect to the terminal point and also it leads to a
more natural probabilistic representation for the density of the process in consideration and therefore also provides a
representation for Pthpu, xq that can be used for an unbiased Monte Carlo numerical simulation or as an alternative

1For exact definitions of these spaces, see Section 2.1.
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to Malliavin calculus. We refer to [AKH16] for a comprehensive insight on unbiased simulation of SDEs. As far
as numerical approximations of (1.2) are concerned, the standard methodology to evaluate such expectation is to
discretize the dynamics (1.1) using an Euler scheme and to consider its discrete hitting time. A more sophisticated
procedure consists in interpolating the standard approximation scheme into a continuous Euler scheme and then
using the law of some Brownian bridge in order to take into account the probability that the process has left the
domain between two discretization times or not. For a rigorous treatment of the weak discretization error for the
evaluation of ErfpXx

T q1tτxąT us and some implementable simulation schemes, we refer to [Gob00] and [GM04] and
the references therein. The two probabilistic representations obtained in the paper notably allow to remove the
discretization error that appears in the numerical evaluation of PThpu, xq.

This article is divided as follows: in Section 2, we will discuss some properties of the process in consideration.
Notably, we will see that the collection of positive linear maps given by (1.2) defines a Markov semigroup and
characterize its infinitesimal generator. In Section 3, we introduce the forward parametrix method and its application
to the current problem. The main results of this section are given in Theorem 3.1 where an expansion is obtained
for the semigroup, which is then used to prove in Theorem 3.2 the existence of the transition density function
and also to obtain Gaussian upper estimates. Some regularity properties are also studied in Theorem 3.3, namely
we consider the differentiability of kernel related to killed diffusion with respect to its terminal point and also
the Hölder regularity in time of the kernel related to the exit time. We then conclude the section by providing
some applications such as the probabilistic presentation (see Theorem 3.5) that leads to an unbiased Monte Carlo
path simulation for Erhpτxt , Xx

τxt
qs, an integration by parts formula with respect to the killed process or bounds on

Erhpτxt , Xx
τxt
qs and ErB2hpτ

x
t , X

x
τxt
qs under weak conditions on the test function h.

In Section 4, we introduce and establish the backward parametrix expansion for the semigroup under mild
regularity assumptions on the coefficients, namely, the drift coefficient is measurable and bounded and the diffusion
coefficient is bounded, uniformly elliptic and Hölder-continuous. Similarly to the forward parametrix method,
an expansion of the semigroup is obtained in Theorem 4.1, then the existence of the transition density and its
regularity properties with respect to the initial point are discussed in Theorem 4.2 and Theorem 4.5 respectively.
Finally, we discuss some applications such as a probabilistic representation for the semigroup or the transition
density (see Theorem 4.8), a Bismut type formula with respect to the killed process or bounds on Erhpτxt , Xx

τxt
qs

and BxErhpτxt , Xx
τxt
qs under weak conditions on the test function h and the coefficients. Finally, in a short appendix,

we provide some useful key estimates in order to construct our parametrix expansions.

2. Preliminaries

2.1. Notations.

We first give some basic notations and definitions used throughout this paper. For a sequence of linear oper-
ators pSiq1ďiďn, we define

śn
i“1 Si “ S1 ¨ ¨ ¨Sn and

ś1
i“n Si “ Sn ¨ ¨ ¨S1. We will often use the convention

ś

H “ 1 which appears when we have for example
ś´1
i“0. Furthermore we will use the following notation for

time and space variables sp “ ps1, ¨ ¨ ¨ , spq, zp “ pz1, ¨ ¨ ¨ , zpq, the differentials dsp “ ds1 ¨ ¨ ¨ dsp, dzp “ dz1 ¨ ¨ ¨ dzp
and for a fixed time t ě 0, we denote by ∆pptq “ tsp P r0, ts

p : sp`1 :“ 0 ď sp ď sp´1 ď ¨ ¨ ¨ ď s1 ď t “: s0u and
∆˚p ptq “ tsp P r0, ts

p : s0 :“ 0 ď s1 ď s2 ď ¨ ¨ ¨ ď sp ď t “: sp`1u. For a multi-index α “ pα1, ¨ ¨ ¨ , α`q of length `, we
sometimes write Bαfpxq “ Bxα1

¨ ¨ ¨ Bxα`
fpxq, for a vector x. For a real valued function f defined on R, we will also

use the notation |f |8,L :“ supxPp´8,Ls |fpxq| whenever this quantity is finite.

We denote by y ÞÑ gpct, yq the transition density function of the standard Brownian motion with variance c,
i.e. gpct, yq “ p2πtcq´1{2 expp´y2{p2tcqq, y P R. The associated Hermite polynomials are defined respectively as
Hipct, yq “ gpct, yq´1Biygpct, yq for i P N. We write Φpxq “

şx

´8
gp1, yqdy for the cumulative distribution function

of the standard normal law. Sometimes, we also use the alternative notation erfcpxq “ 2p1´ Φp
?

2xqq. For a fixed
given point z P R, the Dirac measure is denoted by δzpdxq.

For any function h with domain D Ď R, we denote its support by suppphq Ď D. We follow the common practice
of denoting by Ckb pEq the collection of all real-valued bounded continuous functions defined on E which have
continuous and bounded derivatives of every order up to k. The set BbpEq is the collection of real-valued bounded
measurable maps defined on E. If pu, xq ÞÑ hpu, xq P BbpR` ˆ Rq is a continuous function on R` ˆ p´8, Ls with
partial derivatives B1hpu, xq, B2hpu, xq and B2,2hpu, xq ” B

2
2hpu, xq, being continuous and bounded on R`ˆp´8, Ls

(continuity and derivatives at x “ L are always understood as left-continuity and left-derivatives at x “ L), we

write h P C1,2
b pR` ˆ p´8, Lsq and similar notation will be used when the domain is a general product space. The

reader is warned that the latter space is not standard but is introduced here in order to reduce the amount of
notation. We finally introduce the space C0pR` ˆ Rq of continuous function defined on R` ˆ R that vanishes at
infinity.
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2.2. Markov semigroup, Itô’s formula and related infinitesimal generator.

The aim of this section is to study the collection of positive linear maps defined by (1.2). We assume that there
exists a unique weak solution to (1.1) that satisfies the strong Markov property. We first emphasize that since

the process pXu,x
u`tqtě0 given in (1.1) is time-homogeneous it may be understood as a shifted version of pX0,x

t qtě0.
Specifically, we can choose the canonical Wiener space for pΩ, pFtqtě0,Pq and thus introduce the shift operator

pθu : w ÞÑ θupwq “ wpu ` .q ´ wpuqquě0. Then, pXu,x
u`tqtě0 “ pX

0,x
t ˝ θuqtě0, or we will simply write pXx

t ˝ θuqtě0,
with the convention Xx “ X0,x. Notably, one has

@pu, xq P R` ˆ R, Pthpu, xq “ Erhpu` τxt , Xx
τxt
qs.

To apply the parametrix method, we claim that the process pu ` τxt , X
x
τxt
qtě0 is a Markov process, and for the

readers convenience, the proof of this fact is provided in Proposition 5.1 whose statement and proof is postponed
in Appendix 5.3. Under additional smoothness assumptions on the coefficients, namely that b and σ are bounded
Lipschitz continuous functions and that Ppτx “ tq “ 0, t ą 0 and x ă L, we prove that pPtqtě0 is a strongly
continuous Feller semigroup but we will not need this property for the analysis developed below. Note that the
property Ppτx “ tq “ 0 has been proven in [HKH13] under enough regularity of the coefficients b and σ. If one is
interested in establishing the strong Feller property, one may assume for the moment that coefficients here satisfy
the assumptions in [HKH13] which guarantee Ppτx “ tq “ 0. Later we will see that the absolute continuity property
of the law of τx only depends on (H1) or (H2) (see Section 3 and Section 4 below). Therefore, a limit procedure
will finish the argument. Also note that the following relation is satisfied: Ppmax0ďsďtX

x
s ă Lq “ Ppτx ą tq,

therefore showing the duality between stopped process and its associated exit time.
We also consider the following proxy process X̄y,u,x

u`t with coefficients frozen at a fixed point y P R and with
dynamics given by

X̄y,u,x
u`t “ x` σpyqpWt`u ´Wuq

and its corresponding exit time τ̄y,u,x :“ inf tv ě 0, X̄y,u,x
u`v ě Lu, τ̄y,u,xt :“ τ̄y,u,x ^ pt ´ uq. From now on, pu `

τ̄y,u,xt , X̄y,u,x
u`τ̄u,xt

qtě0 and pP̄ yt qtě0 will be referred as the frozen process and its associated semigroup defined for

h P BbpR` ˆ Rq by P̄ yt hpu, xq “ Erhpu ` τ̄y,u,xt , X̄y,u,x
u`τ̄y,u,xt

qs “ Erhpu ` τ̄y,xt , X̄y,x
τ̄y,xt

qs with τ̄y,xt :“ τ̄y,0,x ^ t. Note

that we removed the drift part in the dynamics of X̄y,u,x since it plays no role in the analysis below. In order to
simplify the notations, we will remove the superscript y and write pP̄tqtě0 and pτ̄u,xt , X̄u,x

u,u`τ̄u,xt
qtě0 when there is no

confusion. Similarly, by time-homogeneity, we work with the process pu` τ̄xt , X̄
x
τ̄xt
qtě0 and follow the same notation

as for the original process.
We now characterize the infinitesimal generators L and L̄y of respectively pPtqtě0 and pP̄tqtě0.

Lemma 2.1. Let h P C1,2
b pR` ˆ p´8, Lsq. Assume that the coefficients b, σ are continuous on p´8, Ls. Then the

infinitesimal generator of pPtqtě0 is

Lhpu, xq “ 1txăLu

ˆ

bpxqB2hpu, xq `
1

2
apxqB2

2hpu, xq ` B1hpu, xq

˙

.

Similarly, the infinitesimal generator of pP̄tqtě0 writes

L̄yhpu, xq “ 1txăLu

ˆ

1

2
apyqB2

2hpu, xq ` B1hpu, xq

˙

.

Proof. For x ě L, one has Pthpu, xq “ P̄thpu, xq “ hpu, xq so that Lhpu, xq “ L̄yhpu, xq “ 0. Now, assume x ă L,
the Itô formula yields

hpu` τx ^ t,Xx
τx^tq ´ hpu, xq “ phpu` τ

x ^ t,Xx
τx^tq ´ hpu, xqq1txăLu

“ 1txăLu

„
ż t

0

1tsďτxuB2hpu` s,X
x
s qbpX

x
s qds`

ż t

0

1tsďτxuB2hpu` s,X
x
s qσpX

x
s q dWs



` 1txăLu

„
ż t

0

1tsďτxuB1hpu` s,X
x
s qds`

1

2

ż t

0

1tsďτxuB
2
2hpu` s,X

x
s qapX

x
s qds



.
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Hence, we get

Erhpu` τx ^ t,Xx
τx^tqs ´ hpu, xq

t
“

1

t

ż t

0

1txăLupErbpXx
s^τxqB2hpu` s^ τ

x, Xx
s^τxq `

1

2
apXx

s^τxqB
2
2hpu` s^ τ

x, Xx
s^τxqs

` ErB1hpu` s^ τ
x, Xx

s^τxq sqds

´ 1txăLu
1

t

ż t

0

ErpbpLqB2hpu` τ
x, Lq `

1

2
apLqB2

2hpu` τ
x, Lq ` B1hpu` τ

x, Lqq1tτxăsusds

which in turn implies
ˇ

ˇ

ˇ

ˇ

Pthpu, xq ´ hpu, xq

t
´ Lhpu, xq

ˇ

ˇ

ˇ

ˇ

ď 1txăLu
1

t

ż t

0

|ErbpXx
s^τxqB2hpu` s^ τ

x, Xx
s^τxq ´ bpxqB2hpu, xqs|ds

` 1txăLu
1

t

ż t

0

|ErB1hpu` s^ τ
x, Xx

s^τxq ´ B1hpu, xqs|ds

` 1txăLu
1

t

ż t

0

|ErapXx
s^τxqB

2
2hpu` s^ τ

x, Xx
s^τxq ´ apxqB

2
2hpu, xqs|ds

` 1txăLuCPpτx ď tq

where C is a positive constant depending on |B2hp., Lq|8, |B
2
2hp., Lq|8, |B1hp., Lq|8 and the coefficients b, σ. Now

using that τx ą 0 a.s. for x ă L and the right-continuity of t ÞÑ Ppτx ď tq, one gets Ppτx ď tq Ñ 0 as t Ó 0. Now
the continuity of the paths of the process pu ` τxt , X

x
τxt
qtě0 and the continuity of the coefficients b, σ on p´8, Ls

finally yield

Pthpu, xq ´ hpu, xq

t
Ñ Lhpu, xq as t Ó 0.

The same line of reasoning gives the result for the infinitesimal generator L̄y of the proxy process so that we
omit its proof. �

Remark 2.1. From the proof of Lemma 2.1, we also get that Pth P dompLq for h P C1,2
b pR` ˆ p´8, Lsq. Indeed,

since
1

ε
pPt`εh´ Pthq “

pPε ´ Iq

ε
Pth “ Pt

pPε ´ Iq

ε
h

for all ε ą 0 and that ε´1pPε ´ Iqhpu, xq Ñ Lhpu, xq as εÑ 0, by dominated convergence theorem, one gets Pth P
dompLq and also ε´1pPt`εh ´ Pthq Ñ LPth “ PtLh as ε Ñ 0. For other properties on semigroups and related
results on their infinitesimal generators, we refer to Ethier and Kurtz [EK86].

3. Forward parametrix expansion

In this section we apply the forward parametrix expansion using a semigroup approach. Section 3.1 is devoted
to the expansion of the semigroup pPtqtě0. In Section 3.2, the existence and an expansion of the transition density
function are derived as a by product of the semigroup expansion. Some regularity estimates and Gaussian upper-
bounds are also obtained. Finally, in Section 3.3, several applications are discussed. In particular, a probabilistic
representation is provided.

Through this section, we will make the following assumptions on the coefficients b, σ : RÑ R:

Assumptions (H1).

(i) σ is bounded. Moreover, a “ σ2 is uniformly elliptic, that is there exist a, a ą 0 s.t. for any x P R,
a ď apxq ď a.

(ii) b P C1
b pRq and a P C2

b pRq.
The constants C and c may change from line to line. The constant C depends on the coefficients b, σ through

their norms whereas c depends only on a, a. When the constant C depends on the time horizon T , we use the
notation CT .

3.1. Expansion for the semigroup.

Before performing the forward parametrix expansion, we first need to study the transition density of the proxy
semigroup and to obtain some key estimates.
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Lemma 3.1. Assuming that a “ σ2 is strictly positive on p´8, Ls and let y P p´8, Ls. The kernel PpX̄x
t P

dz,maxvPr0,ts X̄
x
v ă Lq :“ q̄yt px, zqdz is given by

q̄yt px, zq “ pgpapyqt, z ´ xq ´ gpapyqt, z ` x´ 2Lqq1txďLu1tzďLu,

and

fyτ̄ px, sq “ BsPpτ̄x ď sq “
L´ x

a

2πapyqs3{2
exp

ˆ

´
pL´ xq2

2apyqs

˙

1txďLu.

Furthermore, the following boundary conditions are satisfied: q̄yt pL, zq “ q̄yt px, Lq “ fyτ̄ pL, sq “ 0 together with
Bxf

y
τ̄ px, sq “ 2Bsgpapyqs, L´ xq and fyτ̄ px, sq “ Bxgpapyqs, L´ xq for x ď L.

Proof. In what follows, we may assume without loss of generality that σ is positive on p´8, Ls. We write

PpX̄x
t ď z, max

vPr0,ts
X̄x
v ă Lq “ P

ˆ

Wt ď
z ´ x

σpyq
, max
vPr0,ts

Wv ă
L´ x

σpyq

˙

“ Φ

ˆ

z ´ x

σpyq
?
t

˙

` Φ

ˆ

2pL´ xq ´ pz ´ xq

σpyq
?
t

˙

´ 1

where we used the joint distribution pWt,maxvPr0,tsWvq coming from the reflection principle. Now differentiating
w.r.t z yields the result. The probability density function s ÞÑ fyτ̄ px, sq is then easily deduced from the identity

Ppτx ą sq “ PpmaxvPr0,ss X̄
x
v ă Lq “ 2Φ

´

L´x
σpyq

?
s

¯

´ 1 “ 1´ erfc

ˆ

L´x?
2apyqs

˙

. �

We introduce the following operators defined for h P BbpR` ˆ p´8, Lsq and y P p´8, Ls by

Ky
t hpu, xq “ 1txăLu

ż t

0

hpu` s, Lqfyτ̄ px, sqds,

Syt hpu, xq “ 1txăLu

ż L

´8

hpu` t, zqq̄yt px, zqdz

which respectively correspond to the exit time operator and the killed diffusion operator. As a consequence of
Lemma 3.1 and the very definition of the Markov semigroup pP̄ yt qtě0, we get the following results.

Corollary 3.1. For all pu, xq P R` ˆ R, one has

P̄ yt hpu, xq “ 1txěLuhpu, xq ` S
y
t hpu, xq `K

y
t hpu, xq

“ 1txěLuhpu, xq ` 1txăLu

ż u`t

u

ż L

´8

hps, zq rδLpdzqf
y
τ̄ px, s´ uqds` δu`tpdsqq̄

y
t px, zqdzs .(3.1)

Hence, we remark that the density of the proxy process is composed of two singular measures. As it will appear
clearly in the following analysis, this fact raises difficulties in establishing a parametrix expansion of the semigroup.

In order to simplify the expressions appearing in the parametrix series, we define the following two kernels

K̄tpx, Lq “ 1txăLu
papLq ´ apxqq

2

2pL´ xq

apxqt
gpapxqt, L´ xq “ 1txăLu

papLq ´ apxqq

apxq
fxτ̄ px, tq,

S̄tpx, zq “ 1txăLu

"

1

2
B2
z rpapzq ´ apxqqq̄

x
t px, zqs ´ Bz rbpzqq̄

x
t px, zqs

*

and also the corresponding operators for h P BbpR` ˆ p´8, Lsq
K̄thpu, xq “ K̄tpx, Lqhpu` t, Lq,(3.2)

S̄thpu, xq “

ż L

´8

dz hpu` t, zqS̄tpx, zq.(3.3)

Observe here the double use of K̄ and S̄ as an operator and a kernel. Moreover, let us note that the operator K̄t

is not standard compared to the diffusion setting since it does not involve the integral of a kernel. This operator
comes from the very nature of the forward parametrix method used in this section which require doing integration
by parts and dealing with such boundary terms. In particular, let us remark that under (H1) using the space-time

inequality2: @x P R, |x|pe´qx
2

ď ppp{p2qeqqp{2, valid for any p, q ą 0, one easily gets

(3.4) |K̄tpx, Lq| ď C
|L´ x|2

t
gpapxqt, L´ xq1txăLu ď C1txăLugpct, L´ xq

2This inequality will be used at several places throughout the article and we will omit to refer to it.
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Similarly, using Lemma 5.2 and the space-time inequality, for all t P p0, T s and all px, zq P p´8, Ls2, one gets

|S̄tpx, zq| ď 1txăLu

ˇ

ˇ

ˇ

ˇ

1

2
B2
z rpapzq ´ apxqqq̄

x
t px, zqs ´ Bz rbpzqq̄

x
t px, zqs

ˇ

ˇ

ˇ

ˇ

ď C1txăLu

ˆ

|a2|8,L `
p|a1|8,L ` |b|8,Lq

t
1
2

` |b1|8,L

˙

gpct, z ´ xq

ď CT1txăLu
1

t
1
2

gpct, z ´ xq(3.5)

In this section, in order to simplify the notations, we will write pP̄tqtě0 for the semigroup with frozen coefficients
at the starting point x that is P̄thpu, xq “ P̄ xt hpu, xq and also write Sthpu, xq “ Sxt hpu, xq, Kthpu, xq “ Kx

t hpu, xq
when there is no confusion.

The following proposition corresponds to a first order expansion of pPtqtě0 around pP̄tqtě0 and is the keystone
to build the forward parametrix expansion for the semigroup pPtqtě0.

Proposition 3.1. Let h P C1,2
b pR` ˆ p´8, Lsq. Assume that (H1) holds. Then, one has

(3.6) PThpu, xq ´ P̄Thpu, xq “

ż T

0

ds
`

K̄T´sPshpu, xq ` S̄T´sPshpu, xq
˘

.

Proof. For all x ě L and u ě 0, one clearly has PThpu, xq ´ P̄Thpu, xq “ 0 and the right hand side of (3.6) is also
0. Hence, we restrict to the case x ă L for the rest of the proof. We now compute BsP̄T´sPshpu, xq as the limit of
the following quantity

1

ε

`

P̄T´s´εPs`εhpu, xq ´ P̄T´sPshpu, xq
˘

“
P̄T´s´ε ´ P̄T´s

ε
Pshpu, xq ` P̄T´s´ε

Pε ´ I

ε
Pshpu, xq

as ε Ó 0. We will start with the second term appearing in the right-hand side of the above equality. Let us note
that Lemma 2.1 does not guarantee neither that Pth P C1,2

b pR` ˆ p´8, Lsq nor that LPth can be written in a
differential form. We use a regularization technique that we now explain. We introduce the smoothing operator
P̃ηhpu, xq “

ş

R hpu, zqgpη, z ´ xqdz so that pu, xq ÞÑ P̃ηPshpu, xq “
ş

R Pshpu, zqgpη, z ´ xqdz P C1,2
b pR` ˆ Rq. In

particular, note that B1Pshpu, xq “ pPsB1hqpu, xq due to time homogeneity and the fact that h P C1,2
b pR`ˆp´8, Lsq.

We also remark that one has

PεP̃ηPshpu, xq “ Er
ż

R
Pshpu` τ

x
ε , X

x
τxε
` zqgpη, zqdzs

“

ż

R
PεPshp., z ` .qpu, xqgpη, zqdz

so that, by dominated convergence, one gets

pPε ´ Iq

ε
P̃ηPshpu, xq “

ż

R

Pε ´ I

ε
Pshp., z ` .qpu, xqgpη, zqdz

Ñ

ż

R
PsLhp., z ` .qpu, xqgpη, zqdz, ε Ó 0

which clearly implies

pPε ´ Iq

ε
pI ´ P̃ηqPshpu, xq Ñ

ż

R
pPsLhpu, xq ´ PsLhp., z ` .qpu, xqq gpη, zqdz

“

ż

R
pErLhpu` τxs , Xx

τxs
qs ´ ErLhpu` τxs , z `Xx

τxs
qsqgpη, zqdz, ε Ó 0.

However, putting the spatial derivatives on the smoothing kernel, one also gets

pPε ´ Iq

ε
P̃ηPshpu, xq Ñ

ż

R

„

B1Pshpu, zqgpη, z ´ xq ´ Pshpu, zqbpxqB2gpη, z ´ xq `
1

2
Pshpu, zqapxqB

2
2gpη, z ´ xq



dz, ε Ó 0.
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Now, combining the previous computations, we write the following decomposition as ε Ó 0

P̄T´s´ε
Pε ´ I

ε
Pshpu, xq “

ż L

´8

q̄xT´s´εpx, zq
Pε ´ I

ε
Pshpu` T ´ s´ ε, zqdz

“

ż L

´8

q̄xT´s´εpx, zq
Pε ´ I

ε
pP̃η ` pI ´ P̃ηqqPshpu` T ´ s´ ε, zqdz

Ñ

ż L

´8

dz

ż

R
dyq̄xT´spx, zqpB1Pshpu` T ´ s, yqgpη, y ´ zq ´ Pshpu` T ´ s, yqbpzqB2gpη, y ´ zq

`
1

2
Pshpu` T ´ s, yqapxqB

2
2gpη, y ´ zqqdz

`

ż

R
pErLhpu` τxs , Xx

τxs
qs ´ ErLhpu` τxs , z `Xx

τxs
qsqgpη, zqdz

“

ż L

´8

ż

R
dzdyq̄xT´spx, zqB1Pshpu` T ´ s, yqgpη, y ´ zq

`

ż L

´8

ż

R
dzdy

„

B2
z

ˆ

1

2
apzqq̄xT´spx, zq

˙

´ Bzpbpzqq̄
x
T´spx, zqq



Pshpu` T ´ s, yqgpη, y ´ zq

´

ż

R
dyPshpu` T ´ s, yqBzp

1

2
apzqq̄xT´spx, zqq|z“Lgpη, y ´ Lq

`

ż

R
pErLhpu` τxs , Xx

τxs
qs ´ ErLhpu` τxs , z `Xx

τxs
qsqgpη, zqdz

where we performed an integration by parts formula in the last equality and used the fact that q̄xT´spx, Lq “ 0 for
all x P p´8, Ls. We now let η goes to zero in the previous result. By dominated convergence theorem and the
continuity of z ÞÑ Lhpu, zq, one gets

ż

R
pErLhpu` τxs , Xx

τxs
qs ´ ErLhpu` τxs , z `Xx

τxs
qsqgpη, zqdz Ñ 0, η Ó 0.

Under (H1), from Theorem 3.1 in Pauwels [Pau87] (see also Theorem 4.2 in Section 4), τx admits a positive
density for x ă L so that in particular Ppτx “ tq “ 0. By Proposition 5.1, it follows that z ÞÑ Pshpu`T ´ s, zq and
z ÞÑ B1Pshpu` T ´ s, zq “ PsB1hpu` T ´ s, zq are continuous on R. This in turn yields

ż L

´8

ż

R
dzdyq̄xT´spx, zqB1Pshpu` T ´ s, yqgpη, y ´ zq Ñ

ż L

´8

dzq̄xT´spx, zqB1Pshpu` T ´ s, zq,

ż

R
dyPshpu` T ´ s, yqBzp

1

2
apzqq̄xT´spx, zqq|z“Lgpη, y ´ Lq Ñ Pshpu` T ´ s, LqBzp

1

2
apzqq̄xT´spx, zqq|z“L

and that
şL

´8

ş

R dzdy
“

B2
z

`

1
2apzqq̄

x
T´spx, zq

˘

´ Bzpbpzqq̄
x
T´spx, zqq

‰

Pshpu` T ´ s, yqgpη, y ´ zq converges to

ż L

´8

dz

„

B2
z

ˆ

1

2
apzqq̄xT´spx, zq

˙

´ Bzpbpzqq̄
x
T´spx, zqq



Pshpu` T ´ s, zq

as η Ñ 0. Hence, one concludes that

lim
εÑ0

P̄T´s´ε
Pε ´ I

ε
Pshpu, xq “ P̄T´sLPshpu, xq

“

ż L

´8

dz

„

B2
z

ˆ

1

2
apzqq̄xT´spx, zq

˙

´ Bzpbpzqq̄
x
T´spx, zqq



Pshpu` T ´ s, zq

`

ż L

´8

dzq̄xT´spx, zqB1Pshpu` T ´ s, zq

´ Pshpu` T ´ s, LqBzp
1

2
apzqq̄xT´spx, zqq|z“L



ON THE FIRST HITTING TIMES FOR ONE-DIMENSIONAL ELLIPTIC DIFFUSIONS 9

From (3.1), one has

P̄T´s´ε ´ P̄T´s
ε

Pshpu, xq “

ż L

´8

Pshpu` T ´ s´ ε, zq ´ Pshpu` T ´ s, zq

ε
q̄xT´s´εpx, zqdz

`

ż L

´8

Pshpu` T ´ s, zq
q̄xT´s´εpx, zq ´ q̄

x
T´spx, zq

ε
dz

´
1

ε

ż T´s

T´s´ε

Pshpu` v, Lqf
x
τ̄ px, vqdv

Ñ ´

ż L

´8

B1Pshpu` T ´ s, zqq̄
x
T´spx, zqdz ´

ż L

´8

Pshpu` T ´ s, zqBtq̄
x
T´spx, zqdz

´ Pshpu` T ´ s, Lqf
x
τ̄ px, T ´ sq, as ε Ó 0,

where we used that u ÞÑ Pshpu, xq is continuously differentiable for h P C1,2
b pR` ˆ p´8, Lsq, the differentiability

of t ÞÑ q̄xt px, zq and the continuity of v ÞÑ Pshpu ` v, Lqfxτ̄ px, vq. Now, combining the two limits with the relation
Btq̄

x
t px, zq “

1
2apxqB

2
z q̄
x
t px, zq and Lemma 3.1 finally yield

Bs
`

P̄T´sPshpu, xq
˘

“ lim
εÑ0

1

ε

`

P̄T´s´εPs`εhpu, xq ´ P̄T´sPshpu, xq
˘

“ K̄T´sPshpu, xq ` S̄T´sPshpu, xq.

From the continuity of t ÞÑ P̄thpu, xq, Pthpu, xq, (3.4) and (3.5) (which implies that s ÞÑ K̄T´sPshpu, xq, S̄T´sPshpu, xq P
L1pr0, T sq and Fubini’s theorem, one gets

PThpu, xq ´ P̄Thpu, xq “

ż T

0

Bs
`

P̄T´sPshpu, xqdu
˘

ds

“

ż T

0

 

K̄T´sPshpu, xq ` S̄T´sPshpu, xq
(

ds

“

ż T

0

 

K̄T´sPshpu, xq ` S̄T´sPshpu, xq
(

ds

This concludes the proof.
�

Given that Pshpu, Lq “ E
“

hpu` τLs , X
L
τLs
q
‰

“ hpu, Lq, we observe the following important property

K̄T´sPshpu, xq “ 1txăLu
papLq ´ apxqq

apxq
fxτ̄ px, T ´ sqPshpu` T ´ s, Lq “ K̄T´shpu, xq

and K̄T´sP̄shpu, xq “ K̄T´shpu, xq. Hence, (3.6) may be simplified as follows

PThpu, xq ´ P̄Thpu, xq “

ż T

0

ds
`

K̄T´shpu, xq ` S̄T´sPshpu, xq
˘

.

We also remark that for any bounded Borel function h, one has K̄shpu, Lq “ S̄shpu, Lq “ 0 and therefore

K̄T´s1K̄s1´s2hpu, xq “ 1txăLu
papLq ´ apxqq

apxq
fxτ̄ px, T ´ s1qK̄s1´s2hpu` T ´ s1, Lq “ 0

K̄T´s1 S̄s1´s2hpu, xq “ 1txăLu
papLq ´ apxqq

apxq
fxτ̄ px, T ´ sqS̄s1´s2hpu` T ´ s1, Lq “ 0(3.7)
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so that, by induction, we get

PThpu, xq “ P̄Thpu, xq `

ż T

0

ds1

 

K̄T´s1hpu, xq ` S̄T´s1Ps1hpu, xq
(

“ P̄Thpu, xq `

ż T

0

ds1

 

K̄T´s1hpu, xq ` S̄T´s1 P̄s1hpu, xq
(

`

ż T

0

ds1

ż s1

0

ds2

 

K̄T´s1K̄s1´s2Ps2hpu, xq ` K̄T´s1 S̄s1´s2Ps2hpu, xq
(

`

ż T

0

ds1

ż s1

0

ds2

 

S̄T´s1K̄s1´s2Ps2fpx, uq ` S̄T´s1 S̄s1´s2Ps2hpu, xq
(

“ P̄Thpu, xq `
N
ÿ

r“1

ż

∆rpT q

dsrS̄T´s1 S̄s1´s2 ¨ ¨ ¨ S̄sr´2´sr´1K̄sr´1´sr P̄srhpu, xq

`

N
ÿ

r“1

ż

∆rpT q

dsrS̄T´s1 S̄s1´s2 ¨ ¨ ¨ S̄sr´1´sr P̄srhpu, xq

`

ż

∆N`1pT q

dsN`1

 

S̄T´s1 S̄s1´s2 ¨ ¨ ¨ S̄sN´1´sN K̄sN´sN`1
PsN`1

hpu, xq
(

`

ż

∆N`1pT q

dsN`1

 

S̄T´s1 S̄s1´s2 ¨ ¨ ¨ S̄sN´sN`1
PsN`1

hpu, xq
(

.

The idea now is to let N Ñ `8 in order to obtain an expansion of the semigroup PT as infinite series.
Using repeatedly (3.4) and (3.5) with Lemma 5.4 as well as the asymptotic of the Gamma function at infinity,

one gets
ˇ

ˇ

ˇ

ˇ

ˇ

ż

∆N`1pT q

dsN`1S̄T´s1 S̄s1´s2 ¨ ¨ ¨ S̄sN´1´sN K̄sN´sN`1
PsN`1

hpu, xq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

∆N`1pT q

dsN`1

ż

p´8,LsN
dzN

1
?
T ´ s1

gpcpT ´ s1q, z1 ´ xq ¨ ¨ ¨
1

?
sN´1 ´ sN

gpcpsN´1 ´ sN q, zN ´ zN´1q

ˆ gpcpsN ´ sN`1q, L´ zN q|hpu` T ´ sN`1, Lq|

ď |h|8C
N`1
T

ż

∆N`1pT q

dsN`1
1

?
T ´ s1

¨ ¨ ¨
1

?
sN´1 ´ sN

gpcpT ´ sN`1q, L´ xq

ď |h|8C
N`1
T

ż

∆N`1pT q

dsN`1
1

?
T ´ s1

¨ ¨ ¨
1

?
sN ´ sN`1

gpcT, L´ xq

“ |h|8C
N`1
T T pN`1q{2 pΓp1{2qqN`1

Γp1` pN ` 1q{2q
gpcT, L´ xq

Ñ 0, as N Ñ `8.

Now we investigate the second remainder term. Similarly to the previous term, we get
ˇ

ˇ

ˇ

ˇ

ˇ

ż

∆N`1pT q

dsN`1S̄T´s1 S̄s1´s2 ¨ ¨ ¨ S̄sN´sN`1
PsN`1

hpu, xq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

∆N`1pT q

dsN`1

ż

p´8,LsN`1

dzN`1
1

?
T ´ s1

gpcpT ´ s1q, z1 ´ xq ¨ ¨ ¨

ˆ
1

?
sN ´ sN`1

gpcpsN ´ sN`1q, zN`1 ´ zN q
ˇ

ˇPsN`1
hpu` T ´ sN`1, zN`1q

ˇ

ˇ

ď |h|8C
N`1
T

ż

∆N`1pT q

dsN`1
1

?
T ´ s1

¨ ¨ ¨
1

?
sN ´ sN`1

ď |h|8C
N`1
T T pN`1q{2 pΓp1{2qqN`1

Γp1` pN ` 1q{2q

Ñ 0, as N Ñ `8.

Hence, the two series converge absolutely and uniformly for pt, u, xq P r0, T s ˆ R` ˆ R.
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In order to state the forward parametrix expansion for the semigroup pPtqtě0, we define for ps0, u, xq P r0, T s ˆ
R` ˆ p´8, Ls and h P BbpR` ˆ Rq, the following family of operators

(3.8) Ins0hpu, xq “

#

ş

∆nps0q
dsn

!´

śn´1
i“0 S̄si´si`1

¯

P̄snhpu, xq `
´

śn´2
i“0 S̄si´si`1

¯

K̄sn´1´snhpu, xq
)

if n ě 1,

P̄s0hpu, xq if n “ 0,

where we recall that we use the convention
ś

H “ 1, and the operators S̄thpu, xq, K̄thpu, xq and P̄thpu, xq have been

defined in (3.3), (3.2) and (3.1) respectively. As seen from the above discussion, we obtain the following expansion
in infinite series of the Markov semigroup pPtqtě0 around pP̄tqtě0. The transition density and the probabilistic
representation will be obtained from this result in the following sections.

Theorem 3.1. Let T ą 0. Assume that (H1) holds. Then, for every h P C1,2
b pR` ˆ p´8, Lsq, the series

ř

ně0 I
n
Thpu, xq converges absolutely and uniformly for pu, xq P R` ˆ R and one has

(3.9) PThpu, xq “
ÿ

ně0

InThpu, xq.

3.2. Existence of a transition density, its expansion and related properties.

In the previous section, we obtained an expansion in infinite series of the semigroup pPtqtě0 on smooth test
functions. In this section, we retrieve from (3.9) the expansion of the transition density function. With the
convention that t0 “ 0, z0 “ x, we introduce the following kernels

IK,n`1px, tq :“

ż

∆˚n ptq

dtn

ż

p´8,Lsn
dzn

˜

n´1
ź

i“0

S̄ti`1´tipzi, zi`1q

¸

K̄t´tnpzn, Lq,(3.10)

JK,n`1px, tq :“

ż

∆˚n`1ptq

dtn`1

ż

p´8,Lsn`1

dzn`1

˜

n
ź

i“0

S̄ti`1´tipzi, zi`1q

¸

f
zn`1

τ̄ pzn`1, t´ tn`1q,(3.11)

ID,n`1
s0 px, zq :“

ż

∆n`1ps0q

dsn`1

ż

p´8,Lsn`1

dzn`1

n
ź

i“0

S̄si´si`1pzi, zi`1qq̄
zn`1
sn`1

pzn`1, zq(3.12)

where the terms S̄thpu, xq and K̄thpu, xq are given in (3.3), (3.2) and (3.1) respectively. As will become clear below,
the two sequence of kernels pIK,nqně1 and pJK,nqně1 are related to the exit time whereas pID,nqně1 correspond to
the killed process. Using the change of variable ti “ s0´si, i “ 0, ¨ ¨ ¨ , n, (t0 “ 0 and z0 “ x) and Fubini’s theorem,
we write

IK,n`1
s0 hpu, xq :“

ż

∆n`1ps0q

dsn`1

˜

n´1
ź

i“0

S̄si´si`1

¸

K̄sn´sn`1
hpu, xq

“

ż s0

0

ż s0

t1

¨ ¨ ¨

ż s0

tn

dtn`1

ż

p´8,Lsn
dzn

˜

n´1
ź

i“0

S̄ti`1´tipzi, zi`1q

¸

K̄tn`1´tnpzn, Lqhpu` tn`1, Lq

“

ż s0

0

ż tn`1

0

¨ ¨ ¨

ż t2

0

dtn`1

ż

p´8,Lsn
dzn

˜

n´1
ź

i“0

S̄ti`1´tipzi, zi`1q

¸

K̄tn`1´tnpzn, Lqhpu` tn`1, Lq

“

ż s0

0

dtn`1

«

ż

∆˚n ptq

dtn

ż

p´8,Lsn
dzn

˜

n´1
ź

i“0

S̄ti`1´tipzi, zi`1q

¸

K̄tn`1´tnpzn, Lq

ff

hpu` tn`1, Lq

“

ż s0

0

IK,n`1px, tqhpu` t, Lqdt.
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Similarly, one gets

JK,n`1
s0 hpu, xq :“

ż

∆n`1ps0q

dsn`1

˜

n
ź

i“0

S̄si´si`1

¸

Ksn`1
hpu, xq

“

ż s0

0

ż s0

t1

¨ ¨ ¨

ż s0

tn`1

dtn`2

ż

p´8,Lsn`1

dzn`1

˜

n
ź

i“0

S̄ti`1´tipzi, zi`1q

¸

f
zn`1

τ̄ pzn`1, tn`2 ´ tn`1qhpu` tn`2, Lq

“

ż s0

0

dtn`2

«

ż

∆˚n`1ptn`2q

dtn`1

ż

p´8,Lsn`1

dzn`1

˜

n
ź

i“0

S̄ti`1´tipzi, zi`1q

¸

f
zn`1

τ̄ pzn`1, tn`2 ´ tn`1q

ff

ˆ hpu` tn`2, Lq

“

ż s0

0

JK,n`1px, tqhpu` t, Lqdt.

Inside the domain, one has

ID,n`1
s0 hpu, xq :“

ż

∆n`1ps0q

dsn`1

˜

n
ź

i“0

S̄si´si`1

¸

Ssn`1
hpu, xq

“

ż

∆n`1ps0q

dsn`1

ż

p´8,Lsn`1

dzn`1

n
ź

i“0

S̄si´si`1pzi, zi`1q

«

ż

p´8,Ls

hpu` s0, zn`2qq̄
zn`1
sn`1

pzn`1, zn`2qdzn`2

ff

“

ż L

´8

dzn`2

«

ż

∆n`1ps0q

dsn`1

ż

p´8,Lsn`1

dzn`1

n
ź

i“0

S̄si´si`1
pzi, zi`1qq̄

zn`1
sn`1

pzn`1, zn`2q

ff

hpu` s0, zn`2q

“

ż L

´8

ID,n`1
s0 px, zqhpu` s0, zqdz.

Hence, we are naturally led to define the following kernels for ps0, x, zq P p0, T s ˆ p´8, Ls
2

(3.13) pK,npx, s0q “

"

IK,npx, s0q ` J
K,npx, s0q if n ě 1,

fxτ̄ px, s0q if n “ 0,

and

(3.14) pD,ns0 px, zq “

"

ID,ns0 px, zq if n ě 1,
q̄xs0px, zq if n “ 0.

where the terms IK,npx, s0q, J
K,npx, s0q and ID,ns0 px, zq are defined in (3.10), (3.11) and (3.12) respectively. As one

of the main results of this section, we present the forward parametrix expansion of the transition density of the
process pu` τxt , X

x
τxt
qtě0.

Theorem 3.2. Let T ą 0. Assume that (H1) holds. For all pu, xq P R` ˆ p´8, Ls, define the measure

@pt, zq P pu, u` T s ˆ p´8, Ls, pT pu, x, dt, dzq :“ pKpx, t´ uqδLpdzqdt` p
D
T px, zqδu`T pdtqdz

with
pKpx, tq :“

ÿ

ně0

pK,npx, tq and pDT px, zq “
ÿ

ně0

pD,nT px, zq.

Then, the series defining pKpx, tq and pDT px, zq converge absolutely for px, t, zq P R ˆ R˚` ˆ R and uniformly for
px, t, zq P RˆˆKT ˆ R, where KT is any compact subset of p0, T s. Moreover, for h P BbpR` ˆ Rq, one has

(3.15) @pu, xq P R` ˆ R, PThpu, xq “ hpu, xq1txěLu ` 1txăLu

ż u`T

u

ż L

´8

hpt, zqpT pu, x, dt, dzq

and, for some positive C, c ą 1, for all pt, zq P p0, T s ˆ p´8, Ls, the following Gaussian upper-bounds hold

(3.16) pKpx, tq ď Ct´1{2gpct, L´ xq and pDT px, zq ď CgpcT, z ´ xq.

Therefore, for all pu, xq P R` ˆ p´8, Lq, pT pu, x, ., .q is the probability density function of the random vector
pu ` τxT , X

x
τxT
q. More precisely, the first hitting time τxT has a mixed type law. That is for t P ru, u ` T q, τxT

has the density pKpx, tq and at t “ u ` T , Ppu ` τxT “ u ` T q “
şL

´8
dz pDT px, zq. Similarly, the stopped process

Xx
τxT

also has a mixed type law. That is, for z P p´8, Lq, Xx
τxT

has the density pDT px, zq and at z “ L, PpXx
τxT
“

Lq “
şu`T

u
dt pKpx, t ´ uq. Finally, px, zq ÞÑ pDT px, zq (resp. px, tq ÞÑ pKpx, tq) is continuous on p´8, Ls2 (resp. on

p´8, Ls ˆ p0, T s) and satisfies limzÒL p
D
T px, zq “ limxÒL p

D
T px, zq “ limxÒL p

Kpx, tq “ 0.
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Proof. We first remark that from (3.8) and (3.1), one has

InThpu, xq “

ż

∆npT q

dsn

#˜

n´1
ź

i“0

S̄si´si`1

¸

P̄snhpu, xq `

˜

n´2
ź

i“0

S̄si´si`1

¸

K̄sn´1´snhpu, xq

+

“

ż T

0

pIK,npx, tq ` JK,npx, tqqhpu` t, Lqdt`

ż L

´8

ID,nT px, zqhpu` T, zqdz

“

ż u`T

u

hpt, zqpK,npx, t´ uqδLpzqdtdz `

ż L

´8

hpt, zqpD,nT px, zqδu`T ptqdtdz.

for n ě 1. Moreover, for n ě 0, from the semigroup property and Lemma 5.4, one easily gets the following estimates

|ID,n`1
s0 px, zq| ď 2

ż

∆n`1ps0q

dsn`1

ż

p´8,Lsn`1

dzn`1p

n
ź

i“0

C
?
si ´ si`1

gpcpsi ´ si`1q, zi`1 ´ ziqqgpcsn`1, z ´ zn`1q

ď 2Cn`1

ż

∆n`1ps0q

dsn`1

n
ź

i“0

1
?
si ´ si`1

gpcs0, z ´ xq

ď 2pCs
1
2
0 q
n`1 pΓp

1
2 qq

n`1

Γp1` n`1
2 q

gpcs0, z ´ xq.

Similar arguments yield

|IK,n`1px, tq| ď Cn`1

ż

∆˚n ptq

dtn

ż

´s8,Lsn
dznp

n´1
ź

i“0

1
?
ti`1 ´ ti

gpcpti`1 ´ tiq, zi`1 ´ ziqq

ˆ gpcpt´ tnq, L´ znq

“ Cn`1t
n`1

2
pΓp1{2qqn

Γpn{2qp1` n{2q
gpct, L´ xq

and finally

|JK,n`1px, tq| ď Cn`2

ż

∆˚n`1ptq

dtn`1

ż

´s8,Lsn`1

dzn`1p

n
ź

i“0

1
?
ti`1 ´ ti

gpcpti`1 ´ tiq, zi`1 ´ ziqq

ˆ
1

?
t´ tn`1

gpcpt´ tn`1q, L´ zn`1q

“ Cn`2t´
1
2`

n`1
2
pΓp 1

2 qq
n`2

Γp1` n`2
2 q

gpct, L´ xq.

From the asymptotics of the Gamma function at infinity, we deduce that both series
ř

ně0 p
K,npx, tq and

ř

ně0 p
D,n
T px, zq converge absolutely and uniformly for pt, x, zq P R˚` ˆ R2. From equation (3.9), we easily de-

duce (3.15) and the Gaussian upper-bound (3.16) follows from the preceding computations. Now, from Theorem

3.1 and the above discussion, for all h P C1,2
b pR` ˆ p´8, Lsq and all pu, xq P R` ˆ p´8, Lq, one has

PThpu, xq “

ż u`T

u

ż L

´8

hpt, zqpT pu, x, dt, dzq

so that pT pu, x, ., .q is the probability density function of the random vector pu ` τxT , X
x
τxT
q. As px, zq ÞÑ pD,nT px, zq

(resp. px, tq ÞÑ pK,npx, t´uq) is continuous on p´8, Ls2 (resp. on p´8, Lsˆpu, u`T s) and satisfies limzÒL p
D,n
T px, zq “

limxÒL p
D,n
T px, zq “ 0 (resp. limxÒL p

K,npx, t ´ uq “ 0), then px, zq ÞÑ pDT px, zq (resp. px, tq ÞÑ pKpx, t ´ uq) is also
continuous and satisfies limzÒL p

D
T px, zq “ 0 (resp. limxÒL p

Kpx, t´ uq “ 0).
�

Now that we have obtained the parametrix expansion for the transition density, we will discuss its regularity
properties.

Theorem 3.3 (Differentiability of the density). Following the notations introduced in Theorem 3.2, let T ą 0 be
fixed and assume that (H1) holds. Then for any x P p´8, Ls and any α P r0, 1q, z ÞÑ pDT px, zq P C1`αpp´8, Lsq. In
particular, one has

@z P p´8, Ls, B2p
D
T px, zq “

ÿ

ně0

B2p
D,n
T px, zq



14 NOUFEL FRIKHA, ARTURO KOHATSU-HIGA, AND LIBO LI

with the following bound

(3.17) |B2p
D
T px, zq| ď

C

T 1{2
gpcT, z ´ xq.

Moreover, for any α P r0, 1q, for any pz, z1q P p´8, Ls2, one has

(3.18) |B2p
D
T px, zq ´ B2p

D
T px, z

1q| ď
C|z ´ z1|α

T 1´ γ2

`

gpcT, z ´ xq ` gpcT, z1 ´ xq
˘

with γ “ 1´ α.
Finally, for all η P r0, 1{2q, for all pu, xq P R` ˆ p´8, Ls, t ÞÑ pKpx, t´ uq is η-Hölder continuous on pu, u` T s.

In particular, for all pt, t1q P pu, u` T s, one has

|pKpx, t´ uq ´ pKpx, t1 ´ uq| ď C|t´ t1|η
ˆ

1

pt´ uq
1
2`η

gpcpt´ uq, L´ xq `
1

pt1 ´ uq
1
2`η

gpcpt1 ´ uq, L´ xq

˙

.

Proof. We first remark that by Fubini’s theorem and the change of variable ti “ T ´ si, one has

pD,nT px, zq “ ID,nT px, zq “

ż

∆˚n pT q

dtn

ż

p´8,Lsn
dzn

n´1
ź

i“0

S̄ti`1´tipzi, zi`1qq̄
zn
T´tn

pzn, zq, n ě 1.

Denote by Ψspx, zq the solution to the Volterra integral equation

Ψspx, zq “ S̄spx, zq `

ż s

0

ż L

´8

Ψt1px, z1qS̄s´t1pz1, zqdz1dt1.

From estimate (3.5), we see that the kernel S̄s´t1pz1, zq leads to an integrable singularity (in time) in the above
space time integral so that the solution exists and is given by the (uniform) convergent series

Ψspx, zq “ S̄spx, zq `
ÿ

ně1

ż

∆npsq

dsn

ż

p´8,Lsn
dzn

n
ź

i“1

S̄si´si`1pzi, zi`1qS̄s´s1pz, z1q

with the convention zn`1 “ x, sn`1 “ 0. Furthermore, the inequality

(3.19) @ps, x, zq P p0, T s ˆ p´8, Ls2, |Ψspx, zq| ď
C

s1{2
gpcs, z ´ xq

is easily obtained. Moreover, plugging this expansion in the following equality, we observe that

@px, zq P p´8, Ls2, pDT px, zq “ q̄xT px, zq `

ż T

0

ż L

´8

Ψt1px, z1qq̄
z1
T´t1

pz1, zqdt1dz1.

From the Lebesgue differentiation theorem, we get

B2p
D
T px, zq “ B2q̄

x
T px, zq `

ż T

0

ż L

´8

Ψt1px, z1qB2q̄
z1
T´t1

pz1, zqdt1dz1

and estimate (3.17) follows from (3.19) and |B2q̄
z1
T´t1

pz1, zq| ď CpT ´ t1q
´1{2gpcpT ´ t1q, z´ z1q. It remains to prove

(3.18). First, let us assume that |z1 ´ z|2 ă T ´ t1. Using the mean value theorem, the bound |B2
2 q̄
z1
T´t1

pz1, zq| ď

CpT ´ t1q
´1gpcpT ´ t1q, z ´ z1q and noting that for any point ζ in the interval pz, z1q, one has

exp

ˆ

´
|ζ ´ z1|

2

cpT ´ t1q

˙

ď C

"

exp

ˆ

´
|z1 ´ z1|

2

cpT ´ t1q

˙

` exp

ˆ

´
|z ´ z1|

2

cpT ´ t1q

˙*

we get

|B2q̄
z1
T´t1

pz1, zq ´ B2q̄
z1
T´t1

pz1, z
1q| ď

C|z1 ´ z|

T ´ t1

"

exp

ˆ

´
|z1 ´ z1|

2

cpT ´ t1q

˙

` exp

ˆ

´
|z ´ z1|

2

cpT ´ t1q

˙*

ď
C|z1 ´ z|α

pT ´ t1q1´γ{2

"

exp

ˆ

´
|z1 ´ z1|

2

cpT ´ t1q

˙

` exp

ˆ

´
|z ´ z1|

2

cpT ´ t1q

˙*

for |z1 ´ z|2 ă T ´ t1. Otherwise, one gets

|B2q̄
z1
T´t1

pz1, zq| ď
CpT ´ t1q

α
2

pT ´ t1q1´
γ
2

gpcpT ´ t1q, z ´ z1q ď
C|z ´ z1|α

pT ´ t1q1´
γ
2

gpcpT ´ t1q, z ´ z1q

and similarly,

|B2q̄
z1
T´t1

pz1, z
1q| ď

CpT ´ t1q
α
2

pT ´ t1q1´
γ
2

gpcpT ´ t1q, z
1 ´ z1q ď

C|z ´ z1|α

pT ´ t1q1´
γ
2

gpcpT ´ t1q, z
1 ´ z1q
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when |z1 ´ z|2 ě T ´ t1. Combining these estimates, (3.19) and the equality

B2p
D
T px, zq ´ B2p

D
T px, z

1q “ B2q̄
x
T px, zq ´ B2q̄

x
T px, z

1q `

ż T

0

ż L

´8

Ψt1px, z1qpB2q̄
z1
T´t1

pz1, zq ´ B2q̄
z1
T´t1

pz1, z
1qqdt1dz1

we obtain (3.18). We now prove the second part of the theorem. We first remark that for 0 ă t ď T

pKpx, tq “ fxτ̄ px, tq `
ÿ

ně0

pIK,n`1 ` JK,n`1qpx, tq

“ fxτ̄ px, tq ` K̄tpx, Lq

`
ÿ

ně0

ż

∆˚n`1ptq

dtn`1

ż

p´8,Lsn`1

dzn`1

n
ź

i“0

S̄ti`1´tipzi, zi`1q

ˆ
 

K̄t´tn`1
pzn`1, Lq ` f

zn`1

τ̄ pzn`1, t´ tn`1q
(

“ fxτ̄ px, tq ` K̄tpx, Lq `

ż t

0

ż L

´8

Ψspx, z1q
 

K̄t´spz1, Lq ` f
z1
τ̄ pz1, t´ sq

(

dsdz1.(3.20)

Let pt, t1q Ps0, T s and 0 ă η ă 1{2. We first prove the following bound

(3.21) |fxτ̄ px, t
1q ´ fxτ̄ px, tq| ď C|t1 ´ t|η

ˆ

1

t1p1`2ηq{2
gpct1, L´ xq `

1

tp1`2ηq{2
gpct, L´ xq

˙

.

Assume first that |t1 ´ t| ă pL´ xq2. By Lemma 5.2 and the mean value theorem, one gets

|fxτ̄ px, t
1q ´ fxτ̄ px, tq| ď C

ż 1

0

|t1 ´ t|

|λt` p1´ λqt1|3{2
gpcpλt` p1´ λqt1q, L´ xqdλ

ď C|t´ t1|η
ż 1

0

1

|λt` p1´ λqt1|p1`2ηq{2
gpcpλt` p1´ λqt1q, L´ xqdλ.

Now noting that for any point t̃ P pt, t1q which satisfies |t1 ´ t̃| ď pL´ xq2, we deduce the inequality

1

t̃1`η
expp´

pL´ xq2

ct̃
q ď C

ˆ

1

t11`η
expp´

pL´ xq2

c1t1
q `

1

t1`η
expp´

pL´ xq2

c1t
q

˙

for some constants C, c1 ą 1, from which we derive (3.21) in this case. If |t1 ´ t| ě pL´ xq2, standard computations
show that

|fxτ̄ px, tq| ď
|L´ x|

t
gpct, L´ xq ď C|t1 ´ t|η

|L´ x|1´η

t
gpct, L´ xq ď

C|t1 ´ t|η

tp1`2ηq{2
gpct, L´ xq

and (3.21) is easily obtained in this case. Similar lines of reasonning show that

(3.22) |K̄t1px, Lq ´ K̄tpx, Lq| ď C|t1 ´ t|p1`2ηq{2

ˆ

1

t1p1`2ηq{2
gpct1, L´ xq `

1

tp1`2ηq{2
gpct, L´ xq

˙

for all pt, t1q Ps0, T s and 0 ă η ă 1{2. Let 0 ă t ď t1 ď T and x P p´8, Ls. From (3.20), we now write

pKpx, t1q ´ pKpx, tq “
`

fxτ̄ px, t
1q ´ fxτ̄ px, tq

˘

` pK̄t1px, Lq ´ K̄tpx, Lqq

`

ż t1

t

ż

p´8,Ls

Ψspx, z1q
 

K̄t1´spz1, Lq ` f
z1
τ̄ pz1, t

1 ´ sq
(

dsdz1

`

ż t

0

ż

p´8,Ls

Ψspx, z1q
 

K̄t1´spz1, Lq ´ K̄t´spz1, Lq ` f
z1
τ̄ pz1, t

1 ´ sq ´ fz1τ̄ pz1, t´ sq
(

dsdz1

and bound the first two terms of the above equality using (3.21) and (3.22). From (3.19), (3.4), (3.5), Lemma 5.2
and the semigroup property, we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ż t1

t

ż

p´8,Ls

Ψspx, z1q
 

K̄t1´spz1, Lq ` f
z1
τ̄ pz1, t

1 ´ sq
(

dsdz1

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ż t1

t

ˆ

1

s1{2
`

1

s1{2

1

pt1 ´ sq1{2

˙

gpct1, L´ xqds

ď C
pt1 ´ tqη

t1η
gpct1, L´ xq.
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Similarly, from Lemma 5.2, (3.21) and (3.22), we also get
ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0

ż

p´8,Ls

Ψspx, z1q
 

K̄t1´spz1, Lq ´ K̄t´spz1, Lq ` f
z1
τ̄ pz1, t

1 ´ sq ´ fz1τ̄ pz1, t´ sq
(

dsdz1

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cppt1 ´ tq
1
2`η ` pt1 ´ tqηq

ż t

0

ˆ

1

s
1
2

1

pt1 ´ sq
1
2`η

gpct1, L´ xq `
1

s
1
2

1

pt´ sq
1
2`η

gpct, L´ xq

˙

ds

ď CT pt
1 ´ tqη

ˆ

1

t1η
gpct1, L´ xq `

1

tη
gpct, L´ xq

˙

for some positive constant CT (non-decreasing with respect to T ). This completes the proof. �

Remark 3.4. In order to investigate the differentiability of t ÞÑ pKpx, tq, one is naturally led to differentiate the
representation formula (3.20) with respect to t. The first two terms appearing in the right-hand side of this formula
can be readily differentiated. The difficulty comes when one tries to differentiate the time-space convolution with
respect to t. Actually the singularity in time appearing in the density fzτ̄ pz, t ´ sq prevents us to do so unless
additional smoothness assumptions on the coefficients b and σ are provided. This phenomenon does not appear in
the standard diffusion framework because the density fzτ̄ pz, t´ sq is replaced by a Gaussian density.

3.3. Applications.

In this section we collect some applications of the results established in Theorem 3.2 and Theorem 3.3. From
the Gaussian upper bounds satisfied by pKpx, tq, pDT px, zq and their derivatives with respect to x, we claim:

Corollary 3.2. Let T ą 0 and x P p´8, Lq be fixed. Then, the following bound

|ErhpτxT , Xx
τxT
qs| ď

ż T

0

ds|hps, Lq|
1
?
s
gpcs, x´ Lq `

ż L

´8

dz |hpT, zq|gpcT, x´ zq

is valid for any Borel function function h defined on R`ˆp´8, Ls as soon as the above integrals are finite. Moreover,
if h P C1pp´8, Lsq, the following bound is valid

|ErB2hpτ
x
T , X

x
τxT
qs| ď

ż T

0

ds|B2hps, Lq|
1

s
gpcs, x´ Lq `

ż L

´8

dz |hpT, zq|
1
?
T
gpcT, x´ zq,

as soon as the above integrals are finite.

The above bounds may be useful since combined with Theorem 3.2 and Theorem 3.3 they allow to establish the
continuity of the maps x ÞÑ ErhpτxT , Xx

τxT
qs and x ÞÑ ErB2hpτ

x
T , X

x
τxT
qs on p´8, Lq for a large class of test function.

We omit its proof.
We now aim at giving a probabilistic representation of the transition density of the process pu` τxt , X

x
τxt
qtě0 and

pPthpu, xqqtě0 that may be useful for unbiased Monte Carlo path simulation or probabilistic infinite dimensional
analysis. First, for z P p´8, Lq, we write

S̄tpx, zq “ 1txăLu

"

B2
z

„

1

2
papzq ´ apxqqq̄xt px, zq



´ Bz rbpzqq̄
x
t px, zqs

*

“ 1txăLu

"

p
1

2
a2pzq ´ b1pzqqq̄xt px, zq ` pa

1pzq ´ bpzqqBz q̄
x
t px, zq `

1

2
papzq ´ apxqqB2

z q̄
x
t px, zq

*

“ θtpx, zqq̄
x
t px, zq.(3.23)

Here, using (5.1) and (5.2), we explicitly have

θtpx, zq “ 1txăLu

"ˆ

1

2
a2pzq ´ b1pzq

˙

` pa1pzq ´ bpzqqµ1
t px, zq `

1

2
papzq ´ apxqqµ2

t px, zq

*

,

µ1
t px, zq “ H1papxqt, z ´ xq ´

1

apxqt

2pL´ xq

pexpp´ 2pz´LqpL´xq
apxqt q ´ 1q

,

µ2
t px, zq “ H2papxqt, z ´ xq `

1

a2pxqt2
4pz ´ LqpL´ xq

pexpp´ 2pz´LqpL´xq
apxqt q ´ 1q

.

We also use the distribution function of the supremum of the Brownian bridge

Λtpx, zq :“ P
´

max
0ďvďt

Wv ď
L´ x

σpxq

ˇ

ˇWt “
z ´ x

σpxq

¯

“

"

1´ exp

ˆ

´2
pL´ xqpL´ x´ pz ´ xqq

tapxq

˙*

1txďLu1tzďLu
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and introduce the quantity

θ̄tpx, zq “ θtpx, zqΛtpx, zq.

With these notations, from (3.23), for every bounded measurable function h P BbpR` ˆ p´8, Lsq, one obtains

S̄Thpu, xq “ Erhpu` T, X̄x
T qθT px, X̄

x
T q1tτ̄xěT us

“ Erhpu` T, X̄x
T qθ̄T px, X̄

x
T qs.

From (3.5), we note that Er|θ̄tpx, X̄x
t q|s ď CT t

´1{2 for t P p0, T s, which in particular implies that θ̄tpx,X
x
t q P

L1pPq. We also remark that for 0 ď s1 ď s2 ď T , one has

S̄s1 S̄s2´s1hpu, xq “ Erhpu` s2, X̄
s1,X̄

x
s1

s2 qθs2´s1pX̄
x
s1 , X̄

s1,X̄
x
s1

s2 qθs1px, X̄
x
s1q1tτ̄s1,X̄

x
s1ěs2´s1u

1tτ̄xěs1us

“ Erhpu` s2, X̄
s1,X̄

x
s1

s2 qθ̄s2´s1pX̄
x
s1 , X̄

s1,X̄
x
s1

s2 qθ̄s1px, X̄
x
s1qs.

In order to extend this probabilistic representation to the semigroup expansion obtained in (3.9), we first apply
Fubini’s theorem and the change of variable ti “ T ´ si, i “ 0, ¨ ¨ ¨ , n, in order to write

ż

∆npT q

dsn

˜

n´1
ź

i“0

S̄si´si`1

¸

P̄snhpu, xq “

ż

∆˚n pT q

dtn

˜

n´1
ź

i“0

S̄ti`1´ti

¸

P̄T´tnhpu, xq.

For a given time partition π : 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN ă tN`1 “ T , we introduce the Euler scheme X̄π “

pX̄π
tiq0ďiďN`1 with the following dynamics

X̄π
ti`1

“ X̄π
ti ` σpX̄

π
tiqpWti`1 ´Wtiq

X̄π
t0 “ x

which in turn allows us to write the following (partial) probabilistic representation
˜

n´1
ź

i“0

S̄ti`1´ti

¸

P̄T´tnhpu, xq “ Erhpu` T, X̄π
T q1ttn`τ̄

tn,X̄
π
tnąT u

θ̄tn´tn´1
pX̄π

tn´1
, X̄π

tnq ¨ ¨ ¨ θ̄t1px, X̄
π
t1qs

` Erhpu` tn ` τ̄ tn,X̄
π
tn , Lq1

ttn`τ̄
tn,X̄

π
tnďT u

θ̄tn´tn´1
pX̄π

tn´1
, X̄π

tnq ¨ ¨ ¨ θ̄t1px, X̄
π
t1qs

“ Erhpu` ptn ` τ̄ tn,X̄
π
tn q ^ T, X̄π

ptn`τ̄
tn,X̄

π
tn q^T

qθ̄tn´tn´1pX̄
π
tn´1

, X̄π
tnq ¨ ¨ ¨ θ̄t1px, X̄

π
t1qs,

for n ě 0, with the convention t0 “ 0. Note that from the previous equation for n “ 0 and x ě L, one gets
´

śn´1
i“0 S̄ti`1´ti

¯

P̄T´tnhpu, xq “ hpu, xq.

Similarly, for the second term appearing in (3.8), after noting that
ż sn´1

0

K̄sn´1´snhpu, xqdsn “

ż sn´1

0

hpu` sn, Lq
papLq ´ apxqq

apxq
fxτ̄ px, snqdsn

“ Erhpu` τ̄x, Lq
papLq ´ apxqq

apxq
1tτ̄xďsn´1us

“: qKsn´1
hpu, xq

we can write
ż

∆npT q

dsn

˜

n´2
ź

i“0

S̄si´si`1

¸

K̄sn´1´snhpu, xq “

ż

∆n´1pT q

dsn´1

˜

n´2
ź

i“0

S̄si´si`1

¸

qKsn´1
hpu, xq

“

ż

∆˚n´1pT q

dtn´1

˜

n´2
ź

i“0

S̄ti`1´ti

¸

qKT´tn´1hpu, xq.

Similarly to the previous term, one gets
˜

n´2
ź

i“0

S̄ti`1´ti

¸

qKT´tn´1hpu, xq “ Erhpu` tn´1 ` τ̄
tn´1,X̄

π
tn´1 , Lq1

tτ̄
tn´1,X̄

π
tn´1ďT´tn´1u

papLq ´ apX̄π
tn´1

qq

apX̄π
tn´1

q

ˆ θ̄tn´1´tn´2pX̄
π
tn´2

, X̄π
tn´1

q ¨ ¨ ¨ θ̄t1px, X̄
π
t1qs.

Now, in order to give a probabilistic representation of the time integral, we let pNptqqtě0 be a simple Poisson
process with intensity parameter λ ą 0 and define N ” NpT q. Let ζ1 ă ζ2 ă ¨ ¨ ¨ ă ζN be the jump times of
the Poisson process and set ζ0 “ 0, ζN`1 “ T . We know that conditional on N , the event times are distributed
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as the uniform order statistics associated to a sequence of i.i.d. uniform r0, T s-valued random variables satisfying
PpN “ n, ζ1 P dt1, ¨ ¨ ¨ , ζn P dtnq “ λne´λT dtn, on the set ∆˚npT q “ ttn P r0, T s

n : 0 ă t1 ă t2 ă ¨ ¨ ¨ ă tn ă T u.
We still denote by π the random time partition π : ζ0 “ 0 ă ζ1 ă ¨ ¨ ¨ ă ζN`1 “ T and denote by X̄π “

pX̄π
ζi
q0ďiďN`1 its associated Euler scheme. As a consequence, we may rewrite the time integral appearing in the

above expressions in a probabilistic way as follows for n ě 0,
ż

∆npT q

dsn

˜

n´1
ź

i“0

S̄si´si`1

¸

P̄snhpu, xq “ eλTErhpu` pζn ` τ̄ ζn,X̄
π
ζn q ^ T, X̄π

pζn`τ̄
ζn,X̄

π
ζn q^T

q1tN“nu

n´1
ź

j“0

λ´1θ̄ζj`1´ζj pX̄
π
ζj , X̄

π
ζj`1

qs

and for n ě 1
ż

∆npT q

dsn

˜

n´2
ź

i“0

S̄si´si`1

¸

K̄sn´1´snhpu, xq “ eλTErhpu` ζn´1 ` τ̄
ζn´1,X̄

π
ζn´1 , Lq1tN“n´1u1

tτ̄
ζn´1,X̄

π
ζn´1ďT´ζn´1u

ˆ
papLq ´ apX̄π

ζn´1
qq

apX̄π
ζn´1

q

n´2
ź

j“0

λ´1θ̄ζj`1´ζj pX̄
π
ζj , X̄

π
ζj`1

qs

where we use the convention
ś

H “ 1. Given the above discussion, we obtain the final result of this section.

Theorem 3.5. Let T ą 0 and assume that (H1) holds. Define the two sequences pΓN pxqqNě0 and pΓ̄N pxqqNě0 as
follows

ΓN pxq “

"
śN´1
j“0 λ´1θ̄ζj`1´ζj pX̄

π
ζj
, X̄π

ζj`1
q if N ě 1,

1 if N “ 0,

and

Γ̄N pxq “

$

&

%

papLq´apX̄πζN´1
qq

apX̄πζN´1
q

śN´2
j“0 λ´1θ̄ζj`1´ζj pX̄

π
ζj
, X̄π

ζj`1
q if N ě 1,

0 if N “ 0.

Then, for all h P BbpR` ˆ Rq, for all pu, xq P R` ˆ R, the following probabilistic representation holds

ErhpτxT , Xx
τxT
qs “ eλTE

«

hppζNpT q ` τ̄
ζNpT q,X̄

π
ζNpT q q ^ T, X̄π

pζNpT q`τ̄
ζNpT q,X̄

π
ζNpT q q^T

qΓNpT qpxq

ff

` eλTE
„

hpζNpT q´1 ` τ̄
ζNpT q´1,X̄

π
ζNpT q´1 , Lq1

tτ̄
ζNpT q´1,X̄

π
ζNpT q´1ďT´ζNpT q´1u

Γ̄NpT qpxq



.

Similarly, the following probabilistic representation for the density is satisfied

@pt, x, zq P p0, T s ˆ p´8, Ls2, pT p0, x, dt, dzq “ δT pdtqp
D
T px, zq ` δLpdzqp

Kpx, tq

with, for all pt, zq P p0, T s ˆ p´8, Ls,

pDT px, zq “ eλTE
„

q̄
X̄πζNpT q
T´ζNpT q

pX̄π
ζNpT q

, zqΓNpT qpxq



,

pKpx, tq “ eλTE
„

f
X̄πζNpT q
τ̄ pX̄π

ζNpT q
, t´ ζNpT qq1ttěζNpT qu ΓNpT qpxq ` f

X̄πζNpT q´1

τ̄ pX̄π
ζNpT q´1

, t´ ζNpT q´1q1ttěζNpT q´1u
Γ̄NpT qpxq



.

Remark 3.6. We observe that the probabilistic representation of PThp0, xq has a natural interpretation. The first
term can be decomposed into two expectations. The first one involves paths of the Euler scheme X̄π that do not
exit the domain p´8, Lq (note that Λt is a factor in the definition of θ̄t so that θ̄tpx, zq “ 0 for px, zq R p´8, Lq)
on the interval r0, T s whereas the second term involves paths of the Euler scheme that exit the domain on the last

time interval of the Poisson process rζNpT q, T s by sampling according to the law of the exit time τ̄
ζNpT q,X̄

π
ζNpT q on

the last interval. The last term appearing in the probabilistic representation is an additional correction term which
is due to the very nature of the forward parametrix method and comes from the integration by parts formula used
in the proof of Proposition 3.1. It also involves paths of the Euler scheme that exit the domain on the last time
interval rζNpT q´1, T s.

Remark 3.7. An unbiased Monte Carlo method for evaluating PThp0, xq or pT p0, x, dt, dzq stems from the proba-
bilistic representations obtained in Theorem 3.5. The explosion of the variance may be an important issue that can
induce poor convergence rate of the method as pointed out in [AKH16] for unbiased simulation of multi-dimensional
diffusions. In these situations, an importance sampling method on the time steps using a Beta or Gamma distribu-
tion may be used. In short, it would seem that this approximation will work well in the case of small parameters.
Although a very close analysis could be carried here, we do not intend to develop importance sampling schemes and
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refer the interested reader to [AKH16] for some developments in the diffusion case. From the above probabilistic
representation, one may also infer the possibility of infinite-dimensional analysis based on the analysis of the corre-
sponding approximation or the possibility of density expansions with respect to a small parameter as investigated
in [FKH16]. These issues will be developed in a future work.

We conclude this section by one simple corollary that provides a kind of integration by parts formula for the
killed process.

Corollary 3.3. Let T ą 0 and assume that (H1) holds. Let h P C1pp´8, Lsq satisfying: there exist C, c ą 0, such
that for all z P p´8, Ls, |hpzq| ` |h1pzq| ď C exppc|z|q. Then, for all x P p´8, Lq, one has

Erh1pXx
T q1tτxąT us “ ´e

λTE
”

hpX̄π
T qΛT´ζNpT qpX̄

π
ζNpT q

, X̄π
T qµ

1
T´ζNpT q

pX̄π
ζNpT q

, X̄π
T qΓNpT qpxq

ı

.

Proof. Combining theorems 3.2 and 3.3 with an integration by parts formula yield

Erh1pXx
T q1tτxąT us “

ż L

´8

h1pzqpDT px, zqdz “ ´

ż L

´8

hpzqB2p
D
T px, zqdz,

where we used the fact that limzÒL p
D
T px, zq “ 0. From Theorem 3.5 and Lebesgue differentiation theorem, one

obtains the following probabilistic representation formula

B2p
D
T px, zq “ eλTE

„

B2q̄
X̄πζNpT q
T´ζNpT q

pX̄π
ζNpT q

, zqΓNpT qpxq



“ eλTE
„

q̄
X̄πζNpT q
T´ζNpT q

pX̄π
ζNpT q

, zqµ1
T´ζNpT q

pX̄π
ζNpT q

, zqΓNpT qpxq



which with the previous computation readily concludes the proof. �

4. Backward parametrix expansion

In this section we apply the backward parametrix expansion using a semigroup approach in order to study the
law of pu`τxt , X

x
τxt
q with respect to x under Hölder continuity assumptions on the coefficients. Through this section,

we will make the following assumptions on the coefficients b and σ:

Assumption (H2).

(i) σ : R ÝÑ R is bounded on R and a “ σ2 is uniformly elliptic. That is there exist a, a ą 0 such that for any
x P R, a ď apxq ď a.

(ii) b : R ÝÑ R is bounded measurable and a is η-Hölder continuous on R for some η P p0, 1s that is there exists
a finite positive constant C such that

sup
xPR

|bpxq| ` sup
px,yqPR2,x‰y

|apxq ´ apyq|

|x´ y|η
ă C.

The results on weak existence and uniqueness of a Markovian solution under (H2) can be found in Stroock an
Varadhan [SV69].

4.1. Expansion for the semigroup.

In the forward case the kernel K̄ is never differentiated because of the cancelling property (3.7). In the backward
setting this is not the case. The differentiation with respect to the time variable of the kernel associated to the
density fτ̄ gives a degeneration which does not appear in the usual case.

Therefore, we first introduce a regularizing parameter r ą 0 in Lemma 4.1 and 4.2 to avoid the singularity in
time when deriving the first order expansion of the semigroup associated with the process pτxt , X

x
τtq with respect to

the parametrix process, whose coefficients are frozen at some point y P p´8, Ls. The strategy to deal with the time
singularity is to take the limit as r goes to zero, using the boundary conditions on the approximation processes as
given in Lemma 3.1 and by choosing h from an appropriate class of test functions, we show that the limits are well
defined and the first order backward parametrix expansion is achieved in Lemma 4.3.

To avoid confusion, we point out that in the rest of the paper, the support of a function f : X Ñ R refers to the
subset of its domain X, for which the function f is non-zero and we do not take the topological closure, although
X is often a subset of a topological space.

Lemma 4.1. Let y P p´8, Ls and r ą 0 with apyq ą 0. Suppose that either h P C2,0
b pR` ˆ p´8, Lsq and

suppphq Ď R`ˆp´8, Lq is satisfied or h P C2,0
b pR`ˆRq holds. Then the function pt, u, xq ÞÑ P̄ yT´t`rhpu, xq belongs

to C1,1,2
b pr0, T s ˆ R` ˆ p´8, Lsq.
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Proof. We recall from (3.1) that the function P̄ yT´t`rhpu, xq can be decomposed into

P̄ yT´t`rhpu, xq “ hpu, xq1txěLu ` 1txăLu

#

ż

p´8,Lq

hpu` T ´ t` r, zqq̄yT´t`rpx, zqdz

+

` 1txăLu

#

ż

p0,T´t`rq

hpu` s, Lqfyτ̄ px, sqds

+

(4.1)

so that it is sufficient to show that the last two terms satisfy the statements of the lemma. By using integration by
parts and the relationship between the Lévy distribution and the complementary error function, we have for x ď L,

ż

p0,T´t`rq

hpu` s, Lqfyτ̄ px, sqds

“ hpu` T ´ t` r, Lqerfc

˜

L´ x
a

2apyqpT ´ t` rq

¸

´

ż

p0,T´t`rq

Buhpu` s, Lqerfc

˜

L´ x
a

2apyqs

¸

ds.(4.2)

Bu

ż

p0,T´t`rq

hpu` s, Lqfyτ̄ px, sqds

“ Buhpu` T ´ t` r, Lqerfc

˜

L´ x
a

2apyqpT ´ t` rq

¸

´

ż

p0,T´t`rq

B2
uhpu` s, Lqerfc

˜

L´ x
a

2apyqs

¸

ds.(4.3)

By dominated convergence theorem, we deduce that pt, u, xq ÞÑ P̄ yT´t`rhpu, xq is jointly continuous on r0, T sˆR`ˆ
p´8, Lq and that the left limit as x Ò L is given by hpu, Lq for any pt, uq P r0, T s ˆ R`. Similar arguments show
that u ÞÑ P̄ yT´t`rhpu, xq is continuously differentiable on R`, for pt, xq P r0, T s ˆ p´8, Lq and that the left-limit as
x Ò L is equal to B1hpu, Lq. Moreover, each term appearing in the right-hand side of the above equality is bounded
uniformly on r0, T s ˆ R` ˆ p´8, Ls.

Similarly, by dominated convergence theorem and integration by parts, one has for x P p´8, Lq

Bx

ż

p0,T´t`rq

hpu` s, Lqfyτ̄ px, sqds “

ż

p0,T´t`rq

hpu` s, LqBxf
y
τ̄ px, sqds

“ 2hpu` T ´ t` r, LqgpapyqpT ´ t` rq, L´ xq ´ 2

ż

p0,T´t`rq

B1hpu` s, Lqgpapyqs, L´ xqds

where we used the relation Bxf
y
τ̄ px, sq “ 2Bsgpapyqs, L´ xq (see Lemma 3.1). Moreover, the two terms appearing in

the right-hand side of the last equality are continuous and uniformly bounded on r0, T s ˆR` ˆ p´8, Ls when seen
as functions of pt, u, xq. Similarly, for the second derivatives w.r.t. x, we get

B2
x

ż

p0,T´t`rq

hpu` s, Lqfyτ̄ px, sqds “ 2hpu` T ´ t` r, LqH1papyqpT ´ t` rq, L´ xqgpapyqpT ´ t` rq, L´ xq

´ 2a´1pyqB1hpu` T ´ t` r, Lqerfc

˜

L´ x
a

2pT ´ t` rqapyq

¸

` 2a´1pyq

ż

p0,T´t`rq

B2
1hpu` s, Lqerfc

˜

L´ x
a

2pT ´ sqapyq

¸

ds

which allows to conclude that the second derivative with respect to x is continuous and uniformly bounded on
r0, T s ˆ R` ˆ p´8, Ls. For x ă L, from the fundamental theorem of calculus, one has

Bt

ż

p0,T´t`rq

hpu` s, Lqfyτ̄ px, sqds “ ´hpu` T ´ t` r, Lqf
y
τ̄ px, T ´ t` rq

which is clearly jointly continuous and uniformly bounded in pt, u, xq P r0, T s ˆ R` ˆ p´8, Ls.
We consider now the function pt, u, xq ÞÑ

ş

p´8,Lq
hpu` T ´ t` r, zqq̄yT´t`rpx, zqdz, which is the integral against

the difference of two Gaussian densities. By standard arguments for the Gaussian densities and the fact that
h P C2,0

b pR` ˆ p´8, Lsq, we can show that the first partial derivatives in u and t, and the first and second partial
derivative in x can be taken under the integral and are continuous on r0, T s ˆ R` ˆ p´8, Lq with finite left limit
at L and uniformly bounded for pt, u, xq P r0, T s ˆ R` ˆ p´8, Ls. We omit the remaining technical details.

From the proof we see that x ÞÑ P̄ yT´t`rhpu, xq is continuous, but not differentiable at L. However, since

limxÒL B
r
xP̄

y
T´t`rhpu, xq is finite for r “ 1, 2, we can set the left derivatives of P̄ yT´t`rhpu, xq with respect to x at
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L to be equal to their respective left limits. We then work with this modification of the function P̄ yT´t`rhpu, xq,

which belongs to C1,1,2
b pr0, T s ˆ R` ˆ p´8, Lsq. �

For the next result, we introduce the two following kernels

Ŝyt px, zq :“

ˆ

1

2
rapxq ´ apyqs B2

xq̄
y
t px, zq ` bpxqBxq̄

y
t px, zq

˙

1txăLu1tzăLu,(4.4)

K̂yt px, sq :“

ˆ

1

2
rapxq ´ apyqs B2

xf
y
τ̄ px, sq ` bpxqBxf

y
τ̄ px, sq

˙

1txăLu1tsďtu(4.5)

and define for all h P C2,0
b pR` ˆ Rq

Ŝyt hpu, xq :“

ż

R
dz hpu` t, zqŜyt px, zq and K̂yt hpu, xq :“

ż

R`
ds hpu` s, LqK̂yt px, sq.

We also want to make an important remark concerning the linear maps defined above. For t ą 0, it is clear from the
estimates of B2

xq̄
y
t px, zq and Bxq̄

y
t px, zq given in Lemma 5.2 give together with the hypothesis (H2) that by bounded

convergence theorem, x ÞÑ Ŝyt hpu, xq is continuous and equal to zero at x “ L. The continuity of K̂yt h is slightly

more involved. In fact, from the indicator function in (4.5), we see that the function x ÞÑ K̂yt hpu, xq is zero for
x ě L and non-zero for x ă L. We make use of integration by parts formula twice and Lemma 3.1 in order to write

K̂yt hpu, xq “
rapxq ´ apyqs

apyq
hpu` t, Lqfyτ̄ px, tq ´

rapxq ´ apyqs

apyq

ż t

0

ds B1hpu` s, Lqf
y
τ̄ px, sq

` 2bpxqhpu` t, Lqgpapyqt, L´ xq ´ 2bpxq

ż t

0

ds B1hpu` s, Lqgpapyqs, L´ xq(4.6)

“
rapxq ´ apyqs

apyq
hpu` t, Lqfyτ̄ px, tq ´

rapxq ´ apyqs

apyq
B1hpu` t, Lqerfc

˜

L´ x
a

2apyqt

¸

`
rapxq ´ apyqs

apyq

ż t

0

ds B2
1hpu` s, Lqerfc

˜

L´ x
a

2apyqs

¸

` 2bpxqhpu` t, Lqgpapyqt, L´ xq

´ 2bpxq

ż t

0

ds B1hpu` s, Lqgpapyqs, L´ xq

and from the second equality above, it is clear that K̂yt hpu, xq has finite non-zero left limit at x “ L as h P C2,0
b pR`ˆ

p´8, Lsq. Therefore, in general, K̂yt hpu, L´q ‰ K̂yt hpu, Lq “ 0 and for fixed u, t ą 0, the map x ÞÑ K̂yt hpu, xq is
right continuous with left limit at x “ L. From (4.6), we also have the following estimate

|K̂yt hpu, xq|(4.7)

ď C
!

|h|8f
y
τ̄ px, tq ` |B1h|8erfc

˜

L´ x
a

2apyqt

¸

`
|b|8|hpu` t, Lq|

?
t

` |b|8|B1h|8

ż t

0

ds gpapyqs, L´ xq
)

.

This bound will be used in future calculations.

Lemma 4.2. Assume that (H2) holds and b is continuous on p´8, Ls. For any r ą 0, y P p´8, Ls and h P

C2,0
b pR` ˆ Rq,

@pu, xq P R` ˆ p´8, Lq, PT P̄
y
r hpu, xq ´ P̄

y
T`rhpu, xq “

ż T

0

dsPspŜyT´s`rh` K̂yT´s`rhqpu, xq.(4.8)

Proof. From Lemma 2.1 we have for y P p´8, Ls, the explicit form of the generator of pPtqtě0 and pP̄ yt qtě0

for functions h P C1,2
b pR` ˆ p´8, Lsq. For h P C2,0

b pR` ˆ Rq, we have from Lemma 4.1 that for r ą 0, the

function pu, xq ÞÑ P̄ yr hpu, xq belongs to C1,2
b pR` ˆ p´8, Lsq. Therefore we have by differentiating the composition

pPsP̄
y
T´s`rhpu, xqq0ďsďT with respect to the time variable s,

PT P̄
y
r hpu, xq ´ P̄

y
T`rhpu, xq “

ż T

0

dsPspL´ L̄yqP̄ yT´s`rhpu, xq.(4.9)

pL´ L̄yqhpu, xq “ 1txăLu

ˆ

bpxqBx `
1

2
rapxq ´ apyqsB2

x

˙

hpu, xq.
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The integrability in time of the above expression follows from the estimates in Lemma 5.2. To obtain (4.8), we
rewrite the above expression using (4.1) for x ă L which gives

pL´ L̄yqP̄ yT´s`rhpu, xq

“ 1txăLu

#

ż

p´8,Lq

hpu` T ´ s` r, zq

ˆ

1

2
rapxq ´ apyqs B2

xq̄
y
T´s`rpx, zq ` bpxqBxq̄

y
T´s`rpx, zq

˙

+

` 1txăLu

#

ż T´s`r

0

ds hpu` s, Lq

ˆ

1

2
rapxq ´ apyqs B2

xf
y
τ̄ px, sq ` bpxqBxf

y
τ̄ px, sq

˙

+

“ pŜyT´s`rh` K̂yT´s`rhqpu, xq.

�

In order to write the backward parametrix expansion of the Markov semigroup pPtqtě0, we need to define the
following integral operators for any bounded measurable function h : R` ˆ RÑ R

Sthpu, xq :“

ż L

´8

dz hpu` t, zqq̄zt px, zq, Kthpu, xq :“

ż t

0

ds hpu` s, LqfLτ̄ px, sq,(4.10)

Ŝthpu, xq :“

ż L

´8

dz hpu` t, zqŜzt px, zq, K̂thpu, xq :“

ż t

0

ds hpu` s, Lq K̂Lt px, sq.(4.11)

where Ŝzt px, zq and K̂Lt px, sq are given in (4.4) and (4.5).
We present first some auxiliary estimates and results on the above kernels and integral operators which can be

useful later in proving the convergence of the backward parametrix expansion. Under (H2), by using Lemma 5.2
and Hölder continuity of a “ σ2, we have for any β P r0, 1s and any pt, x, zq P p0, T s ˆ p´8, Ls2

|Ŝzt px, zq| ď C

ˆ

1

t1´
η
2

^
|L´ z|β

t
2`β´η

2

˙

gpct, x´ zq,(4.12)

|K̂Lt px, sq| ď C
1

s
3´η

2

gpcs, L´ xq1tsătu.(4.13)

The exponent β is appropriately chosen later on in Theorem 4.2, so that the asymptotic expansion of the transition
density of pu` τxt , X

x
τxt
q converges. For h P C2,0

b pR`ˆRq, the estimate (4.14) below is obtained directly from (4.12)

|Ŝthpu, xq| ď CT |h|8
1

t1´
η
2

,(4.14)

|K̂thpu, xq| ď CT p|h|8, |B1h|8q
1

t1´
η
2

,(4.15)

while (4.15) can be obtained by applying Lemma 5.2 and the inequality gps, x ´ yq ď C?
s

to (4.6). Moreover,

by combining (4.6), (4.12), (4.14) and (4.15), we see that if h P C8,0b pR` ˆ Rq then Ŝth and K̂th belongs to

C8,0b pR` ˆ p´8, Lsq and their support are contained in R` ˆ p´8, Lq. We point out to the reader that in order to

obtain a convergent expansion of the semigroup pPtqtě0, the above mentioned support property of Ŝth and K̂th or

more specifically the fact that Ŝthpu, Lq “ K̂thpu, Lq “ 0 is crucial, and the non-zero left limit K̂thpu, L´q does not

play a role. For any fixed t ą 0, it is clear from (4.12) and dominated convergence theorem that limrÓ0 Ŝt`rhpu, xq “
Ŝthpu, xq. From (4.6) and the fact that h P C2,0

b pR` ˆ Rq, we have limrÓ0 K̂t`rhpu, xq “ K̂thpu, xq. Finally, by
applying Lemma 5.2, equation (4.2) and dominated convergence theorem we have limrÓ0 St`rhpu, xq “ Sthpu, xq
and limrÓ0 Kt`rhpu, xq “ Kthpu, xq.

We are now in position to prove the first order expansion of the semigroup pPtqtě0. Notice that we have proved
two different expansions given in (4.16) and (4.17) respectively. The difference in the two expansions is due to the

assumption on the support of h, and the reason that K̂T´sh term does not appear in (4.17) is precisely due to the
fact that hpu, Lq “ 0.

Lemma 4.3. Assume that (H2) holds and that b is continuous on p´8, Ls. For h P C2,0
b pR` ˆ Rq, the following

first order expansion for the semigroup pPtqtě0 holds

(4.16) PThpu, xq “

#

pST `KT qhpu, xq `
şT

0
ds PspŜT´s ` K̂T´sqhpu, xq, x ă L,

hpu, xq x ě L.
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While, if h P C2,0
b pR` ˆ p´8, Lsq and suppphq Ď R` ˆ p´8, Lq, then

PThpu, xq “

#

SThpu, xq `
şT

0
ds PsŜT´shpu, xq, x ă L,

0 x ě L.
(4.17)

Proof. The result is straightforward for x ě L, so from now on we assume that x ă L. We will do the proof for
the first case only. For y P R, we apply Lemma 4.2 to the function pu, xq ÞÑ gpε, y ´ xqhpu, xq P C2,0

b pR` ˆ Rq and
integrate both hand sides of (4.8) with respect to dy. The goal now is to prove that we can take the limit as ε Ó 0
first and then r Ó 0. To do this, each term in the expansion given in Lemma 4.2 is analyzed. We first remark that
for x P p´8, Lq one has

ż

R
dy

ż

PT pu, x, du
1, dx1q P̄ yr pgpε, y ´ ¨qhqpu

1, x1q

“

ż

R
dy

ż

PT pu, x, du
1, dx1q

!

ż L

´8

dz gpε, y ´ zqhpu1 ` r, zqq̄yr px
1, zq `

ż r

0

ds gpε, L´ yqhpu1 ` s, Lqfyτ̄ px
1, sq

)

It is clear from Lemma 5.2 and the following
şr

0
ds integrable bound

(4.18) fyτ̄ px, sq ď C
L´ x

ās
gpās, L´ xq “ CBxgpās, L´ xq

that the order of integration in the above integral can be freely interchanged using Fubini’s theorem.
To take the limit as ε Ó 0, we see that by using Lemma 5.2, (4.18) and

ş

R dy gpε, y ´ zqhpu1 ` r, zq ď |h|8 to
obtain

ż

R
dy gpε, y ´ zq|hpu1 ` r, zq|q̄yr px

1, zq ď C|h|8gpār, z ´ x
1q

ż

R
dy gpε, L´ yq|hpu1 ` s, Lq|fyτ̄ px

1, sq ď C|h|8Bxgpās, L´ x
1q,

which are
ş

PT pu, x, du
1, dx1q

şL

´8
dz and

ş

PT pu, x, du
1, dx1q

şr

0
ds integrable respectively. Therefore, by dominated

convergence theorem, this shows that
ż

PT pu, x, du
1, dx1q

ż L

´8

dz lim
εÓ0

ż

R
dy gpε, y ´ zqhpu1 ` r, zqq̄yr px

1, zq “

ż

PT pu, x, du
1, dx1q

ż L

´8

dz hpu1 ` r, zqq̄zr px
1, zq

ż

PT pu, x, du
1, dx1q

ż r

0

ds lim
εÓ0

ż

R
dy gpε, L´ yqhpu1 ` s, Lqfyτ̄ px

1, sq “

ż

PT pu, x, du
1, dx1q

ż r

0

dshpu1 ` s, LqfLτ̄ px
1, sq.

To take the limit as r Ó 0, we apply dominated convergence theorem by noticing that both inner integrals on the
right hand of the above expressions are bounded by |h|8. Then by Lemma 5.1 and the continuity of the integral
we conclude that

lim
rÓ0

lim
εÓ0

ż

R
dy PT P̄

y
r pgpε, y ´ ¨qhqpu, xq “ PThpu, xq.

We now consider the term limrÓ0 limεÓ0

ş

R dyP̄
y
T`rpgpε, y ´ ¨qhqpu, xq. We first apply Fubini’s theorem by using the

fact that
şT`r

0
ds |hpu` s, Lq|fyτ̄ px, sq ď |h|8 to obtain

ż

R
dy

ż T`r

0

ds tgpε, L´ yqhpu` s, Lqfyτ̄ px, squ “

ż T`r

0

ds

ż

R
dy tgpε, L´ yqhpu` s, Lqfyτ̄ px, squ .

To take the limit as ε Ó 0, we again use the fact that
ş

R dy gpε, L ´ yqhpu ` s, Lqfyτ̄ px, sq ď C|h|8Bxgpās, L ´ xq,

which is
şT`r

0
ds integrable. Therefore by dominated convergence theorem, we obtain

ż T`r

0

ds lim
εÓ0

ż

R
dy tgpε, L´ yqhpu` s, Lqfyτ̄ px, squ “

ż T`r

0

ds
 

hpu` s, LqfLτ̄ px, sq
(

“ KT`rhpu, xq.

Similarly, we note that from Lemma 5.2, Fubini’s theorem can be applied to obtain
ż

R
dy

ż L

´8

dz
 

gpε, z ´ yqhpu` T ` r, zqq̄yT`rpx, zq
(

“

ż L

´8

dz

ż

R
dy

 

gpε, z ´ yqhpu` T ` r, zqq̄yT`rpx, zq
(

To take the limit as r Ó 0, we notice that again from Lemma 5.2
ż

R
dy
ˇ

ˇgpε, z ´ yqhpu` T ` r, zqq̄yT`rpx, zq
ˇ

ˇ ď |h|8gpcpT ` rq, x´ zq.
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which is
şL

´8
dz integrable. Therefore by dominated convergence theorem

ż L

´8

dz lim
εÓ0

ż

R
dy

 

gpε, z ´ yqhpu` T ` r, zqq̄yT`rpx, zq
(

“

ż L

´8

dz
 

hpu` T ` r, zqq̄zT`rpx, zq
(

“ ST`rhpu, xq.

It is clear that |ST`rhpu1, x1q| ď |h|8 and |KT`rhpu1, x1q| ď |h|8. Therefore by using fact that limrÓ0 Kt`rhpu, xq “
Kthpu, xq and limrÓ0 St`rhpu, xq “ Sthpu, xq, we conclude that

lim
rÓ0

lim
εÓ0

ż

dy P̄ yT`rpgpε, y ´ ¨qhqpu, xq “ pKT ` ST qhpu, xq.

To compute the right hand side of (4.8), we note that the strategy is also to first apply Fubini’s theorem and
then dominated convergence theorem. By using again Lemma 5.2 to estimate B2

xq̄
y
T´s`rpx, zq and Bxq̄

y
T´s`rpx, zq,

the term
ż

R
dy

ż T

0

ds

ż

Pspu, x, du
1, dx1q ŜyT´s`rhpu

1, x1q

“

ż

R
dy

ż T

0

ds

ż

Pspu, x, du
1, dx1q

ż L

´8

dz hpu1 ` T ´ s` r, zq

ˆ gpε, z ´ yq

"

1

2
rapx1q ´ apyqsB2

x1 q̄
y
T´s`rpx

1, zq ` bpx1qBx1 q̄
y
T´s`rpx

1, zq

*

1tx1ăLu

is absolutely integrable and one can apply the Fubini’s theorem to interchange the order of integration. By using
Lemma 5.2 we see that
ż L

´8

dz

ż

R
dy gpε, z ´ yqhpu1 ` T ´ s` r, zq

"

1

2
rapx1q ´ apyqsB2

x1 q̄
y
T´s`rpx

1, zq ` bpxqBx1 q̄
y
T´s`rpx

1, zq

*

ď
|h|8

T ´ s` r

which is independent of ε and
şT

0
ds

ş

Pspu, x, du
1, dx1q integrable. Therefore, one can take the limit in ε by dominated

convergence theorem and it is sufficient to compute

lim
εÓ0

ż L

´8

dz

ż

R
dy gpε, z ´ yqhpu1 ` T ´ s` r, zq

"

1

2
rapx1q ´ apyqsB2

x1 q̄
y
T´s`rpx

1, zq ` bpx1qBx1 q̄
y
T´s`rpx

1, zq

*

1tx1ăLu

“

ż L

´8

dzhpu1 ` T ´ s` r, zq

"

1

2
rapx1q ´ apzqsB2

x1 q̄
z
T´s`rpx

1, zq ` bpx1qBx1 q̄
z
T´s`rpx

1, zq

*

1tx1ăLu

“ ŜT´s`rhpu1, x1q.

To take the limit as r Ó 0, we see that by (4.14), |ŜT´s`rhpu1, x1q| ď CT |h|8
1

pT´sq1´
η
2

, which is is independent of r

and
şT

0
ds

ş

Pspu, x, du
1, dx1q integrable.

The arguments to prove that the limit as ε Ó 0 for the term associated with K̂ypgpε, y ´ ¨qhq in Lemma 4.2 are
more involved. In fact, in order to apply Fubini’s theorem and take the limit as ε Ó 0, we need to apply inequality
(4.7) and Lemma 5.2,

|K̂yT´s`rpgpε, y ´ ¨qhqpu
1, x1q|

“

ż T´s`r

0

dv gpε, L´ yq|hpu1 ` v, Lq|
ˇ

ˇ

1

2
rapx1q ´ apyqsB2

x1f
y
τ̄ px

1, vq ` bpx1qBx1f
y
τ̄ px

1, vq
ˇ

ˇ1tx1ăLu

ď Cgpε, L´ yq
!

|h|8Bx1gpāpT ´ s` rq, x
1 ´ Lq ` |B1h|8 `

|b|8|h|8
?
T ´ s` r

` |b|8 |B1h|8
?
T ´ s` r

)

ď Cgpε, L´ yq
1

T ´ s` r

which is
ş

R dy
şT

0
ds

ş

Pspu, x, du
1, dx1q integrable. It is clear from above that

ż

R
dy |K̂yT´s`rpgpε, y ´ ¨qhqpu, xq| ď

1

T ´ s` r
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which is
şT

0
ds

ş

Pspu, x, du
1, dx1q integrable. Therefore we can take the limit as ε Ó 0 using dominated convergence

and consider, where we use again (4.6) and integration by parts

lim
εÓ0

ż

R
dy gpε, L´ yqK̂yT´s`rpgpε, L´ ¨qhqpu

1, x1q “ lim
εÓ0

ż

R
dy gpε, L´ yq

rapx1q ´ apyqs

apyq
hpu1 ` T ´ s` r, Lqfyτ̄ px

1, T ´ s` rq

´ lim
εÓ0

ż

R
dy gpε, L´ yq

rapx1q ´ apyqs

apyq

ż T´s`r

0

ds Bshpu
1 ` s, Lqfyτ̄ px

1, sq

` lim
εÓ0

ż

R
dy gpε, L´ yq2bpx1qhpu1 ` T ´ s` r, Lqgpapyqt, L´ xq

´ lim
εÓ0

ż

R
dy gpε, L´ yq2bpx1q

ż T´s`r

0

ds Bshpu
1 ` s, Lqgpapyqs, x1 ´ Lq

“ K̂T´s`rhpu1, x1q

Finally, to take the limit as r Ó 0, it is sufficient to use (4.15), to obtain |K̂T´s`rhpu1, x1q| ď CT p|h|8, |B1h|8q
1

pT´sq1´
η
2

which is independent of r and
şT

0
ds

ş

Pspu, x, du
1, dx1q integrable. Therefore one can conclude that

lim
rÓ0

lim
εÓ0

ż T

0

dsPstpSyT´s`r `KyT´s`rqpgpε, y ´ ¨qhqupu, xq “
ż T

0

dsPspŜT´sh` K̂T´shqpu, xq.

�

Our aim now is to iterate the first order expansion formula (4.16) and (4.17) in order to obtain an expansion in

infinite series of the Markov semigroup pPtqtě0 in the spirit of Theorem 3.1. For h P C8,0b pR` ˆ Rq, we recall that

the terms Sthpu, xq, Kthpu, xq, Ŝthpu, xq and K̂thpu, xq are given in (4.10) and (4.11), and we set

InThpu, xq :“

#

ş

∆npT q
dsn Ssn Ŝsn´1´sn . . . Ŝs1´s2pŜT´s1 ` K̂T´s1qhpu, xq n ě 1,

pST `KT qhpu, xq n “ 0.

We point out that the operator K̂ only appears once in the above, because to study the transition density functions,
one must take test functions h with domain R` ˆR or in particular, test functions which belong to C8,0b pR` ˆRq.
It is only after the first iteration, we notice that Ŝth and K̂th belongs to C8,0b pR`ˆ p´8, Lsq and their support are
contained in R` ˆ p´8, Lq, and (4.17) is used to obtain the expansion after the first iteration. We present in the
following, one of the main results of this section.

Theorem 4.1. Let T ą 0. Assume that (H2) holds and that b is continuous on p´8, Ls. Then, for every

h P C8,0b pR` ˆ Rq, one has

PThpu, xq “ hpu, xq1txěLu ` 1txăLu
ÿ

ně0

InThpu, xq

where the series converges absolutely and uniformly for pu, xq P R` ˆ R.

Proof. We know that for all h P C8,0b pR` ˆRq and t P p0, T s, Ŝth and K̂th belongs to C8,0b pR` ˆ p´8, Lsq and has

support contained in R` ˆ p´8, Lq (see the discussion after (4.14)). Therefore, by replacing h by ŜT´th` K̂T´th
in (4.16) of Lemma 4.3 and iterating using (4.17), we obtain

PTh “ pST `KT qh`
N´1
ÿ

n“1

ż

∆npT q

dsnSsn Ŝsn´1´sn . . . Ŝs1´s2pŜT´s1 ` K̂T´s1qh`RN
T h

where the remainder term is given by

RN
T hpu, xq :“

ż

∆N pT q

dsn PsN ŜsN´1´sN . . . Ŝs1´s2pŜT´s1 ` K̂T´s1qhpu, xq.

We first show that the remainder term converges to zero as N Ñ 8. From estimates (4.14) and (4.15), for any
pu, xq P R` ˆ R, the remainder term is bounded by

|RN
T hpu, xq| ď CT p|hp., Lq|8, |B1hp., Lq|8q

ż

∆N pT q

dsN

N´1
ź

n“0

CT psn ´ sn`1q
´p1´ η2 q

“ CT p|hp., Lq|8, |B1hp., Lq|8qC
N
T T

Nη{2 Γpη{2qN

Γp1`Nη{2q
,
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where we used Lemma 5.4 with b “ 0, a “ 1 ´ η{2 and t0 “ T for the last equality. Hence, from the asymptotics
of the Gamma function at infinity, we clearly see that the remainder goes to zero uniformly in pu, xq P R` ˆ R as
n Ò 8. Similar estimates also give the absolute and uniform convergence of the infinite sum. �

4.2. Existence of a transition density, its expansion and related properties.

In this section, we retrieve from Theorem 4.1 the existence and an expansion of the transition density function.
In order to do this, one needs estimates on the series obtained in the previous theorem which do not involve the
regularity of h. In particular, we have used |B1hp¨, Lq| ă 8 in the previous proof (see also Section 3.2 in the forward
case). Therefore we start by an examination of the n-th term of the series expansion in Theorem 4.1 related to the
killed diffusion process:

Ssn Ŝsn´1´sn . . . Ŝs1´s2 ŜT´s1hpu, xq

“

ż L

´8

dz0 hpu` T, z0q

˜

ż

p´8,Lsn
dzn q̄

zn
sn px, znqŜ

z0
T´s1

pz1, z0q

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq

¸

.

Similarly, for the term associated to the exit time,

Ssn Ŝsn´1´sn . . . Ŝs1´s2K̂T´s1hpu, xq

“

ż

p´8,Lsn
dzn q̄

zn
sn px, znq

ż

ds1p0,T´s1spsq hpu` s1 ` s, Lq K̂LT´s1pz1, sq
n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq

“

ż T

0

dt1ts1ătu hpu` t, Lq

˜

ż

p´8,Lsn
dzn q̄

zn
sn px, znq K̂

L
T´s1pz1, t´ s1q

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq

¸

where in the last equality, we have made the change of variable t “ s1 ` s and use the fact that 1ps1,T qptq “
1t0ătăT u1ts1ătu. In the following, we write zi`1 “ x and z0 “ z which represents the initial point and terminal
point respectively. To obtain a representation in terms of infinite series for the transition density, we apply Fubini’s
theorem to obtain

ID,nT hpu, xq :“

ż

∆npT q

dsn Ssn Ŝsn´1´sn . . . Ŝs1´s2 ŜT´s1hpu, xq

“

ż L

´8

dz0 hpu` T, z0q

˜

ż

∆npT q

dsn

ż

p´8,Lsn
dzn q̄

zn
sn px, znq Ŝ

z0
T´s1

pz1, z0q

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq

¸

“

ż L

´8

dz0 hpu` T, z0q I
D,n
T px, z0q(4.19)

for the first term and the second term is given by

IK,nT hpu, xq :“

ż

∆npT q

dsn Ssn Ŝsn´1´sn . . . Ŝs1´s2K̂T´t1hpu, xq

“

ż T

0

dt hpu` t, Lq

˜

ż

∆nptq

dsn

ż

p´8,Lsn
dzn q̄

zn
tn px, znq K̂

L
T´s1pz1, t´ s1q

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq

¸

“

ż T

0

dt hpu` t, Lq IK,npx, tq,(4.20)

where for an integer n ě 1, we introduced the two kernels

ID,nT px, zq :“

ż

∆npT q

dsn

ż

p´8,Lsn
dzn q̄

zn
sn px, znqŜ

z
T´s1pz1, zq

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq,(4.21)

IK,npx, tq :“

ż

∆nptq

dsn

ż

p´8,Lsn
dzn q̄

zn
sn px, znq K̂

L
T´s1pz1, t´ s1q

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq.(4.22)

In (4.22), the dependence of the term K̂LT´s1pz1, t ´ s1q with respect to T is only in the indicator function

1tt´s1ăT´s1u “ 1ttăT u. Therefore, we omit writing the dependence of T in IK,npx, tq as it is always understood
that t ă T .
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From the above computations, we are naturally led to define for pt, x, zq P p0, T sˆ p´8, Ls2 the following kernels

pD,nT px, zq :“

#

ID,nT px, zq if n ě 1

q̄zT px, zq if n “ 0
and pK,npx, tq :“

#

IK,npx, tq if n ě 1

fLτ̄ px, tq if n “ 0.

We are ready to give the backward parametrix representation of the transition density of the process pu `
τxt , X

x
τxt
qtě0. One must point out that the proof of the convergence of the asymptotic expansion of the transition

density is not trivial in the current setting. In the standard diffusion setting, the parametrix expansion of the
transition density converges since the order of singularity in time of the space integrals in (4.21) is 1´ η

2 ă 1, where
η is the Hölder exponent of the diffusion coefficient. The situation here is much more delicate. At first glance,

the order of the singularity in IK,npx, tq due to the kernel pKL (the third derivative of a Gaussian density) is of
order 3´η

2 ě 1 which can not be made smaller than one by using the Hölder continuity of the diffusion coefficient.
Therefore the classical argument does not guarantee the convergence of the integral. To overcome this difficulty
and show that the parametrix expansion for the transition density converges, one has to make use of the estimate
of the function q̄zntn px, znq for zn close to L in order to improve the order of the singularity in time.

Theorem 4.2. Let T ą 0. Assume that (H2) holds and that b is continuous on p´8, Ls. For pu, xq P R`ˆp´8, Ls,
define the measure

pT pu, x, dt, dzq :“ pKpx, t´ uqδLpdzqdt` p
D
T px, zqδu`T pdtqdz

with

pKpx, tq :“
ÿ

ně0

pK,npx, tq and pDT px, zq :“
ÿ

ně0

pD,nT px, zq.

Then, both series defining pKpx, tq and pDT px, zq converge absolutely for px, t, zq P R ˆ R˚` ˆ R and uniformly for

px, t, zq P R ˆKT ˆ R, where KT is any compact subset of p0, T s. Moreover for h P C8,0b pR` ˆ Rq, the following
representation for the semigroup holds,

PThpu, xq “ hpu, xq1txěLu ` 1txăLu

ż u`T

u

ż L

´8

hpt, zq pT pu, x, dt, dzq.

Finally, for some positive C, c ą 1, for all pt, zq P p0, T s ˆ p´8, Ls, the following Gaussian upper-bounds hold

(4.23) pKpx, tq ď Ct´1{2gpct, L´ xq and pDT px, zq ď CgpcT, z ´ xq.

Therefore, for all pu, xq P R` ˆ p´8, Lq, pT pu, x, ., .q is the probability density function of the random vector
pu ` τxT , X

x
τxT
q. More precisely, the first hitting time τxT has a mixed type law. That is, for t P ru, u ` T q, τxT has

the density pKpx, t´ uq and at t “ u` T , Ppu` τxT “ u` T q “
şL

´8
dz pDT px, zq and pKpL´, tq “ 0. Similarly, the

stopped process Xx
τxT

also has a mixed type law. That is, for z P p´8, Lq, Xx
τxT

the density pDT px, zq exists and at

the boundary, we have PpXx
τxT
“ Lq “

şu`T

u
dt pKpx, t´ uq, pDT pL´, zq “ pDT px, L´q “ 0.

Proof. To show the convergence of
ř

ně0 |p
D,n
T px, zq|, it is sufficient to apply estimates (4.12) and (5.3) together

with the semigroup property to obtain

|ID,nT px, zq| ď CnT

#

ż

∆npT q

dsn

n´1
ź

i“0

psi ´ si`1q
´p1´ η2 q

+

gpcT, x´ zq

“ CnTT
nη{2 Γpη{2qn

Γp1` nη{2q
gpcT, x´ zq

so that we see that the series pDT px, zq “
ř

ně0 p
D,n
T px, zq is uniformly convergent for px, zq P R2 and satisfies the

mentioned Gaussian upper-bound. Proving the convergence of the series
ř

ně0 |p
K,npx, tq| requires greater effort.

We proceed by induction. For n “ 2, we apply estimate (5.3) for any β P r0, 1s and any px, z1, z2q P p´8, Ls
3,

|q̄z2s2 px, z2qŜz1s1´s2pz2, z1qK̂LT´s1pz1, t´ s1q| ď Cs
´
β
2

2 |L´ z2|
βgpcs2, x´ z2q|Ŝz1s1´s2pz2, z1q||K̂LT´s1pz1, t´ s1q|.

The key idea of the above inequality is to use the regularity of q̄z2s2 in order to remove the singularity appearing

in the kernel K̂LT´s1 . We now proceed by writing |L´ z2|
β ď |L´ z1|

β ` |z2 ´ z1|
β . For n “ 2, s0 “ t and z0 “ L,



28 NOUFEL FRIKHA, ARTURO KOHATSU-HIGA, AND LIBO LI

we can bound the term with L´ z1 by using (4.13), (4.12) and the space-time inequality

|L´ z1|
β |Ŝz1s1´s2pz2, z1q||K̂LT´s1pz1, t´ s1q| ď C2

T ps1 ´ s2q
´p1´ η2 qpt´ s1q

´
3´pη`βq

2

ˆ gpcpt´ s1q, L´ z1qgp2cps1 ´ s2q, z1 ´ z2q

ď C2
T

n´1
ź

i“0

psi ´ si`1q
´

3´pη`βq
2 gp2cpsi ´ si`1q, zi ´ zi`1q

where we require 3´pη`βq
2 ă 1 and β P r0, 1s. To satisfy these conditions, β is chosen such that 1´ η ă β ď 1.

For the term involving |z2´z1|
β , one first apply (4.12) and the order of the singularity for s1´s2 can be improved

using |z2 ´ z1|
β and the space-time inequality. Secondly, by using the |L´ z1|

β term and space-time inequality, we

improve the order of the singularity in the estimate of pKL given in (4.13). That is

|z2 ´ z1|
β |Ŝz1s1´s2pz2, z1q||K̂LT´s1pz1, t´ s1q| ď CT |L´ z1|

βps1 ´ s2q
´p1´ η2 q

ˆ gp2cps1 ´ s2q, z2 ´ z1q|K̂LT´s1pz1, t´ s1q|

ď C2
T

n´1
ź

i“0

psi ´ si`1q
´

3´pη`βq
2 gp2cpsi ´ si`1q, zi ´ zi`1q.

Hence we have shown the following estimates for n “ 2

|L´ z2|
β |Ŝz1s1´s2pz2, z1q||K̂LT´s1pz1, t´ s1q| ď 2C2

T

n´1
ź

i“0

psi ´ si`1q
´

3´pη`βq
2 gp2cpsi ´ si`1q, zi ´ zi`1q.

In general, suppose the following induction hypothesis holds for n´ 1, that is

|L´ zn´1|
β |K̂LT´s1pz1, t´ s1q|

n´2
ź

i“1

|Ŝzisi´si`1
pzi`1, ziq|

ď p2CT q
n´1

n´2
ź

i“0

psi ´ si`1q
´

3´pη`βq
2 gp2cpsi ´ si`1q, zi ´ zi`1q.(4.24)

To show that the above inequality holds for n and obtain the estimate for IK,n, we use the inequality |L´ zn|
β ď

|L´ zn´1|
β `|zn´ zn´1|

β valid for β P r0, 1s and from the induction hypothesis (4.24) and estimate (4.13), we have

|L´ zn|
β |K̂LT´s1pz1, t´ s1q|

n´1
ź

i“1

|Ŝzisi´si`1
pzi`1, ziq|

ď 2n´1pCT q
n
n´1
ź

i“0

pti ´ ti`1q
´

3´pη`βq
2 gp2cpsi ´ si`1q, zi ´ zi`1q ` |zn ´ zn´1|

β |K̂LT´t1pz1, t´ t1q|

ˆ

n´1
ź

i“1

|Ŝzisi´si`1
pzi`1, ziq|.

For the term associated with |zn´zn´1|
β , one applies (4.12) to |Ŝzn´1

sn´1´snpzn, zn´1q| and use the induction hypothesis

in (4.24) to obtain

|zn ´ zn´1|
β |K̂LT´s1pz1, t´ s1q|

”

n´1
ź

i“1

|Ŝzisi´si`1
pzi`1, ziq|

ı

ď CT psn´1 ´ snq
´

3´pη`βq
2 gpcpsn´1 ´ snq, zn´1 ´ znq|L´ zn´1|

β |K̂LT´s1pz1, t´ s1q

”

n´2
ź

i“1

|Ŝzisi´si`1
pzi`1, ziq|

ı

ď 2n´1pCT q
n
n´1
ź

i“0

psi ´ si`1q
´

3´pη`βq
2 gp2cpsi ´ si`1q, zi ´ zi`1q.
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Therefore by combining the two terms we have shown that (4.24) holds for n, that is

|L´ zn|
β |K̂LT´s1pz1, t´ s1q|

”

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq|

ı

ď p2CT q
n
n´1
ź

i“0

psi ´ si`1q
´

3´pη`βq
2 gp2cpsi ´ si`1q, zi ´ zi`1q.(4.25)

We consider the integrand in IK,n and by applying (5.3) to q̄znsn px, znq and (4.25)

|q̄znsn px, znq K̂
L
T´s1pz1, t´ s1q

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq|

ď Cs
´
β
2

n gpcsn, x´ znq|L´ zn|
β |K̂LT´s1pz1, t´ s1q|

n´1
ź

i“1

|Ŝzisi´si`1
pzi`1, ziq|

ď Cp2CT q
ngpcsn, x´ znqs

´
β
2

n

n´1
ź

i“0

psi ´ si`1q
´

3´pη`βq
2 gp2cpsi ´ si`1q, zi ´ zi`1q.

From the semigroup property and Lemma 5.4, we derive

|IK,npx, tq| ď Cp2CT q
n

#

ż

∆nptq

dsn s
´
β
2

n

n´1
ź

j“0

psi ´ si`1q
´

3´pη`βq
2

+

gp2ct, L´ xq

“ Cp2CT q
nt´

β
2`np

η`β
2 ´ 1

2 q
Γnpη`β2 ´ 1

2 qΓp1´
β
2 q

Γp1´ β
2 ` np

η`β
2 ´ 1

2 qq
gp2ct, L´ xq.(4.26)

The above shows that the n-th term is finite and the series
ř

n |p
K,npx, tq| converges absolutely for every px, tq P

RˆR˚` and uniformly in px, tq P RˆKT where KT is any compact set of p0, T s. The Gaussian upper-bound (4.23)
also follows (4.26).

To show that the infinite sum and the integral can be interchanged, we apply Fubini-Tonelli’s theorem. Using

the fact that h is bounded and the series
ř

ně0 |p
D,n
T px, yq| is convergent and satisfies the Gaussian upper bounded

given in (4.23).
ż L

´8

dy |hpu` T, yq|
ÿ

ně0

| pD,nT px, yq| ă 8

By using the fact that h is bounded, one has

ÿ

ně0

ż T

0

dt hpu` t, Lq|pK,npx, tq| ď |h|8
ÿ

ně0

ż T

0

dt |pK,npx, tq|.

To show that the infinite sum in the right-hand side above is finite, we use the estimate of |IK,npx, tq| in (4.26)
to show that for n ě 1,

ż T

0

dt |IK,npx, tq| ď

ż T

0

dt t´
β
2´

1
2`np

η`β´1
2 q

Γp1´ β
2 qΓp

η`β´1
2 qn

Γp1´ β
2 ` np

η`β´1q
2 qq

“

»

–

T
1´β

2 `np η`β´1
2 q

1´β
2 ` n

´

η`β´1
2

¯

fi

fl

Γp1´ β
2 qΓp

η`β´1
2 qn

Γp1´ β
2 ` np

η`β´1
2 qq

which forms a convergent series since β P p1´ η, 1s. �

By using an appropriate approximation argument, we can extend the statement of Theorem 4.2 for bounded
measurable drift coefficients. That is, we remove the continuity hypothesis of b on p´8, Ls.

Theorem 4.3. Under assumption (H2), all statements of Theorem 4.1, Theorem 4.2 and Corollary 4.2 hold.

Proof. The proof is given in subsection 5.4 of the appendix. �

Remark 4.4. A careful reading of the proofs of the main results obtained in this section show that we do not have to
impose regularity assumptions of the coefficients b and σ on the whole real line but only on the interval p´8, Ls. In
particular, one may obtain similar results by only assuming that b is bounded and continuous on p´8, Ls and that
a “ σ2 is uniformly elliptic and η-Hölder continuous on p´8, Ls. We introduced assumption (H2) in order to make
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the approximation argument of Theorem 4.3 work properly, that is in order to construct a sequence of probability
measure pPN qNě1(on the path space) that converges to the probability measure P induced by X the unique weak
solution to (1.1). We do not know if such argument works if one only assumes that b is bounded measurable on
p´8, Ls and a “ σ2 is uniformly elliptic and η-Hölder continuous on p´8, Ls.

Now that we have obtained the parametrix expansion for the density, we study the differentiability of the functions
x ÞÑ pDT px, zq and x ÞÑ pKT px, tq, as well as Gaussian bounds for their first partial derivatives.

Theorem 4.5. Let T ą 0. Assume that (H2) holds. For any pz, tq P p´8, Ls ˆ p0, T s, the functions pDT px, zq and
pKpx, tq given in Theorem 4.2 are differentiable with respect to x P p´8, Ls. Moreover, for some positive C, c ą 1,
for all pt, zq P p0, T s ˆ p´8, Ls, the following Gaussian upper-bounds hold

(4.27) |Bxp
Kpx, tq| ď

C

t
gpct, L´ xq and |Bxp

D
T px, zq| ď

C

T 1{2
gpcT, z ´ xq.

Similarly, one has BxPpu ` τxT “ u ` T q “
şL

´8
dz Bxp

D
T px, zq, BxPpXx

τxT
“ Lq “

şT

0
dt Bxp

Kpx, tq and the following

bounds hold

|BxPpu` τxT “ u` T q| ď CgpcT, L´ xq,

|BxPpXx
τxT
“ Lq| ď

C

T 1{2
gpcT, L´ xq.

Proof. By dominated convergence theorem, for x P p´8, Ls, one has

BxI
D,n
T px, zq “

ż

∆npT q

dsn

ż

p´8,Lsn
dzn Bxq̄

zn
tn px, znqŜ

z
T´s1pz1, zq

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq

where we used the following estimate

@px, zq P p´8, Ls2, |Bxq̄
z
t px, zq| ď

CT

t
1
2

gpct, x´ zq

and similarly to the proof of Theorem 4.2, using Lemma 5.4, we obtain the bound

|BxI
D,n
T px, zq| ď CnT

#

ż

∆npT q

dsn s
´ 1

2
n

n´1
ź

i“0

psi ´ si`1q
´p1´ η2 q

+

gpcT, z ´ xq

“ CnTT
´ 1

2`n
η
2

Γnpη2 qΓp
1
2 q

Γp 1
2 ` n

η
2 q
gpcT, z ´ xq(4.28)

and, from the asymptotics of the Gamma function, the series
ř

ně0 BxI
D,n
T px, zq converges absolutely and uniformly

for px, zq P R2 and one has Bxp
D
T px, zq “

ř

ně0 Bxp
D,n
T px, zq. The Gaussian bound (4.27) also follows from (4.28).

Similarly, we have

BxI
K,npx, tq “

ż

∆nptq

dsn

ż

p´8,Lsn
dzn Bxq̄

zn
sn px, znqK̂

L
T´s1pz1, t´ s1q

n´1
ź

i“1

Ŝzisi´si`1
pzi`1, ziq.

For β P r0, 1s, we use the following estimate

|Bxq̄
z
t px, zq| ď C

|L´ z|β

t
1`β

2

gp2āt, x´ zq

and select β P p1´ η, 1q. Now using the same proof as in Theorem 4.2 (we omit the induction argument), one gets

BxI
K,npx, tq ď CnT

#

ż

∆nptq

dsn t
´

1`β
2

n´1
ź

i“0

psi ´ si`1q
´

3´pη`βq
2

+

gpct, L´ xq

“ CnT t
´

1`β
2 `n η`β´1

2
Γnpη`β´1

2 qΓp 1´β
2 q

Γp 1´β
2 ` npη`β´1

2 qq
gpct, L´ xq(4.29)

which shows that the series
ř

ně0 BxI
K,npx, tq converges absolutely for px, tq P R ˆ R˚` and uniformly for px, tq P

R ˆ KT , KT being any compact set of p0, T s, and that one has Bxp
Kpx, tq “

ř

ně0 BxI
K,npx, tq. The Gaussian

upper-bound (4.27) follows from (4.29). The bounds for the derivatives of the probabilities are also obtained from
(4.27). �
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Remark 4.6. Similarly to the forward method, in order to investigate the differentiability of t ÞÑ pKpx, tq, one is
naturally led to differentiate the representation (4.22) with respect to t. The difficulty comes when one tries to

differentiate the K̂LT´s1pz1, t´ s1q term with respect to t which involves the derivatives of t ÞÑ B2
z1f

z
τ̄ pz1, t´ sq. The

singularity in time then prevents us to do so unless additional smoothness assumptions on the coefficients b and σ
are provided. Again, this phenomenon does not appear in the standard diffusion framework because the density
fzτ̄ pz, t´ sq is replaced by a Gaussian density.

4.3. Applications.

We conclude this section, by giving some applications of the results established in Theorem 4.2 and Theorem 4.5.
From the Gaussian upper bounds satisfied by pKpx, tq, pDT px, zq and their derivatives with respect to x, we claim:

Corollary 4.1. Let T ą 0 and x P p´8, Lq be fixed. Then, the following upper bounds

|ErhpτxT , Xx
τxT
qs| ď

ż T

0

ds|hps, Lq|
1
?
s
gpcs, x´ Lq `

ż L

´8

dz |hpT, zq|gpcT, x´ zq,

|BxErhpτxT , Xx
τxT
qs| ď

ż T

0

ds|hps, Lq|
1

s
gpcs, x´ Lq `

ż L

´8

dz |hpt, zq|
1
?
T
gpcT, x´ zq,

hold for any Borel function h defined on R` ˆ p´8, Ls as soon as the above integrals are finite.

Similarly to the forward case, the above bounds may be useful since combined with Theorem 4.2 and Theorem
4.5 they allow to establish the continuity of the maps x ÞÑ ErhpτxT , Xx

τxT
qs and x ÞÑ BxErhpτxT , Xx

τxT
qs on p´8, Lq for

a large class of test function. Although an approximation argument on the function h is needed, we omit the proof
of Corollary 4.1.

Corollary 4.2. For x ă L, the first hitting time τx has a probability density function given by t ÞÑ pKpx, tq defined

on p0,8q and an atom of size limTÒ8

şL

´8
dz pDT px, zq at infinity.

Proof. For every T ą 0, note that the law of τx restricted to r0, T q is equal to the law of τx^T restricted to r0, T q,
since for any borel set A P BpR`q

Ppτx P A, 0 ď τx ă T q “ Ppτx ^ T P A, 0 ď τx ^ T ă T q.

From Theorem 4.2, we have,
ż

R`
1r0,T qptq1AptqPpτx P dtq “

ż

R`
1r0,T qptq1Aptqp

Kpx, tqdt

which shows that pKpx, tq1r0,T qptq is non-negative almost everywhere with respect to the Lebesgue measure. This

implies that t ÞÑ pKpx, tq is non-negative almost everywhere on r0,8q. Therefore, letting T Ò 8 by monotone
convergence theorem, we have

ż

R`
1r0,8qptq1AptqPpτx P dtq “

ż

R`
1r0,8qptq1Aptqp

Kpx, tqdt.

To compute the atom at infinity, we see that

Ppτx ě T q “ Ppτx ^ T ě T q

and by Theorem 4.2

Ppτx ě T q “

ż L

´8

dz pDT px, zq.

The left hand side in the above is non-negative and decreasing with respect to T , therefore the limit as T Ò 8 exists
and

Ppτx “ 8q “ lim
TÒ8

ż L

´8

dz pDT px, zq “ 1´

ż 8

0

dt pKpx, tq.

�
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Remark 4.7. We make the two following remarks. Firstly, in general given the solution X to a SDE with inital
condition x and the corresponding hitting time τx of a level L, the existence/size of the atom Ppτx “ 8q depends
on the form of the drift and is usually a non-trivial quantity. For example, in the case of Brownian motion with a
negative constant linear drift, that is Xt “ bt`Bt for b ă 0, the atom is of size 1´ e2|b|L. Secondly, we see that for
T ą 0, Ppmax0ďsďT Xs ă Lq “ Ppτx ą T q and therefore

ż T

0

pKpx, tqdt “ Pp0 ď τx ă T q “ 1´

ż L

´8

dz pDT px, zq

by differentiating with respect to T , we observe that for t P p0,8q, pKpx, tq “ ´Bt
şL

´8
dz pDt px, zq.

We now aim at providing a probabilistic representation of the transition density using the backward parametrix
method. For x ă L, we use the change of variables si “ T ´ ti and si “ t´ ti for i “ 1, . . . , n for (4.19) and (4.20)
respectively to obtain for any bounded measurable test function h,

ID,nT hpu, xq “

ż

dz hpu` T, zq

ż

∆˚n pT q

dtn

ż

p´8,Lsn
dzn q̄

zn
T´tn

px, znqŜzt1pz1, zq
n´1
ź

i“1

Ŝziti`1´tipzi`1, ziq,

IK,nhpu, xq “

ż

ds hpu` s, Lq

ż

∆˚n ptq

dtn

ż

p´8,Lsn
dzn q̄

zn
t´tnpx, znq K̂

L
t1`T´tpz1, t1q

n´1
ź

i“1

Ŝziti`1´tipzi`1, ziq.

We first notice that q̄zt px, zq “ q̄zt pz, xq and proceed similarly to the forward method except the role of z and x is
reversed. We set

Ŝzt px, zq “
"

1

2
rapxq ´ apzqs B2

xq̄
z
t px, zq ` bpxqBxq̄

z
t px, zq

*

1txăLu1tzăLu

:“ ϑtpz, xqq̄
z
t pz, xq1txăLu1tzăLu,

where

ϑtpz, xq :“
1

2
papxq ´ apzqqµ̂2

t pz, xq ` bpxqµ̂
1
t pz, xq,

µ̂1
t px, zq :“ H1papzqt, z ´ xq ´

1

apzqt

2pL´ zq

pexpp 2pL´zqpL´xq
apzqt q ´ 1q

,

µ̂2
t px, zq :“ H2papzqt, z ´ xq ´

1

a2pzqt2
4pL´ zqpL´ xq

pexpp 2pL´zqpL´xq
apxqt q ´ 1q

.

We can write for n “ 2,
ż L

´8

dz1 Ŝzt1pz1, zqŜz1t2´t1pz2, z1q “ Erϑt1pz, X̄z
t1qŜ

X̄zt1
t2´t1pz2, X̄

z
t1q1tτ̄ząs1us

“ Erϑ̂t1pz, X̄z
t1qŜ

X̄zt1
t2´t1pz2, X̄

z
t1qs,

where, similarly to the forward probabilistic representation, we introduced

(4.30) ϑ̂tpz, xq :“ ϑtpz, xqΛtpz, xq.

From (4.12), we note that Er|ϑ̂tpz, X̄z
t q|s ď CT t

´p1´η{2q for t P p0, T s, which in particular implies that ϑ̂tpz, X̄
z
t q P

L1pPq. For a given time partition π : 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn ă tn`1 “ T and z P R, we define X̄π,z “ pX̄π,z
ti q0ďiďn`1

to be the following Euler scheme

X̄π,z
ti`1

“ X̄π,z
ti ` σpX̄π,z

ti qpWti`1 ´Wtiq(4.31)

X̄π,z
t0 “ z.

Hence, by induction pt0 “ 0q, we obtain
ż

p´8,Lsn
dzn q̄

zn
T´tn

px, znqŜzt1pz1, zq
n´1
ź

i“1

Ŝziti`1´tipzi`1, ziq “ E
”

q̄
X̄π,ztn

T´tn
px, X̄π,z

tn q

n´1
ź

i“0

ϑ̂ti`1´tipX̄
π,z
tn , X̄π,z

tn`1
q

ı

.

Let pNptqqtě0 be a Poisson process with intensity parameter λ ą 0 independent from X̄π,z, and define N :“
NpT q. Let ζ1 ă ζ2 ă . . . ζN be the event times of the Poisson process and we set ζ0 “ 0, ζN`1 “ T . We
know that conditional on N “ n, the distribution of the event times follows a uniform order statistic given by
PpNT “ n, ζ1 P dt1, . . . , ζn P dtnq “ λne´λT dti on the set ∆˚i pT q “ ttn P r0, T s

n : 0 ă t1 ă t2 ă ¨ ¨ ¨ ă tn ă T u. We
still denote by π the random time partition π : ζ0 “ 0 ă ζ1 ă ¨ ¨ ¨ ă ζn`1 “ T and X̄π,z “ pX̄π,z

ζi
q0ďiďn`1 and its



ON THE FIRST HITTING TIMES FOR ONE-DIMENSIONAL ELLIPTIC DIFFUSIONS 33

associated Euler scheme defined in (4.31). As a consequence, given a random variable Z independent from X̄π,z

and the Poisson process N with density function g, we may rewrite ID,nT hpu, xq in a probabilistic way as follows

ID,nT hpu, zq “ E
”

ż

R
dz hpu` T, zqeλT q̄

X̄π,zζN

T´ζN
px, X̄π,z

ζN
qλ´N

N´1
ź

i“0

ϑ̂ζi`1´ζipX̄
π,z
ζi
, X̄π,z

ζi`1
q1tN“nu

ı

, n ě 0.

“ E
”

eλT hpu` T,ZqgpZq´1q̄
X̄π,ZζN

T´ζN
px, X̄π,Z

ζN
qλ´N

N´1
ź

i“0

ϑ̂ζi`1´ζipX̄
π,Z
ζi

, X̄π,Z
ζi`1

q1tN“nu

ı

, n ě 0.

We now consider IK,nhpu, xq. We note that the derivatives of fyτ̄ px, tq are given by

Bxf
y
τ̄ px, tq “

„

L´ x

apyqt
´

1

L´ x



fyτ̄ px, tq :“ H̄1papyqt, L´ xqf
y
τ̄ px, tq,

B2
xf

y
τ̄ px, tq “

„

pL´ xq2

apyq2t2
´

3

apyqt



fyτ̄ px, tq :“ H̄2papyqt, L´ xqf
y
τ̄ px, tq,

and write K̄tpx, sq “ ϑ̃Lpx, sqf
L
τ̄ px, sq1tsătu with ϑ̃Lpx, sq :“ 1

2 rapxq ´ apLqs H̄2papLqs, L´xq`bpxqH̄1papLqs, L´xq.
With the above notations, performing the change of variables t´ ti “ sn´i`1 and zi “ yn´i`1 for i “ 0, . . . , n, we
can write

IK,npx, tq “

ż

∆˚n ptq

dsn

ż

p´8,Lsn
dyn ϑ̃Lpyn, t´ snqf

L
τ̄ pyn, t´ snqq̄

y1
s1 px, y1q

n´1
ź

i“1

ϑsi`1´sipyi`1, yiqq̄
yi`1

si`1´sipyi, yi`1q

where, as convention, we set s0 “ 0, sn`1 “ t, y0 “ x and yn`1 “ L. We use the idea of importance sampling and
rewrite the integrand in the above as the following,

#

ϑ̃Lpyn, t´ snqf
L
τ̄ pyn, t´ snq

q̄y1
s1 px, y1q

q̄xs1px, y1q

n´1
ź

i“1

ϑsi`1´sipyi`1, yiq
q̄
yi`1

si`1´sipyi, yi`1q

q̄yisi`1´sipyi, yi`1q

+

n´1
ź

i“0

q̄yisi`1´sipyi, yi`1q

and define the weights

ϑ̃itpz, xq :“

#

q̄zt px,zq
q̄xt px,zq

i “ 0

ϑ̂tpz, xq
q̄zt px,zq
q̄xt px,zq

i “ 1, . . . , n´ 1.

where ϑ̂tpz, xq is defined in (4.30). Therefore by integrating against dyn, using the Euler scheme X̄π,z defined in
(4.31) except with initial condition z “ x, and the conditional distribution of the ordered jump times of the Poisson
process N , we can write for n ě 1,

IK,nhpu, xq “ E
“

ż

R`
dt hpu` t, Lq

ż

∆˚n ptq

dsn f
L
τ̄ pX̄

π,x
sn , t´ snqϑ̃LpX̄

π,x
sn , t´ snq

n´1
ź

i“0

ϑ̃isi`1´sipX̄
π,x
si`1

, X̄π,x
si q

‰

“ eλTE
”

hpu` ζN ` τ̄
X̄π,xζN , Lqλ´N1

t0ăτ̄
X̄
π,x
ζN ăT´ζNu

ϑ̃LpX̄
π,x
ζN

, τ̄
X̄π,xζN q

N´1
ź

i“0

ϑ̃iζi`1´ζipX̄
π,x
ζi`1

, X̄π,x
ζi
q1tN“nu

ı

.

We point out that the form of the above probabilistic representation for the IK,nhpu, xq is different from the one
introduced in Bally and Kohatsu-Higa [BKH15], where the Euler scheme therein has initial value z, which represents
the terminal value of the process X. In the current case, the change of variable and the use of importance sampling,
effectively reversed the direction of the Euler scheme and similarly to the forward method, the initial value now is
x, which represents the initial value of the process X. We believe that the final representation derived here is more
intuitive from a simulation point of view.

Theorem 4.8. Let T ą 0. Assume that (H2) holds. Define the two sequences pΓ̄DN pzqqNě0 and pΓ̄KN pxqqNě0 as
follows

Γ̄DN pzq “

#

λ´N
śN´1
i“0 ϑ̄ζi`1´ζipX̄

π,z
ζi
, X̄π,z

ζi`1
q if N ě 1,

1 if N “ 0

and

Γ̄KN pxq :“

$

&

%

λ´N1
t0ăτ̄

X̄
π,x
ζN ăT´ζNu

ϑ̃LpX̄
π,x
ζN

, τ̄
X̄π,xζN q

śN´1
i“0 ϑ̃iζi`1´ζi

pX̄π,x
ζi`1

, X̄π,x
ζi
q N ě 1

1 N “ 0.
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Then, the following probabilistic representation holds. Let Z be a random variable independent from X̄π,x and the
Poisson process N with positive density function g. Then, for any test function h P BbpR`ˆRq, for all x P p´8, Ls,
one has

ErhpτxT , Xx
τxT
qs “ eλTE

“

hpT,ZqgpZq´1q̄
X̄π,ZζN

T´ζN
px, X̄π,Z

ζN
qΓ̄DN pZq

‰

` eλTE
“

hpζN ` τ̄
X̄π,xζN , LqΓ̄KN pxq

‰

.

Moreover, a probabilistic representation for the transition density holds, namely

@x P p´8, Ls, pT p0, x, dt, dzq “ δT pdtqp
D
T px, zq ` δLpdzqp

Kpx, tq

with for all pt, xq P p0, T s ˆ p´8, Ls,

pDT px, zq “ eλTE
”

q̄
X̄π,zζN

T´ζN
px, X̄π,z

ζN
qΓ̄DN pzq

ı

,

pKpx, tq “ eλTE
”

fLτ̄ pX̄
π,x
ζN

, t´ ζN qΓ̄
K
N pxq

ı

.

Corollary 4.3. From Theorem 4.8, for any h P BbpRq, one has

BxErhpXx
T q1tτxąT us “ eλTE

“

hpZqgpZq´1µ̂1
T´ζN px, X̄

π,Z
ζN
qq̄
X̄π,ZζN

T´ζN
px, X̄π,Z

ζN
qΓ̄DN pZq

‰

,

where the density of Z is given by the positive function g.

5. Appendix

5.1. On some useful technical results.

Lemma 5.1. For all pu, yq P R` ˆ p´8, Lq and h P CbpR` ˆ p´8, Lsq, one has

lim
εÑ0

ż L

´8

dz hpu` ε, zqq̄zε py, zq “ hpu, yq.

Proof. It is sufficient to write

ż L

´8

dz hpu` ε, zqq̄zε py, zq

“

ż L

´8

dz hpu` ε, zqq̄yε py, zq `

ż L

´8

dz hpu` ε, zq rq̄zε py, zq ´ q̄
y
ε py, zqs

“ Erhpu` ε, X̄y
ε q1tτ̄yěεus `

ż L

´8

dz hpu` ε, zq rq̄zε py, zq ´ q̄
y
ε py, zqs .

By the dominated convergence theorem and the fact that τ̄y ą 0 a.s. since y ă L, one gets

lim
εÓ0

Erhpu` ε, X̄y
ε q1tτ̄yěεus “ hpu, yq.

Hence, it is sufficient to show that the second term converges to zero. Using (5.3) and the Hölder regularity of a,
we can bound the second term by

|h|8

ż L

´8

dz |q̄zε py, zq ´ q̄
y
ε py, zq| ď Cεη{2|h|8

which converges to zero as ε Ó 0. �

In order to prove the convergence of the parametrix series, we need to study the two proxy kernels: the proxy
killed diffusion kernel and the proxy exit time kernel. The density q̄yt and its derivatives are given by

q̄yt px, zq “ gpapyqt, z ´ xq ´ gpapyqt, z ` x´ 2Lq,

Bxq̄
y
t px, zq “

ˆ

z ´ x

apyqt
gpapyqt, z ´ xq ´

L´ x` L´ z

apyqt
gpapyqt, L´ x` L´ zq

˙

B2
xq̄
y
t px, zq “

ˆˆ

pz ´ xq2

apyq2t2
´

1

apyqt

˙

gpapyqt, z ´ xq ´

ˆ

pL´ z ` L´ xq2

apyq2t2
´

1

apyqt

˙

gpapyqt, L´ x` L´ zq

˙
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and

Bz q̄
y
t px, zq “

ˆ

´
z ´ x

apyqt
gpapyqt, z ´ xq `

z ` x´ 2L

apyqt
gpapyqt, L´ x` L´ zq

˙

1txďLu1tzďLu,

(5.1)

B2
z q̄
y
t px, zq “

ˆˆ

pz ´ xq2

apyq2t2
´

1

apyqt

˙

gpapxqt, z ´ xq ´

ˆ

pL´ z ` L´ xq2

apyq2t2
´

1

apyqt

˙

gpapxqt, 2L´ x´ zq

˙

1txďLu1tzďLu

(5.2)

and at x “ L or z “ L, it is understood that we are always taking left-hand derivatives.

Lemma 5.2. Assume that (H1) (i) or (H2) (i) holds. For any β P r0, 1s, there exists C, c ą 1, such that for any
px, zq P p´8, Ls2 and r “ 0, 1, 2, the following estimates hold:

|Brxq̄
y
t px, zq| ď C

ˆ

|L´ z|β

t
r`β

2

^
1

t
r
2

˙

gpct, x´ zq, and |Brxf
y
τ̄ px, tq| ď

C

t
r`1

2

gpct, L´ xq.(5.3)

Proof. From the expression of q̄yt px, zq, the following estimates for q̄yt px, zq and its derivatives hold

|q̄tpx, zq| ď Cgp2āt, z ´ xq ` Cgp2āt, z ` x´ 2Lq

|Bxq̄
y
t px, zq| ď C

1

t
1
2

gp2āt, z ´ xq ` C
1

t
1
2

gp2āt, L´ x` L´ zq

|B2
xq̄
y
t px, zq| ď C

1

t
gp2āt, z ´ xq ` C

1

t
gp2āt, L´ x` L´ zq.

Furthermore, for px, zq P p´8, Ls2, one has gpct, z ´ x´ 2pL´ xqq ď gpct, z ´ xq, since in the exponent

pz ´ xq2 ´ 4pL´ xqpz ´ xq ` 4pL´ xq2 “ pz ´ xq2 ´ 4pL´ xqpz ´ L` L´ xq ` 4pL´ xq2

“ pz ´ xq2 ` 4pL´ xqpL´ zq

ě pz ´ xq2.

To derive the bound with the |L´ z|β term, we consider first the case where 4|L´ z|2 ď t, to estimate q̄yt px, zq “
gpapyqt, x ´ zq ´ gpapyqt, x ´ p2L ´ zqq one apply the mean value theorem to gpapyqy, x ´ zq with respect to the
points z and 2L´ z to obtain for some θ P r0, 1s,

|q̄yt px, zq| “ |tz ´ p2L´ zquBxgpapyqt, x´ θz ´ p1´ θqp2L´ zqq|

ď C
|z ´ L|β

t
β
2

gp2āt, x´ θz ´ p1´ θqp2L´ zqq

ď C
|z ´ L|β

t
β
2

gp4āt, x´ zq

where in the second line we have used the space-time inequality and fact that 21´β |L´ z|1´β ă t
1´β

2 and the last
line we have used Lemma 5.3 with y˚ “ 2L´ z and y “ z.

For the case that 4|L´ z|2 ą t, by using triangular inequality we have 4|L´ z|2 ą t

|q̄zt px, zq| ď C
|L´ z|β

t
β
2

gp4āt, x´ zq.

The proof of the first and second derivatives of q̄zt px, zq as well as the estimates on

Brxf
y
τ̄ px, sq “ apyqBr`1

x gpapyqs, L´ xq1txăLu

follow similar arguments and details are omitted.
�

Lemma 5.3. Given y, y˚ P R and ȳ P ry ^ y˚, y _ y˚s, suppose |y˚ ´ y|2 ď v, then for any ε ą 0

gpCv, x´ ȳq ď

ˆ

1`
1

ε

˙1{2

e
ε
C gpCεv, x´ y

˚q.

Here Cε :“ Cp1` 1
ε q.
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Proof. Using Young’s inequality, we have that for any ε ą 0, |x|2 ´ p1` εq|y|2 ď p1` 1
ε q|x´ y|

2, we obtain that

p1`
1

ε
q|x´ y˚ ´ pȳ ´ y˚q|2 ě |x´ y˚|2 ´ p1` εq|ȳ ´ y˚|2 ě |x´ y˚|2 ´ p1` εq|y ´ y˚|2

On the set |y˚ ´ y|2 ď v, we have that p1` 1
ε q|x´ y

˚ ´ pȳ ´ y˚q|2 ě |x´ y˚|2 ´ p1` εqv and therefore e´
|x´ȳ|2

2Cv ď

e´p1`
1
ε q
´1 |x´y

˚|2

2Cv e
ε
C . �

5.2. On some Beta type integral.

Lemma 5.4. Let b ą ´1 and a P r0, 1q. Then for any t0 ą 0,
ż

∆npt0q

dtn t
b
n

n´1
ź

j“0

ptj ´ tj`1q
´a “

t
b`np1´aq
0 Γnp1´ aqΓp1` bq

Γp1` b` np1´ aqq

Proof. Using the change of variables s “ ut, one has
ż t

0

sbpt´ sq´ads “ tb`1´a

ż 1

0

ubp1´ uq´adu “ tb`1´aBp1` b, 1´ aq

where Bpx, yq “
ş1

0
tx´1p1´ tqy´1dt stands for the standard Beta function. Using this equality repeatedly, we obtain

the statement. �

5.3. Markov semigroup property.

We will assume that there exists a unique weak solution to (1.1) for all x P R that satisfies the strong Markov
property and our goal is to prove that pτxt , X

x
τxt
qtě0 is a Markov process. The main result is given in Proposition

5.1. We first need the following preparative lemma.

Lemma 5.5. On the set tτxs ě su, one has

τxs`t “ s` τ
s,Xxs
s`t .

Proof. We just have to notice that on the set tτx ^ s ě su “ tτx ě su, the process pXx
t qtě0 never crosses the level

L before time s. Therefore, on the set tτxs ě su, one has

τx “ inf tv ě 0, Xx
v ě Lu

“ s` inf tv ě 0, X
s,Xxs
s`v ě Lu

“ s` τs,X
x
s

which in turn implies

τxs`t “ ps` τ
s,Xxs q ^ ps` tq

“ s` pτs,X
x
s ^ pt` s´ sqq

“ s` τ
s,Xxs
t .

�

We are now in position to prove the Markov property.

Proposition 5.1. The collection of positive linear maps pPtqtě0 given by (1.2) defines a Markov semigroup. Assume
that b, σ are bounded and Lipschitz continuous functions on R and that Ppτx “ tq “ 0 for all t ą 0 and x ă L.
Then, pPtqtě0 is a strongly continuous Feller semigroup.

Proof. Step 1: Semigroup property: Let h be a bounded continuous function. We first prove the semigroup property:
Pt`shpu, xq “ PsPthpu, xq. For x ě L, one has τx “ 0 so that the semigroup property reduces to Pt`shpu, xq “
hpu, xq “ PsPthpu, xq. For now on, we assume that x ă L. By the tower property of conditional expectation, it is
sufficient to show that

E
“

hpu` τxs`t, X
x
τxs`t

q
ˇ

ˇFτxs
‰

“ Pthpu` τ
x
s , X

x
τxs
q.(5.4)

The computation is done on the sets tτxs ă su and tτxs ě su separately. Firstly, on the set tτxs ă su “ tτx ă su,
the process pXx

v qvě0 hits the barrier L strictly before time s, therefore

E
“

hpu` τxs`t, X
x
τxs`t

q
ˇ

ˇFτxs
‰

1tτxs ăsu “ hpu` τxs , Lq1tτxs ăsu.
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On the other hand, on the set tτxs ě su “ tτu,x ě su, and using Lemma 5.5, we have

E
“

hpu` τxs`t, X
x
τxs`t

q
ˇ

ˇFτxs
‰

1tτxs ěsu “ E
“

hpu` τxs`t, X
x
τxs`t

q
ˇ

ˇFs
‰

1tτxs “su

“ E
“

hpu` s` τ
s,Xxs
t , X

s,Xxs

s`τ
s,Xxs
t

q
ˇ

ˇFs
‰

1tτxs “su

and by using the Markov property and time homogeneity, the above is equal to

E
“

hpu` s` τs,yt , Xs,y
s`τs,yt

q
‰
ˇ

ˇ

y“Xxs
1tτxs “su “ Pthpu` s,X

x
s q1tτxs “su.

Putting the above computations together, we obtain

E
“

hpu` τxs`t, X
x
τxs`t

q
ˇ

ˇFτxs
‰

“ hpu` τxs , Lq1tτxs ăsu ` Pthpu` s,X
x
s q1tτxs “su

Finally, on the set tτxs ă su, the process pXx
v qvě0 hits the barrier L before time s, therefore

Pthpu` τ
x
s , X

x
τxs
q1tτxs ăsu “ Pthpu` τ

x
s , Lq1tτxs ăsu

“ hpu` τxs , Lq1tτxs ăsu.

This completes the proof of (5.4) and therefore of the Chapman-Kolmogorov relation for pPtqtě0 follows.
Moreover, by dominated convergence, one has Pthpu, xq Ñ hpu, xq as t Ó 0. It now remains to prove that
PtC0pR`,Rq Ă C0pR`,Rq.

Second step: Continuity of pu, xq ÞÑ Pthpu, xq
Let pun, xnq Ñ pu, xq. From the Lipschitz continuity of the coefficients b, a, we deduce that max0ďtďT X

xn
t Ñ

max0ďtďT X
x
t in L2pPq as n Ñ `8 which in turn implies the convergence τxn Ñ τx in distribution. Moreover,

since τx ‰ t a.s., by the continuous mapping theorem we obtain

Erhpun ` τxn , Lq1tτxnďtus Ñ Erhpu` τx, Lq1tτxďtus, nÑ `8.

By similar arguments, one gets

Erhpun ` t,Xxn
t q1tτxnětus Ñ Erhpu` t,Xx

t q1tτxětus, nÑ `8.

Hence we conclude that pu, xq ÞÑ Pthpu, xq is continuous.
Third step: lim|pu,xq|Ñ`8 Pthpu, xq “ 0

For u ě 0, x ě L, one has Pthpu, xq “ hpu, xq so that limuÑ`8,xÑ`8 Pthpu, xq “ limuÑ`8 Pthpu, xq “
limxÑ`8 Pthpu, xq “ 0 for u ě 0 and x ě L. By dominated convergence theorem, one gets limuÑ`8 Pthpu, xq “ 0,
for all x P R. Hence it remains to prove that limuÑ`8,xÑ´8 Pthpu, xq “ limxÑ´8 Pthpu, xq “ 0 for u ě 0. Standard
estimates on (1.1) shows that supxPR Ermax0ďtďK |X

x
t ´ x|s ă 8, for every K ą 0. Now, for every K ą 0 and

x ă 0, one gets

Ppτx ď Kq “ Pp max
0ďtďK

Xx
t ´ x ě L´ xq ď

supxPR Ermax0ďtďK |X
x
t ´ x|s

L´ x
from which we deduce using standard inequalities and the fact that the coefficients b and σ are bounded that
τx Ñ `8 in probability as x Ñ ´8 in the sense that limxÑ´8 Ppτx ě Kq “ 1 for every K ą 0. Since h is
bounded, we easily get

(5.5) |Erhpu` τx, Lq1tτxďtus| ď |h|8Ppτx ď tq Ñ 0, xÑ ´8.

Moreover, using the decomposition Erhpu` t,Xx
t q1tτxětus “ Erhpu` t,Xx

t qs´Erhpu` t,Xx
t q1tτxďtus with (5.5),

we see that it remains to prove that Erhpu` t,Xx
t qs goes to zero as xÑ ´8, uÑ `8 or xÑ ´8 and u ě 0.

Let K ą 0. We decompose this term as follows Erhpu` t,Xx
t qs “ Erhpu` t, x`Xx

t ´ xq1t|Xxt ´x|ďKus `Erhpu`
t,Xx

t q1t|Xxt ´x|ąKus. By dominated convergence, for u ě 0, one has

lim
xÑ´8,uÑ`8

Erhpu` t,Xx
t q1t|Xxt ´x|ďKus “ lim

xÑ´8
Erhpu` t,Xx

t q1t|Xxt ´x|ďKus “ 0

which combined with

Erhpu` t,Xx
t q1t|Xxt ´x|ěKus ď |h|8Pp|X

x
t ´ x| ě Kq ď |h|8

supxPR Er|Xx
t ´ x|s

K

yield

lim sup
xÑ´8,uÑ`8

|Erhpu` t,Xx
t qs| ď |h|8

supxPR Er|Xx
t ´ x|s

K
.

LettingK Ñ `8 allows to conclude limxÑ´8,uÑ`8 Erhpu`t,Xx
t qs “ 0 and the same argument gives limxÑ´8 Erhpu`

t,Xx
t qs “ 0 for u ě 0. This completes the proof. �
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5.4. Proof of Theorem 4.3. In this section, we will adopt the notation which appears in [Whi02]. We will prove
that Theorem 4.2 is true under (H2). Similar arguments also gives Theorem 4.1. By Theorem 174 of Kestelman
[Kes60] p.111, there exists a sequence of continuous functions pbN qNě1 such that

lim
NÑ8

bN “ b, a.e.(5.6)

sup
Ně1

|bN |8 ď |b|8.(5.7)

Let XN “ pXN
t qtě0 be the unique weak solution to the following one-dimensional SDE

XN
t “ x`

ż t

0

bN pX
N
s qds`

ż t

0

σpXN
s qdWs, t ě 0

and τN be its first hitting time of the barrier L. Let T ą 0. We first prove that for any h P C8,0b pR` ˆ Rq

PNT hpu, xq :“ Erhpu` τN ^ T,XN
τN^T qs Ñ Erhpu` τ ^ T,Xτ^T qs, N Ñ8.(5.8)

We remark that Erhpu ` T,XN
τN^T qs “ Erhpu ` T,XN

T q1tτNąT us ` hpu ` T, LqPpτN ď T q and Erhpu ` τN ^

T, Lqs “ Erhpu ` τN , Lq1tτNďT us ` hpu ` T, LqPpτN ą T q so that adding the two decompositions we obtain

Erhpu` T,XN
τN^T qs `Erhpu` τN ^ T, Lqs “ Erhpu` τN ^ T,XN

τN^T qs ` hpu` T, Lq. Consequently, we can make

use of the following decomposition: Erhpu`τN^T,XN
τN^T qs “ Erhpu`T,XN

τN^T qs`Erhpu`τ
N^T, Lqs´hpu`T, Lq

and prove the convergence of both terms: Erhpu` T,XN
τN^T qs and Erhpu` τN ^ T, Lqs.

‚ Step 1: Convergence of pErhpu` T,XN
τN^T qsqNě1.

Let Ω “ Cpr0,8q,Rq equipped with the topology of uniform convergence on bounded intervals and Xtpwq “ wptq.
If pPN qNě1 denotes the sequence of probability measures on Ω induced by the sequence pXN qNě1, we know from
Theorem 11.3.3 of Stroock and Varadhan [SV79] that pPN qNě1 converges weakly to the measure P (unique) solution
of the martingale problem, induced by X the (unique) weak solution to the SDE with drift coefficient b. Define the
mapping g : Ω Ñ Ω by gpwqptq “ Xτ^tpwq “ Xt1ttăτu ` L1ttěτu. Then, g is discontinuous at w if and only if w
leaves rL,8q after τ without visiting pL,8q, that is if TL ˝ θτ pωq ą 0, where TL is the first hitting time associated
to X of the set pL,8q and θ denotes the shift operator (see Bass [Bas97], p.66 for a similar argument). By the
strong Markov property, one has

PxpTL ˝ θτ ą 0q “ ExrPLpTL ą 0qs “ PLpTL ą 0q.

Since b, σ are bounded on R and a “ σ2 is uniformly elliptic, one has PLpTL ą 0q “ 0. Hence, if Cg is the set
of discontinuities of g one has PpCgq “ 0 so that by the continuous mapping theorem: pPN ˝ g´1qNě1 converges
weakly to P ˝ g´1. As a consequence, limNÑ`8 Erhpu` T,XN

τN^T qs “ Erhpu` T,Xτ^T qs. This completes the first
step of the proof.

‚ Step 2: Convergence of pErhpu` τN ^ T, LqsqNě1.
Without loss of generality, we assume that the initial condition x0 and the barrier L satisfy 0 ď x0 ă L. For the
case that L is negative, we consider the hitting time of |L| for the process ´X. Let Du be the subspace of Dr0,8q
(the set of all R-valued functions on r0,8q that are càdlàg for all t P r0,8q) that are unbounded above and have
non-negative initial value. (Definitions given on p.532, section 13.6 in Whitt [Whi02]).

We consider the maps rT , T : Cr0,8q Ñ Cr0,8q, where

Ttpwq :“ min ts ą 0 : ws ą tu

rTtpwq :“ min ts ą 0 : ws ě tu

and the map S : w Ñ S¨pwq “ max0ďsď¨ ws. The map S is continuous on Dr0,8q in the J1 topology (we refer to
section 3.3 in [Whi02] for the definition of the J1 metric). For the definition of the M2 topology, we refer to p.504
of [Whi02]. Our aim is to apply Theorem 13.6.4 [Whi02] that we now recall.

Theorem 5.1. (continuity of first-passage-time-functions) Let w P Du that is not equal to z ą 0 throughout the
interval pTzpwq ´ ε, Tzpwqq for any ε ą 0. If wn Ñ w in pD,M2q then as nÑ8,

Tzpwnq Ñ Tzpwq.

Remark 5.2. Note that the set of paths which does not take the value L through the interval pTLpwq ´ ε, TLpwqq
for any ε ą 0 is the complement of the set

A :“ tw : rTLpwq ă TLpwqu “ tw : w leaves rL,8q immediately upon hitting Lu
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and using a similar argument as in Step 1, the probability that the path of X or XN is in A is zero. This implies

that TLpXq “ rTLpXq and for all N ě 1, TLpX
N q “ rTLpX

N q.

As explained on page 460 of [Whi02], XN ñ X in pCr0,8q,M2q is equivalent to XN ñ X in pCr0,8q, J1q.
Therefore, in the following, all convergence in Cr0,8q means convergence in the J1 topology. At this point, it is not
clear that the process X P Du. To overcome this issue, we assume without loss of generality that the probability
space pΩ,Pq is rich enough to support an independent Brownian motion W . We consider the processes

X̃N
t “ XN

T^t `Wt ´WT^t,

X̃t “ XT^t `Wt ´WT^t.

The processes X̃N and X̃ induce a family of probability measures P̃N and P̃ on Cr0,8q.

Lemma 5.6. The family of measures P̃ and P̃N satisfies the following properties
(i) P̃N ñ P̃ or equivalently X̃N ñ X̃.

(ii) Under P̃, the set Du is of measure one.

(iii) Under P̃, the set A is of measure zero, where A “ tw : T̃Lpwq ă TLpwqu.

Proof. Given a path in w P Cr0,8q and T ą 0, we denote by wT the path stopped at the terminal time T , that
is for all t ě 0, wTt “ wt^T . (i) It is clear that the map px, yq Ñ pxT , y ´ yT q is continuous map from the space
pCr0,8q ˆ Cr0,8q, d1 _ d2q to itself, where di for i “ 1, 2 are the uniform metric on Cr0,8q. It is know this
metric also induces the product J1-topology on Cr0,8qˆ Cr0,8q. By Corollary 12.7.1 in [Whi02], we have that the
addition map px, yq Ñ x` y is continuous. This shows that the map px, yq Ñ xT ` y ´ yT is a continuous map (in
the J1-topology) from Cr0,8q ˆ Cr0,8q to Cr0,8q. Using the fact that W is independent of XN and X, we have

pXN ,W q ñ pX,W q (see p.26 in Billingsley [Bil99]). Therefore by continuous mapping theorem, we have X̃N ñ X̃,

or equivalently P̃N ñ P̃. (ii) We show that under P̃, the set of paths for which the supremum increases to infinity
as time goes to infinity is of probability one. That is

P̃ptw : S8pwq “ 8uq “ PpS8pX̃q “ 8q

“ PpS8pX̃ ´ X̃T q “ 8q

“ Ppmax
sąT

pWs ´WT q “ 8q “ 1

where the last equality, follows from the law of iterated logarithm. (iii) The proof is similar to that of Step 1 or
Bass [Bas97], p.66. �

From Theorem 13.6.4 in [Whi02] and the continuous mapping theorem, one obtain for any f P CbpR`q,

lim
N

EpfpTLpXN q ^ T qq “ lim
N

EpfpTLpX̃N q ^ T qq

“ EpfpTLpX̃q ^ T qq
“ EpfpTLpXq ^ T qq.

One can also replace TL by rTL since these two times coincide for X and XN . Hence, we conclude that (5.8) is valid.

Now, from Theorem 4.2, the following representation holds

PNT hpu, xq “ hpu, xq1txěLu ` 1txăLu

ż u`T

u

ż L

´8

hpt, zq pNT pu, x, dt, dzq.

with

pNT pu, x, dt, dzq :“ pK,N px, t´ uqδLpdzqdt` p
D,N
T px, zqδu`T pdtqdz

and

pK,N px, tq :“
ÿ

ně0

pK,n,N px, tq and pD,NT px, zq :“
ÿ

ně0

pD,n,NT px, zq.
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Here, pD,1,NT px, zq “ q̄zT px, zq, p
K,1,N px, tq “ fLτ̄ px, tq, and

pD,n,NT px, zq “ ID,n,NT px, zq :“

ż

∆npT q

dsn

ż

p´8,Lsn
dzn q̄

zn
sn px, znqŜ

N,z
T´s1

pz1, zq
n´1
ź

i“1

ŜN,zisi´si`1
pzi`1, ziq,

pK,n,N px, tq “ IK,n,N px, tq :“

ż

∆nptq

dsn

ż

p´8,Lsn
dzn q̄

zn
sn px, znq K̂

L,N
T´s1

pz1, t´ s1q

n´1
ź

i“1

ŜN,zisi´si`1
pzi`1, ziq

and K̂L,N and Ŝz,N are the kernels defined by (4.5) and (4.4) with drift coefficient bN instead of b.

Moreover, for a fixed N the series defining pK,N px, tq, pD,NT px, zq converge absolutely and uniformly for px, t, zq P
R ˆKT ˆ R, where KT is any compact subset of p0, T s. Importantly, note that from (5.7), the positive constants
C, c ą 1 appearing in (4.12) and (4.13) (with bN instead of b) do not depend on N . Consequently, for all pt, zq P
p0, T s ˆ p´8, Ls, the following Gaussian upper-bounds hold

pK,N px, tq ď Ct´1{2gpct, L´ xq and pD,NT px, zq ď CgpcT, z ´ xq.

Now, from (5.6) and by using dominated convergence theorem, one derives

pDT px, zq :“ lim
NÑ8

pD,NT px, zq “ lim
NÑ8

ÿ

ně0

pD,n,NT px, zq “
ÿ

ně0

pD,nT px, zq,

pKpx, t´ uq :“ lim
NÑ8

pK,N px, t´ uq “ lim
NÑ8

ÿ

ně0

pK,n,N px, t´ uq “
ÿ

ně0

pK,npx, t´ uq

and

PThpu, xq :“ lim
NÑ8

PNT hpu, xq “ hpu, xq1txěLu ` 1txăLu

ż u`T

u

ż L

´8

hpt, zq lim
NÑ8

pNT pu, x, dt, dzq,

“ hpu, xq1txěLu ` 1txăLu

ż u`T

u

ż L

´8

hpt, zq pT pu, x, dt, dzq.

The proof is now complete.
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