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Abstract 

This paper describes a parametric shape modeler tool for deforming hulls and appendages, with the 

purpose of being integrated into an automatic shape optimization loop with a CFD solver. The modeler 

allows generating shapes by controlling the parameters of a twofold parameterization: geometrical – 

based on a skeleton approach – and architectural – based on the design practice and effects on the 

object’s performance. The resulting forms are relevant and valid thanks to a smoothing term to ensure 

shape consistency control. Thanks to this approach, architects can directly use a NURBS CAD model 

in the modeler tool and will obtain variations of the initial design to improve performance without 

additional work. The methodology developed can be applied to any shape that can be described by a 

skeleton, e.g. hulls, foils, bulbous bows, but also wind turbines, airships, etc. The skeleton consists of 

a set of B-Spline curves composed of a generating curve and section curves.  The deformation of the 

shape is performed by changing explicit parameters of the representation or implicit parameters such 

as architectural parameters. The new shape is obtained by minimizing a distance function between the 

current parameters and the target’s in combination with a smoothing term to assure shape consistency 

control. Finally, the 3D surface wrapping the skeleton is rebuilt using surface network technics. This 

paper presents the general methodology and an example of application to a bulbous bow on a fishing 

trawler, with RANSE CFD computations to determine the best design. 

 

1. Introduction 

Automatic shape optimization is a growing field of study, with applications in various industrial 

sectors. As the performances of a flow-exposed object can be obtained accurately with CFD 

(Computational Fluid Dynamics), small changes in design can be captured and analysed. To exploit 

these performance analysis capabilities, it is important to have a precise and efficient control of the 

geometry of the objects. The results of the modelling/analysis process rely on two main ingredients. 

To evaluate with accuracy the hydrodynamic properties of a hull, accurate flow solvers are required. 

Free surface needs to be captured precisely, as well as turbulent flow phenomena. Reynolds-averaged 

Navier-Stokes (RANS) solvers, completed with a powerful grid generator, are well adapted to capture 

accurately the flow around complex objects.  

To improve the form of a hull in order to increase its performances, a precise shape consistency 

control is essential when performing deformations. Naval architects need to use shape quality 

preserving tools to modify hulls avoiding non-realistic forms.  

The coupling of an accurate flow solver and a quality preserving shape modeler is the basis for an 

efficient automatic shape optimization loop. An optimisation algorithm can optionally complete the 

loop to determine automatically new shape parameter values according to the CFD results. 

We propose a parametric shape modeler tool for deforming objects, with the purpose of being 

integrated into an automatic shape optimization loop with a CFD solver. Our tool has the ability to 

generate valid forms from an architectural point of view thanks to an innovative shape consistency 

control based on architectural parameters. A skeleton composed of a generating curve and a family of 

section curves represents the object. The generalizable concept of skeleton-based approach allows us 
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to apply our tool to a large selection of shapes e.g. hulls, foils, bulbous bows, propellers, wind 

turbines, airships, etc. 

In this paper we present an application to the bulbous bow of a fishing trawler ship. The aim is to 

reduce the total drag of the hull thanks to bulb form variations. With the parametric modeler, we create 

a set of shapes exploring the parameters domain and use RANSE CFD computations to determine the 

best design. 

 

2. Related work 

Optimising the shape of the bulbous bow has been seen as an efficient way to reduce the drag of a 

hull, and thus the costs of exploitation of the ship, since several years. The coupling of a flow solver to 

a modeler and an optimisation algorithm is a widely used methodology. Some of the previous work 

can be seen in Valdenazzi (2003), Hochkirch (2009), Blanchard (2013). 

Shape deformation for ships is a relatively recent approach. However, deformation techniques have 

been wildly developed in other application fields, such as 3D animations or movies.  

Free Form Deformation – FFD –  and morphing are classical methods created for 3D animations 

purposes, and they have been applied to shape optimization for ships. Morphing generates shapes 

interpolated from two extremal ones. Such a methodology allows to explore a precise panel of shapes 

if the architect has a clear idea of the extremal values. FFD consist in enclosing the object within a 

simpler hull, usually a cube as described by Sederberg (1986), then the object is transformed when the 

hull is modified. FFD is applied to ship hulls by Kang (2012), Peri (2013). FFD and morphing are 

usually applied to meshes and not a continuous geometry in a naval context, thus limiting deformation 

because the meshes can be subject to degeneration. FFD method can be very efficient with a small 

number of degrees of freedom to control the whole shape of the object. However, in order to perform 

local deformations, the only way is to increase the number of control points by refining the areas of 

interest. Moreover, FFD does not take into account any architectural parameters when deforming an 

object, leading possibly to non-realistic results. 

Engineering dedicated CAD software recently provides parametric design features, allowing the user 

to build parametrized models such as CatiaTM or GrasshopperTM for Rhinoceros 3DTM. When these 

parameters are modified, the corresponding elements of the object are modified. Thanks to the 

relationship between elements, the deformation propagates throughout the whole model. 

Specific software have been developed during the last decades for ship applications. One of the most 

widespread is CAESESTM form Friendship Systems, allowing the user to create geometries using 

advanced parameters that can be modified easily by hand or automatically with a CFD optimization 

loop as described by Papanikolaou (2011). Similarly, a ship dedicated tool Bataos, used by Jacquin 

(2003) allows to modify the shape of sections of the hull by multiplying or adding predefined 

functions to the control points the B-Spline curve describing the section. 

The aim of our tool is to be used without any human interaction once an original geometric model is 

available, independently of the way it is built and of its quality. 

 

3. Parametric modeler 

To obtain smoothly deformed shapes, we propose a new modeler tool based on a generic 

methodology, allowing us to describe a large panel of objects in the same way. We parameterize shape 

with a generic skeleton concept, completed by specific architectural parameters according to the 

studied shape. 
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3.1. Shape parameterization 

3.1.1.  Geometrical parametrisation 

The skeleton consist of a set of B-Spline curves composed of generating curve and section curves. The 

purpose of the generating curve is to describe the general shape of the object. The sections are similar 

to the classic architect’s line plan, describing more precisely the outlines of the object around the 

generating curve. Once the generating curve is identified on the CAD model, sections are computed as 

intersections between the studied object and a family of planes along the generating curve. A fitting 

process is used, inspired by Wang (2000), to create the B-Spline curves that approximate the 

intersection curves. 

 

Figure 1 – Skeleton of a bulbous bow 

 

3.1.2.  Architectural parameters 

We define a set of architectural parameters on the studied object according to the design practice and 

effects on the object performance. The strategy of our modeler is to control the whole shape through 

these parameters. Both generating curve and section curves have an independent set of parameters, as 

illustrated in Figure 2 and Figure 3. In this example the length, the angle, the height and width are 

relevant parameters to control the shape of a bulbous bow. Our model allows to enrich the parameter 

set with new kinds of parameters, such as the value of sectional areas included for each section. 

 

Figure 2 – Generating curve parameters 

 

Figure 3 – Section parameters 

We introduce an observer function 𝜙 that computes the set of parameters 𝑃 on a given geometry 𝐺: 

𝜙: 𝐺 ⟶ 𝑃. For the generating curve the parameters are real and finite values whereas sections 

describe parameters as a function along the generating curve, thus defining 𝜙 in an infinite 

dimensional space. In order to reduce the dimension of 𝜙 we represent the functions of parameters 

with B-Spline curves with a small number of control points.  

 

3.2. Shape deformation 

In our methodology, deforming an object corresponds to finding a new geometry 𝐺 that matches a 

given set of architectural parameters 𝑃. Referring to the definition of the observer function 𝜙, to 

deform a shape we need to compute 𝜙−1: 𝑃 ⟶ 𝐺. Starting from the B-Spline description of the 

object’s skeleton, we propose to compute new values of the coordinates of the curve control points 𝑐𝑖 
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until the current parameters matches the target one, for the generating curve and the section curves 

independently. This problem can be defined as a non-linear constrained optimization problem, the 

control point coordinates being the solution of a specific minimization system. 

The minimisation system is built with four terms: 

1. The first term 𝐸𝑝𝑎𝑟𝑎𝑚 measures the distance of the current parameters values to the target ones. 

2. The second term 𝐸𝑠ℎ𝑎𝑝𝑒 is introduced to ensure consistency control by measuring the distance of 

the current generating or section curve to the original one. 

3. The third term allows taking into account specific constraints 𝐹 for the studied object, usually 

position or tangency constrains. These constraints are defined for each section and are not 

necessarily the same for all sections. For a bulbous bow, as we use a half hull, we have to ensure 

that the section curves end in a plane (here 𝑌 = 0) and that the tangent at the extremity along the 

vessel centerline are preserved. 

4. The last term controls the overall smoothness of the shape by introducing stiffness between 

successive control points. It consist in correction terms 𝑀𝑙 to control respectively 𝒞1 and 𝒞2 

properties of control points. 

The definition of the problem is well adapted to Sequential Quadratic Programming (SQP). SQP 

algorithm uses Newton’s method to find roots of the gradient. We start with the original curve as the 

starting point of the algorithm, then we decrease the shape consistency term and the smoothing control 

term at each iteration and start the SQP again with the last computed curve. The algorithm stops when 

the value of the objective function reaches a fixed threshold. 

 

3.3. Surface reconstruction 

The optimization method outputs deformed sections and generating curves, corresponding to the 

skeleton of a new shape. To evaluate the shape performances with a CFD solver, we first need to 

reconstruct the 3D surface wrapping the deformed skeleton.  Moreover, building a new surface allows 

to obtain a cleaned-up model for the meshing tool.  

For complex objects, multi-patch surfaces are required. In such cases, a particular attention has to be 

given to the continuity between them: for our application, patches have to be at least 𝒞1. We chose to 

focus on Surface Network technique, described by Piegl (1997), which ensures the continuity between 

adjacent surfaces by building the curve grids with specific tangency constraints on the boundary. The 

computed grid is illustrated in Figure 4. 

 

Figure 4 – Skeleton for surface reconstruction 
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4. Numerical methods 

4.1. Mesh generation 

To generate non-conformal full hexahedral unstructured meshes on complex arbitrary geometries, we 

use HEXPRESSTM from Numeca International. In addition, the advanced smoothing capability 

provides high-quality boundary layers insertion, Wackers (2012). The software HEXPRESSTM creates 

a closed water-tight triangularized volume, embedding the ship hull, then a body-fitted computational 

grid is build. 

One of the meshes used in our simulations is shown in Figure 5 and Figure 6. The grid generation 

process requires clean and closed geometries to provide robust meshes. Thanks to the shape 

consistency control and the smooth reconstruction of surfaces, the modeler generates shapes which are 

well-adapted to these requirements and which allows to produce high-quality meshes for 

computations. 

During the computation, the automatic mesh refinement has been used. Automatic, adaptive mesh 

refinement is a technique for optimising the grid in the simulation, by adapting the grid to the flow as 

it develops during the simulation to increase the precision locally. This is done by locally dividing 

cells into smaller cells, or if necessary, by merging small cells back into larger cells in order to undo 

earlier refinement. During the computation, the number of cells increases from 1.9 to approximatively 

2.2 million cells, for a half hull mesh. Figure 5 shows a view of the whole grid and Figure 6 shows the 

mesh refinement around the hull and the free surface at the end of the computation. 

 

Figure 5 – General view of the mesh and the 

computational domain 

 

Figure 6 – Mesh around the hull 

 

4.2. Flow solver 

ISIS-CFD, available as a part of the FINETM/Marine computing suite, is an incompressible, unsteady 

Reynolds-averaged Navier-Stokes (RANS) solver. For the turbulent flow, additional transport 

equations for the modeled variables are discretized and solved. The two-equation k-ω SST linear eddy-

viscosity model of Menter is used for turbulence modeling. The solver is based on the finite volume 

method to build the spatial discretisation of the transport equations. The unstructured discretisation is 

face-based, which means that cells with an arbitrary number of arbitrarily shaped faces are accepted. 

This makes the solver ideal for adaptive grid refinement, as it can perform computations on locally 

refined grids without any modification. 

Free-surface flow is simulated with a multi-phase flow approach: the water surface is captured with a 

conservation equation for the volume fraction of water, discretised with specific compressive 

discretisation schemes, Queutey (2007). The vessels dynamic trim and sinkage are resolved during the 

simulation. 

Figure 7 illustrates the surface elevation in one of our test-cases. 
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Figure 7 – Free surface elevation 

 

5. Application on bulbous bow deformation 

We aim to reduce the total drag of a fishing trawler ship thanks to variations of its bulbous bow shape. 

Starting from a first geometry of the hull with a bulbous bow, see Figure 8, we generate a set of shape 

variations with the parametric modeler. Then the total drag of each shape is computed with ISIS-CFD.  

We use this initial set of data to build a Design of Experiments (DOE) on which we will apply a 

response surface methodology, as explained by Jones (2011), to explore new design possibilities. The 

DOE can be seen as a database of objective function values, here the total drag of the hull, associated 

to design parameter values, which are the architectural parameters used in the modeler. The response 

surface methodology then allows us to compute an estimate value of the objective function for any 

parameters included in the database bounds. To sample the design parameter values of the database, 

we use a Latin Hypercube distribution Iman (1981).  

We describe the construction of the Latin Hypercube in the following section, then we present the 

corresponding results computed with ISIS-CFD. 

 

5.1. Deformations of the bulbous bow 

We chose three parameters to control the bulb shape: the length and angle of the generating curve (see 

Figure 2) and the width of the sections (see Figure 3). Deformations are parameterized as percentages 

of the initial parameters values. We describe the limits of the exploration domain in Table I: 

Table I – Limits of parameters domain 

 Length Angle Width 

Initial value 1.61 m 31.52° 0.83 m (value at mid-bow) 

Min variation 15% (=1.86m) -25% (=23.64°) -20% (=0.66 m) 

Max variation 90% (=3.07m) 0% (=31.52°) 20% (=0.99 m) 

 

The initial bulb being quite short, we assumed that shapes with a lower length than 1.86m will not 

positively influence the drag, likewise we restricted the bulb to not be longer than the extremity of the 

upper bow. For the angle, we noticed that when the length of the bow is increased, keeping the 

original value will cause the bulb to pierce the free surface, again this configuration is unwanted. 

From the bounds described in Table I, intermediary values are computed with a Latin Hypercube 

method. We illustrate in Figure 8 the initial hull (yellow) with a one of the variation (red) included in 

the Latin Hypercube (Length: +42.86% ; Angle: -23.08% ; Width: +0.0%). 
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Figure 8 – Initial hull (yellow) vs. a bulbous bow shape variation (red) 

 

5.2. RANS CFD results 

The studied trawler ship has a length at waterline of 22.35 metres and a displacement of 150 metric 

tons. Simulations are done at a speed of 13 knots (6.688m/s). Trim and sinkage are solved, while the 

hull speed is imposed according to a ¼ sinusoidal ramp law. Fluid characteristics are the following: 

 𝜌 (kg/m3) 𝜇 (Pa.s) 

Water 1026.02 0.00122 

Air 1.2 1.819 * 10-5 

We present in Table II the results obtained from the Latin Hypercube distribution. Table II represents 

the Design of Experiments used for the response surface methodology. 

Table II – Drag results for the different bulbous bow shapes 

# Length 

variation 

(%) 

Angle 

variation 

(%) 

Width 

variation 

(%) 

Total Drag 

(N) 

Pressure 

drag (N) 

Viscous 

drag (N) 

% reduction 

in total drag 

from 

original hull 

0 0.0000 0.0000 0.0000 73740 63853 9887 0% 

1 0.4286 -0.2308 0.0000 71760 61848 9912 2.69% 

2 0.8571 0.0000 0.0000 72120 62196 9924 2.20% 

3 0.4670 -0.2180 0.084 71428 61451 9977 3.13% 

4 0.5069 -0.1821 -0.1786 72441 62508 9933 1.76% 

5 0.1944 -0.1026 -0.0467 73015 63186 9829 0.98% 

6 0.5349 -0.1252 -0.1364 72479 62490 9989 1.71% 

7 0.3807 -0.0861 -0.106 71440 61453 9987 3.12% 

8 0.1704 -0.1688 0.164 72603 62701 9902 1.54% 

9 0.2693 -0.2262 0.0445 72027 62142 9885 2.32% 

10 0.3464 -0.1091 -0.0289 72266 62414 9853 2.00% 

11 0.6319 -0.0887 0.1853 71676 61513 10163 2.80% 

12 0.6717 -0.1514 -0.1711 72312 62261 10051 1.94% 

13 0.2381 -0.1368 0.0324 72037 62200 9837 2.31% 

14 0.6777 -0.1411 -0.0069 71634 61588 10046 2.86% 

15 0.5870 -0.1981 0.0999 71054 60971 10083 3.64% 

16 0.3110 -0.1717 0.1365 71660 61714 9946 2.82% 

17 0.4391 -0.2095 -0.0818 72380 62484 9896 1.84% 
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We illustrate the surface elevation of the best results (#3, #7 and #15) in Figure 9, Figure 10 and 

Figure 11. 

 

Figure 9 – Free surface 

elevation for case #3 

 

Figure 10 – Free surface 

elevation for case #7 

 

Figure 11- Free surface 

elevation for case #15 

The response surface can be used as a surrogate model on which we can solve an optimization 

problem: we can find its minima using a genetic algorithm. Those minima give the parameter values 

that potentially improve the objective function values, here the total drag of the hull.  

Figure 12 and Figure 13 show a graphical representation of the response surface. Figure 12 represents 

cutting planes of the design space, showing two main local minima. In Figure 13, we show iso-values 

of the total drag Fx. We can identify a region where the objective function is predicted to be smaller 

than in the other part of parameter domain. 

w

 

Figure 12 – Cut planes of the response surface 

 

 

Figure 13 – Iso values of the total drag Fx in 

the response surface 

 

We identify one of the minimum though a genetic algorithm corresponding to the following 

parameters values: Length: +60.3% ; Angle: +0% ; Width: +9.36%. The response surface predicted a 

drag of 71019.58 N. We performed a new ISIS-CFD computation with a geometry corresponding to 

the new parameters values and we obtained a real total drag value of 71553.21 N, representing 2.97 % 

of drag reduction from the original bulbous bow.  To obtain better results, two strategies have to be 

developed: first the response surface has to be enriched by new values in order to represent more 

accurately the real distribution of drag according to the parameters. Then more advanced methods to 

find the point of maximum interest in the response surface can be used. For example, algorithms based 

on Kriging such as Efficient Global Optimization find minima on a surrogate models by maximizing 

the probability of improvement of the objective function as shown in Jones (1998) and Duvigneau 

(2012). 
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6. Conclusion and future work 

This paper presents a method for smooth shape deformation. The twofold parametrization, geometrical 

and architectural, demonstrates its capability to generate simulation-suited models with large possible 

shape domain. The skeleton based approach allows us to use the developed methodology to different 

kind of objects, e.g. hulls, foils, bulbous bows, propellers, wind turbines, airships, etc. 

Further work will focus on the link with CFD solvers. A fully automated optimization loop will be 

developed. With the integration of an optimization algorithm as Efficient Global Optimization, the 

process of finding minima on the surrogate model would be significantly improved. 
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