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ABSTRACT
This paper addresses the challenge of devising new repre-
sentation learning algorithms that overcome the lack of in-
terpretability of classical visual models. Therefore, it intro-
duces a new recursive visual patch selection technique built
on top of a Shared Nearest Neighbors embedding method.
The main contribution of the paper is to drastically reduce
the high-dimensionality of such over-complete representa-
tion thanks to a recursive feature elimination method. We
show that the number of spatial atoms of the representation
can be reduced by up to two orders of magnitude without
much degrading the encoded information. The resulting rep-
resentations are shown to provide competitive image classifi-
cation performance with the state-of-the-art while enabling
to learn highly interpretable visual models.

1. INTRODUCTION
Over recent years, specialized image classification chal-

lenges such as plants, vehicles, buildings or logos recognition
have received a lot of attention. Many supervised classifica-
tion algorithms have shown very good performance on such
datasets reducing more and more the gap between humans
and machines. A very interesting and promising challenge
would be to transfer the knowledge of these learning algo-
rithms to humans so that we can gain insights into which
part of the data is used by the learning algorithm to discrim-
inate between different visual concepts. This would allow
humans such as domain experts to (i) understand which vi-
sual patterns are discriminant or ambiguous from a concept
to an other, (ii) detect some errors or limitations in the ma-
chine learning process, and (iii) improve their knowledge of
the objects of interest by taking advantage of the machine to
discover fine relevant details. However, the visual represen-
tations used in classical visual models are too abstract to ful-
fill these interpretability objectives. The learned atoms (e.g.
latent variables in probabilistic models or visual words in
codebook learning methods) do actually not have a uniquely
defined and easily interpretable visual appearance. They can
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typically not be directly visualizable or mapped without any
ambiguity onto localized visual contents in the training set.
The challenge addressed in this paper is to devise new im-
age representation learning algorithms that overcome this
lack of interpretability. Therefore, we propose a supervised
method for learning a compact vocabulary of discriminant
and spatially localized visual patches to be used as atoms of
a highly interpretable image representation. To do so, we
introduce a recursive visual patch selection technique built
on top of a recently introduced embedding scheme called
Shared Nearest Neighbor match kernel [10]. The interest-
ing property of such embedding is that it explicitly maps
the visual content of a given image onto a potentially huge
set of visual patches. So that the image can be represented
through a very high-dimensional feature vector encoding its
similarity to each visual patch in the training set. In this
paper, we propose to drastically reduce the dimensionality
of such brute-force and over-complete representation thanks
to a recursive feature elimination method. We show that
the number of spatial atoms of the representation can be
reduced by up to two orders of magnitude without much
degrading the encoded information. The resulting represen-
tations are shown to provide competitive image classification
performance with the state-of-the-art while enabling to learn
highly interpretable visual models.

2. RELATED WORKS
Codebook learning methods: One of the most popular
representation learning algorithm is the so-called Bags-Of-
Visual-Words paradigm (BoVW) [7]. It mainly consists in
learning a visual vocabulary from a set of local feature vec-
tors through an unsupervised learning algorithm (e.g KMeans
or GMM). More effective codebook learning methods were
proposed in the following years using aggregated-based meth-
ods such as the Fishers Vectors [13] and VLAD schemes
[14] that do not only encode the number of occurrences
of each visual word but also encode additional information
about the distribution of the descriptors. Such very high-
dimensional representations are effective for classification
tasks but they are not adapted to our interpretability objec-
tives. Sparse Coding and in particular the supervised dictio-
nary learning method of Mairal et al. [9] are a way of learn-
ing much more compact visual representations. However,
as discussed in the introduction, the atoms of the learned
vocabularies do still not correspond to easily interpretative
visual patterns. They do not have a uniquely defined visual
representation and might embed different visual patterns in
the same atom.



Spatially localized representations: In [5], the authors
introduce an unsupervised scheme to learn a visual dictio-
nary by randomly picking spatially localized local features
selection and ranking them with an information gain crite-
rion combined with a saliency score. Krapac et al proposed
in [6] a alternative approach rather based on a prototype
selection approach: local descriptors are all kept in their
original form (without quantization) and a distance-adaptive
prototype is trained for each of them in a supervised way.
Our method is different in two main points: first, the ele-
mentary atoms of our representation are not individual local
features but sets of spatially neighboring local features. This
allows embedding much more information in a single spatial
atom. Secondly, we use a recursive feature elimination ap-
proach that allows selecting a much better set of spatial
atoms than one-shot approaches.

3. PROPOSED METHOD (RVPS)
We define a spatially localized vocabulary as a set Z of spa-

tial atoms Zj , j ∈ [1, N ], each uniquely corresponding to a
spatial region Rj of an image in the training set. We define
each spatial atom Zj as being itself composed of a set of spa-
tially localized d-dimensional feature vectors zi

j, i ∈ [1, |Zj |],
extracted from Rj and representing its local visual content.
Our aim is to automatically learn a spatially localized vo-
cabulary Z that is as much compact as possible while still
containing the most explanatory visual patterns of the la-
beled classes in the training set. We therefore introduce
a new Recursive Visual Patch Selection algorithm (RVPS)
that is summarized in Algorithm 1. Its principle is to pro-
gressively compress the spatially localized vocabulary Z by
recursively eliminating the less discriminant atoms. Each
recursion includes 3 main steps: (i) the computation of the
SNN representations [10] of the images in the training set X
(based on the current spatially localized vocabulary Z(t)), (ii)
the learning of a multi-class support vector machines on top
of the computed SNN representations and (iii), the elimina-

tion of the less discriminant spatial atoms Z
(t)
j in Z(t). These

3 steps are repeated T times. The main parameter of the
algorithm is the filtering ratio s that fixes the percentage of
non-eliminated atoms at each iteration (e.g. s = 0.9 means
that 90% of the atoms are kept within the SpatialAtomsFil-
tering function). The initialization of the algorithm as well
as the description of the different steps of each recursion are
detailed hereafter.

Algorithm 1: RecursivePatchSelection

input : Vocabulary Z, filtering ratio s, training set X ,
image labels Y, Number of iterations T

output: Filtered Vocabulary Z(T )

1 if (T>1)

2 Z(T−1)=RecursivePatchSelection(Z,s,X , Y, T − 1);
3 else

4 Z(T−1)=Z;

5 Φ=ComputeSNN (X ,Z(T−1));
6 W=LearnSVM (Φ,Y);

7 Z(T )=SpatialAtomsFiltering(Z(T−1),W,s);

8 return Z(T )

Initialialization: The initial vocabulary Z(0) to be used
as input of the RecursivePatchSelection algorithm is created
by randomly picking N0 spatial atoms within the images of
the training set X . When N0 is very large (e.g. 1 million of
potentially overlapping regions), this allows starting the vo-
cabulary learning with an over-complete representation to
be progressively reduced afterwards. More practically, we
uniformly draw N0 local features zj from the raw set of all
spatially localized local features extracted from the images
(be they hand crafted such as SIFT features or off-the-shelf
low level features learned through a convolutional neural
network). The j-th spatial atom Zj is then formed by zj

itself and by the set of its top-m spatially neighboring local
features zi

j, i ∈ [1,m].

SNN representations computation: The goal of this
step is to compute intermediate representations of the im-
ages X ∈ X based on a spatially localized vocabulary Z.
Each image in X is supposed to be described by a set of
d-dimensional spatially localized local features X = {x}.
To map these local features onto the N spatial atoms Zj of
the vocabulary Z, we use the Shared Nearest Neighbor em-
bedding method introduced in [10] and from which we can
derive the following explicit embedding function:

Φ(X) =

N∑
j=1

Φj(X). ~ej =

N∑
j=1

1

|X|
∑
z∈Zj

∑
x∈X

ϕ(rx(z)). ~ej (1)

where rx(z) : Rd → N+ is a ranking function returning the
rank of z according to its L2 distance to x. The function ϕ(r)
is a rank-based activation function that is decreasing with r
and that is close to zero when the rank r becomes sufficiently
high (see [10] for more details). Intuitively, each component
Φj(X) of the high-dimensional representation Φ(X) quan-
tifies how likely it is that the image X contains the same
visual pattern than the one depicted by the spatial atom
Zj . In practice, because of scalability issues, it is not possi-
ble to compute the exact rankings rx(z) for all x ∈ X and all
z ∈ Z. Therefore, an approximate nearest neighbor search
method is used and only the approximate K nearest neigh-
bors of each x are considered in the SNN embedding.
In [10], Leveau et al. propose a variant of the base SNN
scheme for embedding rigid geometry constraints. This is
done by multiplying the activation function rx(z) by a ge-
ometry consistency indicator function δx(z) equals to one if
z is an inlier of a RANSAC-like algorithm estimating the
best affine transformation between the image X containing
x and the spatial atom Zj containing z (and zero otherwise).
In our experiments, we used this variant for the datasets that
involve rigid objects, i.e. buildings and logos.

SVM learning and spatial atoms filtering: To select
the most discriminant atoms for a given classification task,
we adopt a SVM-based multi class feature selection strategy
first proposed in Guyon et al. [4] and Chapelle et al. [12].
We therefore consider that each image in the training set X
is associated to a class label y ∈ [1, C]. Now, the principle is
to define a filtering criterion ρj for the j-th component Φj of
the representation space by analyzing the weights wjk with
k ∈ [1, C] across the C one-versus-all L2 regularized Support
Vector Machine (SVM) classifiers learned on the task. A
very simple and theoretically elegant filtering criterion is



the l2 norm of the vector wj =
∑C

k=0 wjk~ei so that the more
optimal component j∗ to remove is given by :

j∗ = argmin
j

c∑
k=1

w2
jk = argmin

j
|wj|22 (2)

The filtering score of an atom Zj can then be computed
as ρj = |wj|22 and the filtering consists in ranking all the
components thanks to ρj and keep only the top sN atoms
(where N is the total number of atoms in Z and s the fil-
tering ratio). Note that when an atom Zj is pruned, all the
local features zi

j belonging to it are definitely removed from
the vocabulary.

Discussion: We highlight the fact that our Recursive Vi-
sual Patch Selection algorithm (RVPS) is actually different
from a classical Recursive Feature Elimination (RFE) [12].
The RFE method actually relies on a fixed representation
space and attempt to find the optimal subspace by elimi-
nating the less informative components. On the contrary,
the representation space induced by our manifold learning
method is evolving at each iteration. Not only some com-
ponents atoms are removed from the vocabulary but the
contribution of the remaining ones do evolve as well. This is
mainly due to the rank-based activation function of the SNN
embedding. When removing some atoms, the rank rx(z) of
the kept features can only decrease and, as a consequence,
the contribution Φj(X) of the remaining atoms can only in-
crease. So that the selected atoms do progressively increase
their contribution to the representation of more and more
pictures. In other words, we do progressively improve the
encoding of the manifold structure of the data thanks to the
selection of more and more contributive data items. If we
did not recompute the SNN representations after each atom
elimination step, we would select some discriminant atoms
but we would not select the most generative ones.

4. EXPERIMENTS
To evaluate our method, we used three datasets of the

literature: (i) FlickrLogos32 [3] containing 2,240 images
labeled with 32 logo classes (split into 1,280 training im-
ages and 960 test images without considering distractors
of the original dataset), (ii) Paris Buildings [2] contain-
ing 6,392 photographs of labeled with 12 Parisian build-
ings (split into 3,199 training images and 3,193 test im-
ages, and (iii) Oxford Flower [8] containing 8,189 pic-
tures labeled with 102 flower species (split into 2,040 train-
ing images and 6,149 test images). For the FlickrLogos32
and ParisBuildings datasets, SIFT features were extracted
around Harris-Hessian-Laplace interest points. For the Ox-
fordFlower dataset, we rather used off-the-shelf CNN-based
features learnt with the GoogleNet CNN architecture pre-
trained on the ImageNet dataset [1]. Images were forwarded
to the inception 3a layer output leading to 784 densely sam-
pled 256-dimensional spatially localized features for each im-
age. All descriptors were L2-normalized to the unit ball and
square rooted. For the SNN embedding computation, we
used the same parameters than in [10] except for the for the
knn quality search parameter α that we fixed to α = 40%
and the length b of the hash codes that was fixed to 128
bits for SIFT features and 256 bits for the CNN features.
We used the spatially consistent variant of the SNN embed-
ding only for the two datasets involving rigid objects, i.e.

FlickrLogos32 and ParisBuildings. The number N0 of ran-
dom spatial atoms in the initial vocabulary Z(0) was fixed
to N0 = 220 the spatial neighborhoods size of of each atom
was fixed to m = 256 local features.

Recursive filtering impact: To study the impact of the
filtering ratio s of our RVPS algorithm, we ran it with five
different values, i.e. s = 0.5, s = 0.3, s = 0.1 and s = 0.01.
The recursively computed image representations were then
used as input of a L1 regularized logistic regression (with
default regularization constant C = 1). Figure 2 displays
the resulting classification accuracy on the FlickrLogos32
dataset as a function of the number of spatial atoms in the
learnt vocabulary. It shows that if the filtering ratio is too
strong (e.g. s = 0.1 or s = 0.01), the classification perfor-
mance quickly degrades. On the other side, with a reason-
able filtering ratio of s = 0.5 or s = 0.3, the classification
performance remains rather stable with up to two orders of
magnitude less atoms in the vocabulary. When the vocab-
ulary contains only 256 spatial atoms, the accuracy is still
very acceptable meaning that they are highly informative
for the classification task.

RVPS vs. RFE: To further study the effectiveness of
our Recursive Visual Patch Selection algorithm (RVPS), we
compared it with a classical Recursive Feature Elimination
(RFE) computed on top of our initial SNN representations

(i.e. the ones based on the initial vocabulary Z(′)). The
results are provided in Table 1. They show that at constant
dimensionality, the representations learned by RVPS are
much more effective for the classification task than the ones
learned by RFE. This is not sufficient to conclude that the
selected spatial atoms are better in terms of interpretabil-
ity (the generative aspect is probably even more important).
But this proves that they do provide a better generalization
ability which is a already an interesting criterion.

# atoms 256 1,024 4,096 16,384 65,536
RFE 12.19 15.94 39.2 75.6 81.32
RVPS 78.4 83.6 84.4 86.9 86.15

Table 1: RVPS vs. RFE classification accuracy

RVPS vs. CNN: we also compared the classification ac-
curacy obtained from the RVPS representations to the one
of the GoogleNet convolutional neural network [11], with or
without pre-training on ImageNet (we respectively used a
learning rate of 0.001 with local multipliers of 10 on the last
fully connected layers and a learning rate of 0.01 without
adding additional local multiplier). For both finetuning and
no-finetuning, we used a weight decay parameter of 0.0005
and a momentum of 0.9. The results are provided in Table 2
for the three datasets. They show that the RVPS-based rep-
resentations are quite competitive with the CNN ones with
slightly lower performance than the network fine-tuned on
ImageNet but much better performance than the one trained
on the same data than our RVPS method. Now, the main
advantage of RVPS is to allow interpreting very easily which
visual patterns of the training set were learnt. Indeed, each
spatial atom of the spatially localized visual vocabulary has
a uniquely defined visual representation.

Interpretabilty of the learnt vocabulary: to qualitatively
illustrate how interpretable the spatial atoms of our visual rep-



Notre Dame Guiness Google Arc de Triomphe Daffodil Hard-leaved pocket or-
chid

Figure 1: Learned Spatial Atoms for 6 classes

Figure 2: RVPS accuracy vs. number of spatial
atoms

Method FlickersLogos Paris Flower
GoogleNet FT 87.5 70.5 89.56
GoogleNet no FT 66.8 54.4 61.7
RVPS - 16, 384 atoms 86.9 73.2 86.43
RVPS - 4, 096 atoms 84.4 70.9 86.36
RVPS - 1, 024 atoms 83.6 67.6 84.31

Table 2: RVPS vs. CNN classification Accuracy

resentations are, Figure 1 diplays the top-3 most contributive
atoms of several classes based on a vocabulary of size 1024 atoms
for each dataset. We therefore trained one-vs-all SVM’s on top
of our representations and ranked the atoms according to their
class-wise weight wjk. We see that for some domain such as lo-
gos, the chosen patches often correspond to variants of the same
visual pattern or to the same visual pattern but under different
view conditions. For more complex visual entities such as build-
ings or plants, the chosen patches rather correspond to different
parts of the whole entity which might be very helpful for domain
experts.

5. CONCLUSION AND PERSPECTIVES
This paper addressed the challenge of devising a new represen-

tation learning algorithm to overcome the lack of interpretability
of classical visual models. We did show that the proposed Re-
cursive Visual Patch Selection algorithm allows to learn highly
discriminant and interpretable representations that maps the vi-
sual content of the images onto a vocabulary of uniquely defined
and spatially localized visual atoms. In further works, we will at-
tempt to devise innovative active learning methods allowing the
experts to directly interact with the vocabulary.
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