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Evidence and relevance of spatially chaotic magnetic field lines in MCF devices

Numerical evidence for the existence of spatially chaotic magnetic field lines about the collapse phase of tokamak sawteeth with incomplete reconnection is presented. This uses the results of extensive test particle simulations in different sets of electromagnetic perturbations tested against experimental JET measurements. In tokamak sawteeth, that form a laboratory prototype of magnetic reconnection, the relative magnetic perturbation δB/B may reach a few percents. This does not apply to tokamak operating regimes dominated by turbulence where δB/B is usually not larger than 10 -4 . However, this small magnetic perturbation being sustained by a large spectrum of modes is shown to be sufficient to ensure the existence of stochastic magnetic field lines. This has important consequences for magnetic confinement fusion (MCF) where electrons are dominantly governed by the magnetic force. Indeed some overlap between magnetic resonances can locally induce chaotic magnetic field lines enabling the spatial redistribution of the electron population and of its thermal content. As they are the swiftest plasma particles, electrons feed back the most rapid perturbations of the magnetic field.

Introduction

Historically the modeling of transport processes in tokamaks relied first on a classical transport picture, where thermalization is mediated by particle-to-particle collisions. Yet the first estimates for the heat losses derived from this classical approach happened to be largely insufficient to account for experimental measurements. Later, Galeev and Sagdeev [START_REF] Galeev | Transport phenomena in a collisionless plasma in a toroidal magnetic system[END_REF] revised the classical theory by taking into account the toroidal effects inducing the existence of orbits having a width much larger than the Larmor radius, the so-called banana orbits: their theory became known as the neoclassical theory. Even if the cross-field transport is substantially augmented compared with the classical theory, neoclassical estimates remain typically about one to two orders of magnitude smaller than actual tokamak losses. The reason behind this failure is the low collisionality of tokamak plasmas. Indeed because collisionality decreases strongly with plasma temperature, as T -3/2 e [START_REF] Spitzer | Physics of fully ionized gases[END_REF], diluted hot plasmas are intrinsically low collisional so that the physics of hot plasmas in magnetic confinement devices for fusion applications is dominated by collective effects.

The picture that emerges is that the paths to transport and thermalization in magnetic confinement fusion (MCF) devices may be separated in two distinct categories [START_REF] Firpo | Contributions to some hot plasma physics issues[END_REF]. There is first an extrinsic path, that is non-cancelable, being due to the granularity of matter, that involves the particle-particle collisions. And there is a second, dominant, path that is intrinsic, collective and collisionless. Both paths should ultimately be reduced and controlled to optimize fusion performance [START_REF] Mynick | Transport optimization in stellarators[END_REF][START_REF] Mynick | Optimizing stellarators for turbulent transport[END_REF].

Neglecting collisions, the relevant mathematical frame to describe MCF plasma physics is the Vlasov equation for the distribution functions, f s (v, r, t), of the various particle species

∂f s ∂t + v • ∂f s ∂r + q s m s (E + v × B) • ∂f s ∂v = 0, (1) 
where the electric and magnetic fields, E and B, are the sums of external and selfconsistent fields and where the time t ∈ [0; T ]. Let us define f s0 (v, r) = f s (v, r, t = 0). Solving the Vlasov equation [START_REF] Galeev | Transport phenomena in a collisionless plasma in a toroidal magnetic system[END_REF] amounts to find the characteristics R and V that solve the system of differential equations for 0 < τ < T dR dτ = V(τ ),

dV dτ = q s m s {E[R(τ ), τ ] + V(τ ) × B[R(τ ), τ ]}, (2) 
with the conditions R(τ = t) = r and V(τ = t) = v. Then the solution to the Vlasov equation at time t is

f s (v, r, t) = f s0 (V(0), R(0)). (4) 
What can be gained from this simple mathematical consideration? Neglecting collisions means that all MCF plasma particles interact only with the electromagnetic fields according to Eqs. (2)-(3). This may be viewed as a validation for test-particle approaches in MCF plasmas. Indeed, if one provisionally discards self-consistency and approximates the electromagnetic fields with reasonably physical models, then doing statistics on test particles amounts to solve the (non self-consistent) Vlasov equation. Considering just Eqs. ( 2)-(3) means a drastic reduction of the problem dimension and a simplification of the dynamics integration. Although the solution is not exact, being non self-consistent, one can use test-particle approaches to test different sets of electromagnetic field evolutions and approach the realistic one by confrontation to experimental measurements. This is indeed the route that will be presented in Section 2 to test indirectly the regular or chaotic nature of magnetic field lines during some JET sawtooth collapses.

The principle of MCF is that plasma confinement is ensured by a strong, static, magnetic field B 0 , so that at the dominant order the dynamics of charged particles obey

m dv dt = qv × B 0 . (5) 
This equation ensures that the charged particle is confined, spiraling along B 0 , and that its energy remains constant. This conservative property is favorable for plasma insulation. Yet the initial plasma formation and its subsequent heating need to be driven by electric fields, which can be inductive as in tokamaks or high-frequency as in stellarators. The full, general, particle equation of motion is eventually of the type

m dv dt = qv × B 0 + qE + qv × δB, (6) 
where the electric, E, and magnetic, B 0 + δB, fields are related by Faraday's law.

Let us estimate the strength of the electric force on charged particles. From Faraday's law, we have E k ∼ ω k δB k /k. In situations of turbulence, typical fluctuation frequencies ω k have for instance been reported to be in the range 10 4 to 10 5 Hz in tokamaks for centimeter wavelengths [START_REF] Bickerton | Magnetic turbulence and the transport of energy and particles in tokamaks[END_REF]. Consequently, as far as electrons are concerned, having typical velocities of 4.10 7 m.s -1 in 10 keV tokamaks, the magnitude of the electric force remains typically negligible in front of that of the magnetic force. Electrons are dominantly governed by the magnetic force in tokamak plasmas and are guided by the magnetic field lines associated to the total magnetic field B = B 0 + δB. This may no longer be true for ions, and even less for the most massive ions, that are comparatively more sensitive to the electric force, qE, than to the force due to the magnetic perturbation, qv × δB. However, as the electrons are the swiftest plasma particles, their confinement is essential. They play a leading role in the highest frequency phenomena of MCF. Because the electrons are dominantly controlled by the total magnetic force, qv × B, they will be the most sensitive to, possibly transient, failures in the magnetic confinement, that is the backbone of MCF plasmas, with potentially deleterious consequences. This motivates a further, and ultimate, reduction of the physical picture of MCF plasmas: the purely magnetic approach.

Because B is divergence-free, it can be shown that, at each given time, the magnetic field lines are trajectories of a Hamiltonian system H(x 1 , x 2 , x 3 ) depending on the space coordinates. Yet, chaos theory tells us that the minimal number of degrees of freedom required for the possible emergence of chaos is three. Therefore, in generic situations where no symmetry reduces the space dimension, magnetic field lines are expected to be spatially chaotic. The adverb spatially serves to remind that one refers here to the chaos of magnetic field lines at given times. One could also equivalently talk of Eulerian chaos [START_REF] Firpo | Impact of the Eulerian chaos of magnetic field lines in magnetic reconnection[END_REF]. We shall now address the questions of the existence and importance of spatially chaotic magnetic field lines in tokamak plasmas. In Section 2, some numerical evidence for the existence of spatially chaotic magnetic field lines about the collapse phase of tokamak sawteeth with incomplete reconnection will be presented using the results of extensive test particle simulations. In tokamak sawteeth, the relative magnetic perturbation δB/B may reach a few percents. This does not apply to tokamak operating regimes dominated by turbulence where δB/B is not larger than 10 -4 . The final Section 3 will however bring evidence for the existence of magnetic chaos in this case and briefly discuss some of its implication.

2. Macroscopic features: indirect evidence for chaotic magnetic field lines in tokamak sawteeth with incomplete reconnection 2.1. The magnetic reconnection puzzle Magnetic reconnection may be defined as a sudden rearrangement of magnetic field that converts magnetic energy to plasma energy. Increasing observational evidence indicates that it is at play in the most spectacular space plasma phenomena, including solar flares [START_REF] Su | Imaging coronal magnetic-field reconnection in a solar flare[END_REF], magnetospheric substorms [START_REF] Vassilis Angelopoulos | Tail reconnection triggering substorm onset[END_REF] or gamma-ray bursts. A common denominator of their phenomenology is the sudden, explosive, nature of the reconnection onset. In this respect, there is an increasing interest in the role and impact of stochasticity, and possibly turbulence, in space magnetic reconnection [START_REF] Lazarian | Turbulent reconnection and its implications[END_REF]. Indeed, this could be an ingredient explaining the long-standing and controversial conundrum of the rapidity of the reconnection [START_REF] Von | Space physics -grand challenges for the 21st century[END_REF].

Magnetic reconnection does not show up only in space plasmas but has most important manifestations in toroidal magnetic confinement devices for fusion applications. It is there at play in sawteeth [START_REF] Zweibel | Magnetic reconnection in astrophysical and laboratory plasmas[END_REF][START_REF] Hastie | Sawtooth instability in tokamak plasmas[END_REF], that were diagnosed for the first time in the early 1970s [START_REF] Goeler | Studies of internal disruptions and m = 1 oscillations in tokamak discharges with soft-X-ray tecniques[END_REF]. In this regime, quantities like the core plasma density or temperature undergo a slow rise before suddenly crashing on a periodic basis, so that the resulting time trace of these quantities resembles the edge of a saw. This relaxation phenomenon, that takes place in tokamaks, but also in reversed field pinches [START_REF] Bonfiglio | Experimental-like helical self-organization in Reversed-Field Pinch modeling[END_REF] or stellarators [START_REF] Cattanei | On sawtooth oscillations and MHD modes in the W VII A stellarator[END_REF], is of considerable concern since the best fusion performances are attained just before the crashes. It puts therefore a limit to the fusion yield.

One possible explanation for the origin of sawtooth crashes has been the socalled stochastic scenario. Lichtenberg argued in a seminal paper [START_REF] Lichtenberg | Stochasticity as the mechanism for the disruptive phase of the m = 1 tokamak oscillations[END_REF] that the fast disruptive relaxation could be caused by the intrinsic large-scale stochasticity caused by overlapping magnetic islands. Despite some recent analogous stochastic interpretation of sawteeth experiments done in the ASDEX tokamak [START_REF] Igochine | Transition from quasiperiodicity to chaos just before sawtooth crash in the ASDEX Upgrade tokamak[END_REF][START_REF] Igochine | Structure and dynamics of sawteeth crashes in ASDEX Upgrade[END_REF], this theory faces a major, still unsolved, challenge due the puzzling outcome of a wellknown experiment. In 1997, striking results were published [START_REF] Wesson | Transport in the sawtooth collapse[END_REF] of some experiments performed in JET on the transport of nickel impurities during the sawtooth regime. Being introduced by the laser blow-off technique, trace nickel impurities were observed to propagate rapidly inwards until halting at a radius close to the q = 1 surface, behaving then as a transport barrier, at which their density peaked. Then, coincident with the sawtooth collapse, nickel ions were suddenly transported towards the plasma core and, correspondingly, the soft x-ray emission indicated that the nickel density profile flattened during the very short, about 50 µs, lapse of time of the crash phase. The redistribution of these heavy impurities is as fast as the drop of the electron temperature occurring during the crash, even if electrons are two order of magnitude faster than Ni ions. This fact was given as an argument to rule out the stochastic nature of the transport during the sawtooth [START_REF] Wesson | Transport in the sawtooth collapse[END_REF].

A well-known problem faced when studying the sawtooth phenomenon lies in the computational difficulty to reproduce it self-consistently. Magnetohydrodynamicbased approaches repeatedly predict a complete reconnection at each sawtooth cycle (in the absence of ad-hock tricks) whereas the experimental reconnection is incomplete (See e.g. the presentation on sawtooth oscillations by Biskamp [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF]). This may question the validity of fluid models in the reconnection collapse phase. Moreover, the treatment of the different species (electrons, plasma ions and impurities) in this kind of calculations is very heterogeneous. Specific ad hoc and phenomenological terms are added to the transport equations of each species, to approximate the expected behaviour of the system. This approach tends to oversight the fact that at the very last, all particles in the plasma are subject to the same electric and magnetic fields, which will ultimately determine their dynamics. Another problem lies in the experimental difficulty to resolve the magnetic spectrum poloidally. Usually it is only toroidally resolved. All this led us to investigate sawtooth collapses in a new, indirect way, by making use of experimental results on the behaviour of plasma and heavy trace particles as a testbed to probe the existence and the importance of the spatial chaos of magnetic field lines in sawtooth collapses.

In the framework of this study, presented below, nickel ions, electrons and plasma ions are considered as test particles, the trajectories of which will be computed using a full orbit following code. The only necessary information to perform this is having a prescribed model set for the electric and magnetic fields during the sawtooth collapse phase. The impact of spatial chaos will be eventually singled-out by considering sawtooth collapse models with integrable and spatially chaotic magnetic field lines for the same amplitude of the magnetic perturbation δB in the same constant equilibrium magnetic field. Inward propagation of nickel ions during the collapse is recovered in the chaotic case, but not for integrable magnetic field lines.

Framework

We begin by noting that, due to the magnetic field being globally divergence-free, its field lines are the trajectories of a Hamiltonian system. Let us consider a set of variables (ρ, θ, φ) where ρ is a radius-like variable that vanishes along the magnetic axis. Then, there exist [START_REF] Hitchon | Flux Coordinates and Magnetic Field Structure A Guide to a Fundamental Tool of the Plasma Theory[END_REF] two single-valued functions Ψ(ρ, θ, φ) and Φ(ρ, θ, φ), such that the magnetic field can be written in the form

B = ∇Ψ × ∇θ + ∇φ × ∇Φ. (7) 
Eliminating the variable ρ by using Φ(Ψ, θ, φ), the equations for the magnetic field lines read dΨ/dφ = -∂Φ/∂θ and dθ/dφ = ∂Φ/∂Ψ, so that Φ plays the role of the Hamiltonian, the toroidal angle φ is a time-like variable and Ψ is the momentum conjugated to the poloidal angle θ. In a non-steady state, the field-line Hamiltonian depends also on the real time t, that is a parameter not a canonical variable, and will be noted Φ t . As usual in tokamak physics, one will assume that the magnetic field B(r, t) remains sufficiently close to some equilibrium B 0 (r) with perfect magnetic surfaces. In Fourier decomposed form, the magnetic field-line Hamiltonian reads then

Φ t (Ψ, θ, φ) = Φ 0 (Ψ) + m,n Φ t mn (Ψ)e i(mθ-nφ) . (8) 
The magnetic field-line Hamiltonian associated to B 0 is integrable, being Φ 0 (Ψ). It identifies with the poloidal magnetic flux and Ψ with the toroidal magnetic flux. The safety profile q(Ψ) is defined by dΦ 0 /dΨ = q(Ψ) -1 . Important to our study is to recognize that there exist also non-axisymmetric integrable field-line Hamiltonians obtained from Eq. ( 8). For instance, if one assumes that the magnetic field perturbation affects only m = n modes, such as the dominant (1, 1) and (2, 2) modes, then the Hamiltonian may be expressed as a function of just two coordinates, namely Ψ and the helical angle θ -φ, and is thus integrable [START_REF] Firpo | Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines[END_REF][START_REF] Firpo | Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas[END_REF].

Then, in order to isolate the effect of the magnetic field line chaos on the motion of the nickel ions during the sawtooth crash, two different sets of magnetic field perturbations will be used [START_REF] Ettoumi | Dynamique hamiltonienne et phénomènes de relaxation: d'un modèle champ moyen au confinement magnétique[END_REF]. In the first one, the perturbation has a single helicity with (1, 1) or (1, 1) + (2, 2) modes associated to an integrable magnetic field-line Hamiltonian. In the second scenario, which is more realistic, the perturbation includes the (1, 1) modes and m = n modes. The dominant m = n mode is the (2, 1) mode that is linearly destabilized together with the (1, 1) mode due to toroidal effects.

It is likely that, in the JET discharges of Ref. [START_REF] Wesson | Transport in the sawtooth collapse[END_REF], sawteeth were triggered by excitation of the internal kink mode in the semi-collisional ion-kinetic regime. However, as we focus on the crash phase, the duration of which is much shorter than that of the whole sawtooth cycle, and on the specific impact of the chaos of magnetic field lines, we are not interested here in the precise determination of the time development and space dependence of magnetic modes before the crash. Moreover, the crash phase being much shorter than the resistive time, the ideal Ohm's law will be considered as approximately valid. Denoting by ξ the plasma displacement field, the perturbed magnetic and electric field can be written as

δB = ∇ × (ξ × B 0 ), (9) 
E = - ∂ξ ∂t × B. ( 10 
)
So doing, the perturbed e.m. fields are derived under the sole knowledge of the plasma displacement field. The time evolution of the displacement is phenomenologically reconstructed as in Refs. [START_REF] Igochine | Transition from quasiperiodicity to chaos just before sawtooth crash in the ASDEX Upgrade tokamak[END_REF][START_REF] Farengo | Alpha particle redistribution due to experimentally reconstructed internal kink modes[END_REF][START_REF] Farengo | Redistribution of high energy alpha particles due to sawteeth with partial reconnection[END_REF]. In the JET discharges of Ref. [START_REF] Wesson | Transport in the sawtooth collapse[END_REF], sawteeth are in all likelihood triggered by excitation of the n = 1 internal kink mode, whereas higher modes are nonlinearly triggered [START_REF] Firpo | Dynamical analysis of the nonlinear growth of the m = n = 1 resistive internal mode[END_REF][START_REF] Firpo | Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas[END_REF] as the n = 1 mode develops. Higher order m = n modes have even been experimentally measured [START_REF] Munsat | Localization of the magnetic reconnection zone during sawtooth crashes in tokamak plasmas[END_REF]. The different nature of the magnetic field topology in both cases is illustrated by the Poincaré section plots for the integrable (mode (1, 1)) and stochastic (modes (1, 1) and (2, 1)) cases as shown in Figure 1. The radial displacement of the mode (m, n) is written as ξ mn r (r, t) = ξ mn 0 (t)f mn (r) cos (mθ -nφ + χ mn (t)) [START_REF] Von | Space physics -grand challenges for the 21st century[END_REF] and the other components of the displacement are obtained considering an incompressible displacement ∇ • ξ = 0 and minimizing the change in potential energy for internal modes as in Ref. [START_REF] Farengo | Redistribution of high energy alpha particles due to sawteeth with partial reconnection[END_REF]. The effect of the crash is to quench the magnetic perturbation, although not completely, since, consistently with partial reconnection, a remnant of the m = n = 1 island is commonly observed. Consequently, it will be assumed that, at the end of the crash phase, the mode amplitudes become c mn ξ mn 0 , with a finite (1, 1) mode, given by c 11 = 0.1, while c mn = 0 for (m, n) = (1, 1). As for the radial dependence, the f mn (r) will be phenomenologically reconstructed as in Refs. [START_REF] Igochine | Transition from quasiperiodicity to chaos just before sawtooth crash in the ASDEX Upgrade tokamak[END_REF][START_REF] Farengo | Alpha particle redistribution due to experimentally reconstructed internal kink modes[END_REF][START_REF] Farengo | Redistribution of high energy alpha particles due to sawteeth with partial reconnection[END_REF]. Consistently with the experimental measurements obtained e.g. in ASDEX [START_REF] Igochine | Structure and dynamics of sawteeth crashes in ASDEX Upgrade[END_REF], the (1, 1) mode will have the form of the classical kink so that f 11 (r) amounts to a smoothed step function. As for the (2, 2) mode, that is nonlinearly triggered [START_REF] Firpo | Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas[END_REF], an experimental reconstruction [START_REF] Igochine | Transition from quasiperiodicity to chaos just before sawtooth crash in the ASDEX Upgrade tokamak[END_REF] will be used as in Refs. [START_REF] Farengo | Alpha particle redistribution due to experimentally reconstructed internal kink modes[END_REF][START_REF] Farengo | Redistribution of high energy alpha particles due to sawteeth with partial reconnection[END_REF]. As for the other modes, the ideal linear cylindrical form will be used as in Ref. [START_REF] Zhao | Simulation of α-particle redistribution due to sawteeth on the tokamak fusion test reactor[END_REF] so that Comparison between the integrable and the chaotic cases: Poincaré sections of the B lines at the crash onset in the case of integrable magnetic field lines with a (1, 1) displacement from the circular cross-section center of 25 cm (a), in the case of integrable magnetic field lines with a (1, 1) displacement of 25 cm and a (2, 2) displacement of 10 cm (b) and in the case of locally chaotic magnetic field lines (c) with a (1, 1) displacement of 25 cm and a (2, 1) displacement of 10 cm. The last two cases have the same δB/B. The inner black circles and dots respectively mark the location of the q = 1 surface and equilibrium magnetic axis.

f mn (r) = r R 0 r r s m-1 1 q(r) - n m Θ m n -q(r) , (12) 
where q(r) is the equilibrium safety profile, chosen here as a monotonously increasing function with a central value equal to q(0) = 0.8, where r s is defined by q(r s ) = 1 and Θ denotes the Heaviside distribution. The canonical form of the perturbed Hamiltonian in Eq. ( 8) may be simply obtained by replacing r by its approximate cylindrical form r = a √ 2Ψ. Finally, the wave phases are modeled by χ mn (t) = χ 0 mn -ω mn t with frequencies ω mn taken in a realistic parameter window. The computations presented here use ω 11 = 5.10 4 rad.s -1 and experimentally relevant ratios ω mn /ω 11 . JET-like parameters have been used: the minor radius is a = 1 m, major radius is 3 m and the toroidal field B T = 2.8 T.

Each nickel test particle obeys the equation of motion

m d 2 r dt 2 = q dr dt × B + qE, (13) 
where B = B 0 (r) + δB(r, t) and Eqs. ( 9) and ( 10) are used as functions of the radial component of the plasma displacement with components [START_REF] Von | Space physics -grand challenges for the 21st century[END_REF]. The charge number of the nickel ions has been retained to be Z = +26, which appears to be the main ionization state present in similar experiments [START_REF] Pasini | Measurements of impurity transport in JET[END_REF][START_REF] Giannella | Role of current profile in impurity transport in JET L mode discharges[END_REF] and their mass is m = 58.7 u. The full equation of motion [START_REF] Hastie | Sawtooth instability in tokamak plasmas[END_REF] has been integrated without any gyroaveraging procedure for a collection of nickel ions using a fourth-order Runge-Kutta algorithm. Electrons trajectories are also integrated without gyroaveraging, but because the very large number of time steps (∼ 10 9 ) and to improve energy conservation, a Boris integrator was used instead of the Runge-Kutta integrator. The number of test particles in the calculation was 10 7 for ions and 10 5 for electrons. Initial velocity distribution for all particles in the calculations shown in the paper was isotropic with an energy of 8 keV. Calculations performed for lower energies (2, 4 and 6 keV) show essentially the same trends than at 8 keV. 

Results on the nickel dynamics

Typical orbits are represented in figure 2, for the integrable case (figure 2.a and b) and the stochastic one (figure 2.c). To reproduce the near-crash conditions of Ref. [20], N nickel particles are uniformly placed at t = 0 about the q = 1 surface at distances of 0.5 m from the magnetic axis. The displacement used for the (1, 1) mode is 25 cm, close to the value of the maximal displacement that may be inferred from the inspection of the tomographic reconstruction of central soft x-ray emission on the Figure 4 of Ref. [START_REF] Wesson | Transport in the sawtooth collapse[END_REF]. The maximal amplitude of the perturbation δB 11 /B 0 is ∼ 3.5%.

The crash starts at t = 0 and finishes at t = 50 µs. As expected, if the -v × B electric field is neglected (figure 2.a), the trajectories are not affected by the collapse of the sawtooth instability. The inclusion of the electric field in the integrable case clearly enhances the effect of the crash over the trajectories (2.b). A fraction of the Ni ions are smoothly deflected towards the magnetic axis.

In the chaotic case including the electric field (2.c), the crash produces a dramatic and complex redistribution of the particles. Some ions reach the magnetic axis whereas others are pushed away towards the separatrix. The trace of ions in four poloidal sections corresponding to the chaotic case (2.d) illustrates the sudden redistribution of ions. In less than 50 µs, the Ni ions experience a radial displacement as large as 0.5 m. During the crash, the radial transport is driven by the large electric field (proportional to ∂ξ/∂t) associated with the rapid drop of the displacement. As the magnetic field is mainly toroidal and the displacement radial, the E×B drift is mainly in the radial direction. However, calculations show that the process is not uniquely determined by the E×B drift. For example, the trajectories do change when changing the charge sign or the velocity, both properties not affecting the E × B drift. Around the crash, the redistribution process can be characterized as superdiffusive, the mean square displacement being r 2 ∝ t α with α ∼ 3 > 1. Importantly, superdiffusive transport has been also reported in the context of astrophysical plasmas reconnection [START_REF] Lazarian | Superdiffusion of cosmic rays: Implications for cosmic ray acceleration[END_REF].

To get a more complete comparison between the prediction of our model and the experimental data we perform calculations for the whole sawtooth cycle. We take as initial condition ions distributed around the q = 1 surface as found in [START_REF] Wesson | Transport in the sawtooth collapse[END_REF]. Time evolution of the nickel density along the central horizontal chord (z = 0) for different scenarios is shown in figure 3. When the mode (1, 1) is included and the electric field is neglected (3.a), ions do not show a noticeably response to the perturbation of the magnetic field. The inclusion of the electric field (3.b) enhances the radial diffusion of ions towards the axis in the growing phase of the instability. The electric field before this stage is mainly due to the temporal variation of the B-field due to the mode rotation. The fastest the rotation, the stronger will be the diffusion of the impurities before the crash. The crash also contributes to the ion penetration, although the difference between the radial distribution before and after the crash is not marked.

The addition of the mode (2, 2) with a maximum displacement of 10 cm has little effect over the dynamics of the nickel impurities (3.c). Note that the system including the modes (1, 1) and (2, 2) is still integrable. The inclusion of the mode (2, 1), i.e. the stochastic case, with the same maximum displacement, rotation frequency and growing time as the (2, 2) results in a strong inward diffusion of nickel impurities during the crash. In the cases of non-chaotic magnetic field lines, there is no noticeable nickel invasion towards the tokamak magnetic axis within the timescale of the sawtooth collapse. Conversely, quite significantly high fraction of nickel particles inside the core may be obtained when magnetic field lines display spatial chaos. Two features observed in experiments [START_REF] Wesson | Transport in the sawtooth collapse[END_REF][START_REF] Wei | Sawtooth activities during impurity injection by laser blow-off in HL-2A[END_REF] are retrieved in this calculations: 1) Nickel ions do not penetrate into the tokamak core in the growing phase of the sawtooth, and 2) they suddenly diffuse to the magnetic axis during the collapse. The combined result is the inversion of the sawtooth detected from soft x-ray emission, i.e. the signal grows instead of dropping at the crash.

To single-out the impact of magnetic chaos, we shall address the following question: for the same |δB|, could we have obtained an inward nickel diffusion in a model with no chaos of the magnetic field lines? Calculations of the transport during the whole sawtooth cycle for a variety of parameters shows that nickel ions can reach the magnetic axis without the mode (2, 1) only for very large radial displacement of the (1, 1) mode (ξ 11 0 > 35 cm), i.e. larger |δB|, or for high rotation frequencies (tens of kHz). But the behaviour is very different than in the stochastic case. There is not a sudden diffusion of nickel during the collapse but a smooth diffusion during all the growing phase of the instability. Moreover, it is important to point out that, due to the toroidal magnetic field decreasing with the major radius as 1/R, there is some poloidal asymmetry in the transport. This is visible for nickel ions in Figure 3.d). Consequently, the transport toward the magnetic axis observed with chaotic magnetic field lines is more effective from the direction of greater magnetic field.

Consistency with experimental results

Electron thermal velocity is more than 300 times larger than that of nickel ions, but the characteristic times for electron and impurity transport during the collapse found in experiments are similar. In other words, the collapse time for normal and inverse sawtooth inferred from SXR emission are comparable [START_REF] Wesson | Transport in the sawtooth collapse[END_REF][START_REF] Wei | Sawtooth activities during impurity injection by laser blow-off in HL-2A[END_REF]. We also explored the transport of electrons and positive ions (H + ) during the collapse, to test if a chaotic model for the magnetic field lines is compatible with a global dynamic independent of the particle velocity and mass. This will be presented elsewhere. Integrating the exact electron trajectories, we could reproduce electron temperature patterns very close to that found in electron temperature measurements by ECE [START_REF] Yamada | Investigation of magnetic reconnection during a sawtooth crash in a hightemperature tokamak plasma[END_REF][START_REF] Liu | Electron cyclotron emission imaging observations of m/n=1/1 and higher harmonic modes during sawtooth oscillation in ICRF heating plasma on EAST[END_REF] using the e.m. with chaotic magnetic field lines for which the experimental nickel behaviour was reproduced. The time evolution of the central temperature drop predicted by our model is close to that of the nickel penetration to the central region (see figure 4). Both times are close to the collapse time, 50 µs, in agreement with experimental evidence. Note that the temperature drop found (∼ 8%) is weaker than in experiments ( ∼ 30%), because the temperature profile created by the sawtooth during the time lapse integrated here is much flatter than the one produced by ohmic heating.

To summarize the outcome of our numerical simulations, we can say that in the case of integrable models of magnetic field lines for the sawtooth collapse and realistic parameters, nickel ions remained close to the regular magnetic surfaces, a feature clearly at odds with the experiments. Conversely, in the case of collapse models involving different helicities with mode amplitudes sufficiently large to make magnetic field lines stochastic in a region about the q = 1 surface where nickel ions are concentrated before the crash, nickel ions did invade and remain in the core as observed in Ref. [START_REF] Wesson | Transport in the sawtooth collapse[END_REF]. Moreover, simulations show that both the central electron temperature and plasma density evolve in the same timescale.

Eventually, the puzzle pointed by Wesson [START_REF] Wesson | Transport in the sawtooth collapse[END_REF] on the nickel and electron populations moving radially on the same timescale appears to have a simple explanation: do to their mass difference, while electrons dominantly feel (and act back on) the magnetic force being redistributed spatially by the chaos of magnetic field lines at the collapse, the motion of nickel ions is more affected by the electric force and mostly follows the E × B 0 drift. Due to Faraday's law, the magnetic perturbation and electric field act on the same timescale, controlled by the swiftest plasma particles, namely by the electrons.

Conclusion and future prospects

This study offers a quantitative proof of principle that magnetic field lines are chaotic near the onset of sawtooth collapses, at least in the case of incomplete reconnection, that corresponds to spontaneous magnetic reconnection in the space plasmas terminology.

In this study, as in the original experimental work by Wesson et al. [START_REF] Wesson | Transport in the sawtooth collapse[END_REF], nickel ions take the role of, externally introduced, massive test particle impurities that serve to probe the physical mechanisms governing tokamak sawteeth. Nowadays, the fate of impurities in magnetic fusion devices has become an essential issue in itself. ITER will be equipped with tungsten plated divertors. Those plasma-facing components could be partially ablated under intense heat flux. In this respect, this work should, for instance, be useful in the modeling of the transport of tungsten impurities in ITER's sawteeth.

With respect to the general problem of magnetic reconnection, this work points to the existence of chaotic magnetic field lines in the last stage of magnetic reconnection. Although this evidence is given here in the tokamak setting, there is no obstacle for its occurrence in space configuration. Further exploration should be conducted to assess whether this spatial chaos of magnetic field lines may be the/one explanation to the rapidity of spontaneous magnetic reconnection. This chaos emanates here from a small number and not, as in turbulence, from a large spectrum of modes. As spontaneous magnetic reconnection may start from an instability, such a stage of low-dimensional chaos should precede turbulence and its impact on reconnection in the astrophysical context remains to be explored. A preliminary analysis indicates that, all other things being equal, chaotic magnetic field lines induce an increased rate of energy transfer compared with integrable (laminar) B lines [START_REF] Firpo | Impact of the Eulerian chaos of magnetic field lines in magnetic reconnection[END_REF].

Microscopic features: microtearing turbulence

We shall now consider the case where the relative magnitude of the magnetic field perturbation δB/B is small but sustained by a wide spectrum of modes. This situation occurs in conditions of turbulence, according to the MCF terminology. In this case, magnetic field lines behave in a stochastic way, as many resonance modes overlap, in the usual tokamak operation conditions where δB/B is of the order 10 -4 [START_REF] Zou | Internal magnetic turbulence measurement in plasma by cross polarization scattering[END_REF][START_REF] Hamada | Microtearing mode (MTM) turbulence in JIPPT-IIU tokamak plasmas[END_REF]. This was first inferred in the seminal work by Stix [START_REF] Stix | Magnetic braiding in a toroidal plasma[END_REF], reported in some recent gyrokinetic simulations [START_REF] Doerk | Gyrokinetic microtearing turbulence[END_REF][START_REF] Hatch | Origin of magnetic stochasticity and transport in plasma microturbulence[END_REF], and studied within some realistic microtearing magnetic model [START_REF] Firpo | Microtearing turbulence: Magnetic braiding and disruption limit[END_REF].

Figure 5 shows a Poincaré plot of magnetic field lines obtained with a monotonic q-profile and a full spectrum of tearing modes as in Ref. [START_REF] Firpo | Microtearing turbulence: Magnetic braiding and disruption limit[END_REF] with a magnitude of δB/B as low as 3.10 -5 . This clearly indicates that magnetic surfaces are destroyed, yet some transport barriers (KAM tori) and their remnants (cantori) located about low rational values of q contain the radial diffusion of magnetic field lines.

For the values of δB/B experimentally measured in Tore Supra [START_REF] Zou | Internal magnetic turbulence measurement in plasma by cross polarization scattering[END_REF] and recently in JIPPT-IIU [START_REF] Hamada | Microtearing mode (MTM) turbulence in JIPPT-IIU tokamak plasmas[END_REF], the flux across the cantori is so large that they effectively provide no barriers to transport and magnetic field lines tend to behave almost stochastically exploring all the phase space [START_REF] Firpo | Microtearing turbulence: Magnetic braiding and disruption limit[END_REF]. This intrinsic stochasticity of magnetic field lines justifies the validity of a Fokker-Planck-like approach to the electron transport, first proposed by Rechester and Rosenbluth [43]. This yields the estimate of the electron thermal diffusivity as χ e ∼ v the D B , with v the the electron thermal velocity and D B the . Puncture plots of four (colored online) magnetic field lines crossing some given poloidal tokamak cross-section for a magnetic spectrum with δB/B ∼ 3.10 -5 . See Ref. [START_REF] Firpo | Microtearing turbulence: Magnetic braiding and disruption limit[END_REF] for details on the model. The representation is in the (θ, ψ) plane. One can observe some cantori about ψ 0.7 and ψ 0.6.

diffusion coefficient of the magnetic field lines. Let us note here that all the magnetic content is needed to estimate the transport, not only the small wavelength modes, "turbulent part", that is sometimes only retained.

The point that we wish to make here is that the stochasticity of magnetic lines is not necessarily catastrophic for MCF plasma confinement: it is all a matter of confinement time, or equivalently here, a matter of magnitude of the magnetic diffusivity. The study [START_REF] Firpo | Microtearing turbulence: Magnetic braiding and disruption limit[END_REF] pointed out the sensitivity of the magnetic confinement time τ B with δB/B as τ B ∼ (δB/B) -2 . Containing δB/B to values low enough so that partial magnetic transport barriers still exist (as in Figure 5) would lead to much higher electron confinement times, since, as discussed in the introduction, the electron transport identifies dominantly to the magnetic transport. This is presumably a path to improved fusion performances if this is performed jointly with the control of the electrostatic turbulence governing the ion transport.

Figure 1 .

 1 Figure 1. Comparison between the integrable and the chaotic cases: Poincaré sections of the B lines at the crash onset in the case of integrable magnetic field lines with a (1, 1) displacement from the circular cross-section center of 25 cm (a), in the case of integrable magnetic field lines with a (1, 1) displacement of 25 cm and a (2, 2) displacement of 10 cm (b) and in the case of locally chaotic magnetic field lines (c) with a (1, 1) displacement of 25 cm and a (2, 1) displacement of 10 cm. The last two cases have the same δB/B. The inner black circles and dots respectively mark the location of the q = 1 surface and equilibrium magnetic axis.

Figure 2 .

 2 Figure 2. Trajectories of nickel ions during the sawtooth collapse. Trajectories between t 0 = -50 µs and t f = 100 µs are shown for the integrable case without (a) and with (b) electric field and for the chaotic case (c) with the electric field. (d) Cross sections (R, z) taken from (c) showing integrated particle positions for the chaotic case for toroidal angles φ = 0, π/2, π and 3π/2 are also shown in a time-dependent color scale. Nickel ions are injected at φ = 0, and with minor radius r = 0.5 m.

Figure 3 .

 3 Figure 3. Evolution of Nickel ions during one sawtooth cycle. Top row: mode amplitude time dependence. Bottom row: ion density along the central horizontal chord evolution. Ions are initially uniformly distributed around the q = 1 surface, specifically in a 0.5 m radius -0.1 m thickness ring centered at the magnetic axis. The plots (a), (b) and (c) correspond to cases with integrable magnetic field lines. The right plot (d) corresponds to the chaotic magnetic field topology.

Figure 4 .

 4 Figure 4. Temporal evolution of central electron temperature, central plasma ion density and central nickel density. The sawtooth collapse starts at t = 0 µs and finishes at t = 50 µs.

Figure 5

 5 Figure 5. Puncture plots of four (colored online) magnetic field lines crossing some given poloidal tokamak cross-section for a magnetic spectrum with δB/B ∼ 3.10 -5 . See Ref.[START_REF] Firpo | Microtearing turbulence: Magnetic braiding and disruption limit[END_REF] for details on the model. The representation is in the (θ, ψ) plane. One can observe some cantori about ψ 0.7 and ψ 0.6.
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