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Abstract

Magnetic resonance imaging (MRI) is probably one of the most
successful application fields of compressed sensing. Despite recent ad-
vances, there is still a large discrepancy between theories and most
actual implementations. Overall, many important questions related to
sampling theory remain open. In this paper, we attack one of them:
given a set of sampling constraints (e.g. measuring Fourier coefficients
along physically plausible trajectories), how to optimally design a sam-
pling pattern? We first outline three aspects that should be carefully
designed by inspecting the literature, namely admissibility, limit of the
empirical measure and coverage speed. To address them jointly, we
then propose an original approach which consists of projecting a prob-
ability distribution onto a set of admissible measures. The proposed
algorithm permits to handle arbitrary constraints and automatically
generates efficient sampling patterns for MRI as shown on realistic
simulations. We achieve a 20-fold undersampling factor at very high
2D resolution (100 µm isotropic) on physically plausible sampling tra-
jectories with a gain in SNR of 2-3 dB on reconstructed MR images as
compared to more standard sampling patterns (e.g. radial, spiral).
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(claire.boyer11@gmail.com).
†Inria Saclay, Parietal team. CEA/NeusoSpin, 91191 Gif-sur-Yvette, France

(nicolas.chauffert@cea.fr).
‡Inria Saclay, Parietal team. CEA/NeusoSpin, 91191 Gif-sur-Yvette, France

(philippe.ciuciu@cea.fr).
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1 Introduction

Magnetic resonance imaging (MRI) is one of the flagship applications of com-
pressed sensing (CS). The combination of CS and MRI initially appeared
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in [34], very shortly after the seminal CS papers [11, 10, 19]. However,
the way CS was originally implemented on real scanners strongly departed
from theory. Despite having limited theoretical foundations, empirical im-
plementations turned out to be useful in practice and triggered a massive
interest both in the MRI and mathematics communities. Since then, many
researchers have tried improving the way CS-MRI is implemented. These
attempts can be divided into two distinct tracks:

• The first one consists of reducing the coherence of the sensing basis by
using techniques termed phase scrambling [26] or spread spectrum [46].
This can be implemented using specific radio-frequency pulses [26] or
shim-coils [46]. A few available theories support these techniques [52,
47].

• The second one consists of keeping the sensing basis unchanged: im-
ages are acquired by collecting Fourier samples and assuming sparsity
in a wavelet basis. The problem then reformulates as the design of
new sampling patterns either in 2D or in 3D. Examples ranging in
this second category include patterns made of parallel lines [34], radial
lines [65], spirals [43], noisy spirals [36], Poisson disc sampling [64], ...

The second approach is adopted more widely, probably due to its ease of
implementation since collecting Fourier coefficients along lines for instance
is practically feasible for the magnetic field gradients. In addition, it is
unclear that using totally incoherent bases is better for structured signals,
as illustrated by [51]. In this paper, we will therefore focus on the second
track too, especially in the context of 2D sampling even though our approach
can extend to 3D imaging.

Contributions. The sampling patterns proposed in the literature for 2D
imaging1 may seem somewhat arbitrary (horizontal parallel lines, radial
lines, spirals, ...) but they actually match what the magnetic field gradi-
ents can easily play while satisfying the hardware constraints. For instance,
although many existing theories recommend using completely random sam-
pling patterns, it is not clear that adding random perturbations to a spiral
will improve its practical efficiency. In 3D, the use of parallel lines in the
orthogonal direction (i.e., readout direction) to the slices of interest permits
to easily implement a 2D variable density sampling (VDS) [34] within each
slice and in this regard to stick to the VDS theory [48, 1, 16, 31]. However,

1Slice-by-slice acquisition.
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in a 3D perspective, this 2D-VDS is likely suboptimal since high frequencies
along the readout direction are sampled too densely, hence increasing the
scanning time uselessly as compared to a pure 3D VDS. Moreover, the re-
cent CS theory with block-structured acquisition [5] predicts that the above
mentioned parallel line strategy will produce some artifacts in the readout
direction.

The first contribution of this paper is to provide a review of existing
theoretical CS results in Section 3. This review permits to establish general
principles for designing efficient sampling patterns.

The second and most significant contribution is to show that our recent
projection algorithm [15] can be used to generate feasible sampling patterns
complying with the proposed principles. The main idea is to project a
probability distribution onto a space of admissible measures. The reader
can look at the result on Figure 1 to get an idea of what the algorithm
does: given an initial distribution (here a piece of text), the algorithm finds
a sampling pattern complying with physical constraints that best fits the
distribution. The core of this algorithm was proposed by a subset of the
authors [15]. It is based on the use of fast projections algorithms on the
set of admissible curves for MRI proposed in [17]. We also analyze new
constraint sets relevant for applications, based on unions of segments of
variable length.

The third and last contribution consists of a series of numerical exper-
iments led on standard and high resolution 2D MR images. The results
suggest that the proposed sampling patterns significantly outperform more
traditional approaches (radial and spiral trajectories).

Related works. A few works in the literature address the problem of
optimizing the acquisition space coverage using computational techniques.

The contributions [39, 58] propose an algorithm to cover the whole k-
space as fast as possible by relying on techniques used for missile guidance.
This idea departs from the proposed one since the objective of these authors
was to satisfy Shannon’s sampling theorem, meaning that the samples should
cover the space uniformly.

In [32, 18], the authors have proposed to synthesize random feasible tra-
jectories using optimization techniques. Their idea was to generate random
control points uniformly distributed over the surface of a sphere. They then
searched for a feasible trajectory that passed close to them using second
order cone programming. Multiple random trajectories were then generated
this way and a genetic algorithm was involved to select the most relevant
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Figure 1: A glance at our contribution: our algorithm generates a sampling
pattern complying with the MRI scanner constraints in which sampling lo-
cations consist of a piece of text, namely How to sample me efficiently?.
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ones so as to ensure a uniform k-space coverage. This idea does not stem
from a clear sampling theory and is based on randomness in contrast to the
proposed approach.

In [7], two of the authors of this paper proposed to generate sampling
schemes with ideas quite similar to the ones exposed here. Given a set
of blocks of measurements (e.g. segments), an efficient drawing distribution
was constructed by solving an original convex program. Drawing i.i.d. blocks
usually leads to suboptimal image reconstruction results since neighbouring
blocks can be sampled multiple times, hence local clusters of samples can
emerge at the expense of a complete coverage of the k-space.

Finally, a few authors [54, 49, 20] have borrowed ideas from statistical
design for generating efficient sampling trajectories. In [54], the key point is
to fix a set of feasible trajectories (e.g. pieces of spirals) and to select them
iteratively by picking the one that brings the largest amount of information
at each step. Hence, finding the most meaningful trajectory becomes com-
putationally intensive and hardly compatible with a real-time acquisition.
The main contribution of [49, 20] is to propose alternative approaches to
reduce the computational burden, by working on training images. These
adaptive approaches suffer from a few drawbacks. First, the whole versati-
lity of MRI scanners is not exploited since fixed trajectories are imposed.
Our formalism does not impose such a restriction. Second, even though
adaptivity to the sampled image may seem appealing at the first glance, it
still seems unclear whether this learning step is really helpful [2]. Finally,
these approaches strongly depart from existing sampling theories, whereas
our contribution is still motivated by solid and recently established theories.

Outline of the paper. We first recall in Section 2 how data are collected
in MRI and then how MR images are reconstructed. We then propose a
short review of theoretical compressed sensing results in Section 3. Sec-
tion 4 describes the main idea of the paper: we explain how the design of
sampling patterns can be formulated as a measure projection problem. We
then develop a numerical algorithm to solve this projection problem in Sec-
tion 5. Finally, numerical experiments in a retrospective CS framework are
conducted in Section 6 and conclusions are drawn in Section 7.

2 MRI acquisition and reconstruction

In this section, we start by presenting how MRI data are collected in a con-
cise manner. This summary is motivated by the fact that in many papers
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dealing with retrospective compressed sensing for 2D MRI, the authors as-
sume that the data are collected point-by-point. This strategy is feasible in
practice but it dramatically slows down the acquisition. In order to really
accelerate acquisition, the data should be acquired along continuous (eg,
lines), piecewise continuous (eg, spokes) or more regular trajectories (eg,
spirals). We then describe the `1 reconstruction framework we adopt in this
paper to get MR images.

2.1 MRI acquisition

In MRI, images are usually sampled in the so-called k-space, which corre-
sponds to the 2D or 3D Fourier domain [60]. The acquisition domain can
be slightly different (i) in the parallel MRI context, where spatial sensitivity
encoding associated with the multiple channel coil introduces a convolution
in k-space [56, 45] or (ii) when shim coils (e.g. phase scrambling/spread
spectrum) are involved [38, 26, 46]. In this paper, we focus on the Fourier
domain, but the proposed ideas could be extended to these other settings.

The samples lie along parameterized curves s : [0, T ] 7→ Rd, where d ∈
{2, 3} denotes the image dimensions. The i-th coordinate of s is denoted
si. Let u : Rd → C denote a d dimensional image and û be its Fourier
transform. Given an image u, a curve s : [0, T ]→ Rd and a sampling period
∆t (also termed dwell time in MRI), the image u shall be reconstructed from
the following dataset:

E =

{
û(s(j∆t)), 0 6 j 6

⌊
T

∆t

⌋}
. (1)

In what follows, the scalar m =
⌊
T
∆t

⌋
+ 1 denotes the total number of col-

lected samples. Hence, vector y ∈ Cm with components yj = û(s(j∆t))
denotes the vector of measurements. In this paper, we neglect typical dis-
tortions occurring in MRI such as noise, geometric distortions, signal loss at
tissue/air interfaces or off-resonance effects which would affect the dataset E
in Equation (1). We also neglect imprecisions in the trajectory due to Eddy
currents that induce gradient errors [9]. These are very important features
that we plan to consider in forthcoming works (see [62, 63] for details).

The gradient waveform associated with a curve s is defined by g(t) =
γ−1ṡ(t), where γ denotes the gyro-magnetic ratio [27]. The gradient wave-
form is obtained by supplying electric power to gradient coils. This electric
current has a bounded amplitude and cannot vary too rapidly (slew rate).
Mathematically, these constraints read:

‖g‖ 6 Gmax and ‖ġ‖ 6 Smax
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where ‖ · ‖ denotes either the `∞-norm defined by

‖f‖∞ := max
1≤i≤d

sup
t∈[0,T ]

|fi(t)|,

or the `∞,2-norm defined by

‖f‖∞,2 := sup
t∈[0,T ]

(
d∑
i=1

|fi(t)|2
) 1

2

.

Additional affine constraints (eg, k-space position at the echo time) could be
added depending on the targeted application (e.g. structural or functional
imaging) and the chronogram of the sequence (i.e. the interplay between the
orthogonal gradients). For instance, s usually starts from the k-space center,
i.e. s(0) = 0. Multiple sampling trajectories (or interleaves) starting from
the origin can be used to improve the signal-to-noise ratio: this typically
leads to additional linear constraints of type s(k · TR) = 0 for all k ∈ N,
where TR is the time of repetition, ie the time that separates the delivery of
two successive radio-frequency pulses. Overall these additional constraints
can be summarized under the compact form A(s) = b where A is a linear
mapping and b is a fixed vector. We refer to [27, 17] for a more thorough
discussion on these issues.

A sampling trajectory s : [0, T ]→ Rd will be said admissible if it belongs
to the convex set:

ST : =
{
s ∈

(
C2([0, T ])

)d
, ‖ṡ‖ 6 α, ‖s̈‖ 6 β,A(s) = b

}
, (2)

with α = γGmax and β = γSmax .

In addition to the above mentioned kinematics constraints, important
considerations regarding the MR signal acquisition have to be taken into
account. The first one is the exponential signal intensity decay due to trans-
verse relaxation of spins. In this paper, we will assume that the MR signal
is available for 200 ms and therefore limit the trajectories to that sampling
time. The second supplementary constraint is the maximal number of sam-
ples that can be stored in the buffer of the analog-to-digital converter. This
buffer length may depend on the imaging device but here we set this con-
straint to 8192 samples per readout.

2.2 MRI reconstruction

Reconstruction of MRI images from k-space measurements E is an involved
problem that has been studied thoroughly. The main technical difficulties
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to solve it are (i) the fact that k-space locations s(j∆t) do not lie on a
Cartesian grid, (ii) the ill-posedness of the problem, (iii) the large image di-
mensions and (iv) an inaccurate knowledge of the acquisition operator owing
to magnetic field inhomogeneities, subject movements,... In this paragraph,
we describe the methodology adopted to solve issues (i), (ii) and (iii). Al-
though of primary importance, problem (iv) is beyond the scope of this
paper.

2.2.1 Modeling the observation operator

In order to define an inverse problem, we first need to model the sampling
operator S that maps u to its sampling set (û(s(j∆t)))0≤j≤m−1. The map-

ping S should map a continuous space like L2(Rd) to Cm. For the purpose
of practical implementation, we consider instead a mapping S : Cn → Cm
between two finite dimensional spaces. By assuming that u = h ? v, where
h is an interpolation kernel and

v =
∑

0≤i1,...,id≤n1/d−1

vi1,...,id · δ (i1,...,id)

n1/d

, (3)

the analytical expression of û is given by:

û(ξ) = ĥ(ξ) ·

 ∑
0≤i1,...,id≤n1/d−1

vi · exp

(
− 2ıπ

n1/d
〈ξ, i〉

) , (4)

where i = (i1, . . . , id). Computing the sums∑
0≤i1,...,id≤n1/d−1

vi · exp

(
− 2ıπ

n1/d
〈ξ, i〉

)
(5)

for all ξ ∈ {s(j∆t), 0 ≤ j ≤ m − 1} using the above expression directly
is an O(nm) algorithm. This complexity is prohibitive for large m and n.
If the samples lie on a Cartesian grid, the complexity can be decreased to
O(n log(n)) using fast Fourier transforms (FFT). In this paper, we depart
from this simplifying assumption by considering non-Cartesian sampling
schemes. We therefore need to resort to more advanced techniques called
Non-Uniform Fast Fourier transforms (NUFFT) [30]. They come with good
parallel implementations on multi-core or GPU architectures [29, 22]. All
the numerical experiments of this paper are based on the NUFFT3 package
on multi-core architecture delivered by Chemnitz university [29]. In all the
numerical experiments, we simply set h = δ. This is a reasonable choice,
given that we only work on simulations with discretized images.



10

2.2.2 `1-norm reconstruction

A large set of reconstruction procedures have been developed over the past
years. The simplest techniques are based on regridding [28, 44]. Lately,
techniques based on `1-regularization of wavelet, frame, or learned dictionary
coefficients were proven more efficient for large undersampling ratios [37,
24, 6, 50]. In this paper, we resort to `1 regularization using an orthogonal
wavelet transform. This setting comes with strong theoretical guarantees of
reconstruction, as will be seen in Section 3.

The idea is to decompose the image u in an orthogonal wavelet basis.
Let Ψ ∈ Cn×n, denote the wavelet synthesis operator. Here, we simply
assume that Ψ decomposes the real and complex part of u separately using
the same orthogonal basis. The wavelet coefficients of a discrete image u are
denoted x = Ψ∗u. If u describes a piecewise smooth image, it is well known
that its wavelet coefficients x are compressible. This observation motivated
the introduction of the basis pursuit algorithm that consists of solving:

min
x∈Rp,SΨx=y

‖x‖1. (6)

The use of the `1-norm is often justified as a convex relaxation of the `0-
counting function, that counts the number of nonzero components in x.
When the data y is degraded by noise, the exact constraint SΨx = y is
relaxed and transformed into a penalized data consistency term. Then, the
following quadratic programming problem has to be solved instead:

min
x∈Rp

‖x‖1 +
λ

2
‖SΨx− y‖22. (7)

Scalar λ > 0 is a parameter that balances the quadratic data consistency
term and the regularization term. In all the paper, Ψ is defined as an or-
thogonal wavelet transform with Symlet wavelets and 3 vanishing moments.

Problem (7) can be solved by using various well documented techniques.
In this paper we will use an accelerated proximal gradient descent algorithm
(aka FISTA) [41, 42, 3].

3 Theoretical foundations of variable density sam-
pling

In this section, we briefly review the existing theoretical CS results. The
conclusions of this section motivate the main contribution of this work: the
design of undersampling patterns by projecting i.i.d. drawings on measure
sets.
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3.1 The first compressed sensing results

Let us first describe the compressed sensing theory as it appeared in the
seminal paper [10] and more recently in [12]. The authors consider an or-
thogonal matrix

A0 =

a∗1
...

a∗n

 .

They propose to construct a random sensing matrix as:

A =

a∗J1
...

a∗Jm

 ,

where the integers Jk ∈ {1, . . . , n} are i.i.d. uniform random variables.
Knowing that y = Ax in the noise-free case, the authors propose to re-
cover x by solving Problem (6). Let

x̄ = arg min
x∈Rp,Ax=y

‖x‖1. (8)

In this context, their main result reads as follows:

Theorem 1. Assume that x is s-sparse, i.e. that it contains at most s
nonzero components. If the number of measurements m satisfies:

m ≥ Cs
(
n max

1≤k≤n
‖ak‖2∞

)
log
(n
ε

)
,

where C is a universal constant, then x̄ = x with probability 1− ε.

Moreover, the authors show that if the measurements are noisy, i.e. y =
Ax + b, where b is a random perturbation, then the solution of the relaxed
Problem (7) also provides stable reconstruction results.

The coherence κ(A0) = n max
1≤k≤n

‖ak‖2∞ belongs to the interval [1, n]. In

particular, κ(F) = 1 and κ(Id) = n. In the favorable case of a Fourier trans-
form, this theorem indicates that only s log

(
n
ε

)
measurements are enough

to perfectly recover an arbitrary s-sparse signal.
Even though this type of theorem got a huge impact in the literature, it is

not applicable to MRI. The natural transform A0 in MRI reads A0 = F∗Ψ,
i.e. the product of Fourier and wavelet transforms. In that case, one can
show that κ(A0) = O(n). Theorem 1 is thus irrelevant in such a setting.
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3.2 The emergence of variable density sampling

In most practical applications, the transforms A0 are coherent. This is
the case in MRI and more generally in Fourier or space imaging [1]. A
simple technique to break down the so-called “coherence barrier” consists of
drawing the coherent samples more often than incoherent ones [48, 31, 14].
Let us clarify this idea. Let π ∈ ∆n denote the distribution of the i.i.d.
random variables Jk, i.e. P (Jk = i) = πi. The following theorem [14]
justifies the use of variable density sampling.

Theorem 2. Assume that x is s-sparse. Set

πk =
‖ak‖2∞∑n
j=1 ‖aj‖2∞

.

If the number of measurements satisfies

m ≥ Cs

 n∑
j=1

‖aj‖2∞

 log
(n
ε

)
,

where C is a universal constant, then x̄ = x with probability 1− ε.

In the MRI case, one can show that
∑n

j=1 ‖aj‖2∞ = O(log(n)). Hence, it

becomes possible to perfectly reconstruct an s-sparse image withO(s log(n)2)
measurements. Let us mention that variable density sampling was the basis
for the seminal paper on compressed sensing MRI [34]. Theorem 2 is a first
argument that supports that type of technique.

3.3 Variable density sampling with structured sparsity

Theorem 2 is quite attractive from a theoretical point of view. A simple
analysis however suggests that it is still insufficient to justify the use of
compressed sensing in MRI. First, the constant appearing in the O is large.
This may only be an artifact of the proofs, but it is currently unknown how
much it can be lowered. More importantly, the term log(n)2 that appears
when using the Fourier-Wavelet pair cannot be improved by using only varia-
ble density sampling arguments. Most often, the logarithmic terms are
disregarded and considered as negligible. It seems however important to
look at them carefully since for instance log(1024×1024)2 = 192. A method
that needs 192s samples to reconstruct a 1024 × 1024 image is actually of
limited practical interest.
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A recent breakthrough that has been proposed in [1], consists of exploit-
ing structured sparsity to derive better reconstruction guarantees. In the
case of imaging, structured sparsity may mean that the wavelet subbands
become sparser as the scale increases. Let us provide a typical result from
this active field of research, coming from our recent work [5].

Let (Ωj)0≤j≤J denote the wavelet subbands with J the number of de-
composition levels. Assume that x is supported on S ⊂ {1, . . . , n} with
|S ∩ Ωj | = sj . This means that x restricted to the subband Ωj is sj-sparse.
This model is called sparsity by levels in [1]. In such a setting, the following
theorem holds.

Theorem 3. Assume that matrix A0 is the product of the Fourier and
Haar wavelet matrices. Let j(k) denote the scale of index k, i.e. j(k) = j if
k ∈ Ωj. Set

πk =
2−j(k)

∑J
p=0 2−|j(k)−p|/2sp

γ
with γ =

J∑
j=0

J∑
p=0

2−|j−p|/2sp.

Set
m ≥ Cγ log(s) log

(n
ε

)
(9)

where C is a universal constant. Under the previous sparsity-by-level hy-
pothesis x̄ = x with probability 1− ε.

Note that contrarily to previous results, the drawing probability π in
Theorem 3 explicitly depends on the sparsity structure. The number of
measurements in Theorem 3 is always lower than that in Theorem 2, but
the gain once again depends on the signal support. Using the oversampling
trick proposed in [1], the term log(s) in Equation (9) can also be discarded.

3.4 Variable density sampling with structured acquisition

Another feature that was not considered in the seminal works on compressed
sensing is structured acquisition. In practice, sampling isolated measure-
ments takes too much time to be appealing in practice. In MRI, radio-
interferometry, X-ray tomography and many other systems, the samples are
collected either line by line or along more complex trajectories (eg, spirals).
In some cases (X-ray, PET imaging), the readout shape is imposed by the
physics of acquisition. The vast majority of compressed sampling schemes
are based on heuristic sampling patterns such as radial lines [33, 65], spirals



14

[57], noisy spirals [64] or other exotic shapes. Even though they often per-
form well, until very recently, theoretical results that allow to justify their
use in practice were missing.

In the spirit of traditional Shannon’s sampling theorem, the papers [61,
23] propose theoretical guarantees for the reconstruction of bandlimited
functions from sets of measurements along lines or curves. These results
usually lead to sampling patterns that span the acquisition space uniformly.

Concomitantly to these developments, we have proposed a few results
in [4, 14, 5] to explain the success of structured acquisitions by using spar-
sity assumptions on the signal to be reconstructed. These results promoted
variable density sampling strategies. In [4, 5], theoretical guarantees were
derived for block sampling strategies: instead of probing isolated measure-
ments, fixed groups of measurements are acquired, irrespective of the struc-
tured sparsity assumptions. Still in these references, it is shown that only
specific sparsity patterns that depend on the acquisition constraints can be
recovered.

In [14], we have proposed to sample signals using generic stochastic pro-
cesses. The conclusions of this work actually define the starting point of the
present paper. We first gave a mathematical definition of variable density
samplers as sequences of stochastic processes with a prescribed limit empir-
ical measure, termed density. We have also shown through mathematical
arguments and experimental validation that the key features characterizing
the efficiency of a variable density sampler are:

i) The density : the stochastic processes should cover the space non-
uniformly according to a certain density.

ii) The coverage speed : a sampler will be efficient only if it covers the
space quickly enough. More precisely, we proved that the mixing time
should be as low as possible. The mixing time characterizes the speed
at which the empirical measure converges to its limit.

Since most readers may not be familiar with these concepts, we illustrate
them in Figure 2. In this Figure, we constructed three different variable den-
sity samplers with a density π illustrated on Figure 2 (a). This density was
defined as suggested by Theorem 2 by setting πk ∝ ‖ak‖∞, where ak is the
k-th row of the Fourier-wavelet matrix A = F∗Ψ. The wavelet transforms
was defined using Symlet filters. The sampling schemes in Figure 2(b-d)
all cover the 256 × 256 grid non uniformly with 20% measurements. For
the sampling patterns (b) and (d), the samples density in a given region
of space looks like π. The same property holds for (c) even though this
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does not seem obvious at the first glance. This property of non uniform
coverage is captured by the sampler’s density (more precisely, the limit of
the empirical measure, see Section 4), i.e. feature i).

It is pretty intuitive when looking at Figure 2(b-d) that they are likely
to have different efficiencies. The samples in Figure 2(b) cover the space
quite uniformly locally, while the samplers in Figure 2(c)-(d) leave large
portions of the space unexplored. Clearly, this lack of information might
result in poor reconstruction results. This feature is captured by the notion
of coverage speed, i.e. feature ii). Let us mention that the so-called Poisson
disc sampling [8, 40], which is quite popular in compressed sensing MRI, is
also based on the idea of covering the k-space as fast as possible.

4 Generation of sampling schemes by projection

In this section, we describe the main idea of this paper. We propose a
general principle to construct samplers that comply with the three following
guidelines:

• Admissibility : the sampler should be feasible. For instance in the MRI
case, the samples should belong to a set of segments or curves defined
in Equation (2).

• Density : as mentioned earlier, a sampler should approximate a given
density π.

• Coverage speed : the sampler should cover the space as fast as possible.

This problem is probably more complex than it looks at first sight. Here,
we first recall the notion of pushforward measure that is crucial to establish
our algorithm. We then present its overall principle. Let us mention that
this idea, the associated algorithm and some of its theoretical guarantees
were presented in more detail in [15] for a completely different purpose,
namely image stippling or continuous line drawing.

4.1 Pushforward measures

As shown in Figure 2, the density (a) is somehow similar to the sampling
schemes (b-d). To make this statement more accurate, we resort to measure
theory. Let us introduce a few definitions. Here, we work on the space
Ω = [0, 1]d where d = 2 denotes the space dimension. Extensions to other
dimensions are straightforward. We equip Ω with the Borel algebra B. Let
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(a) (b)

(c) (d)

Figure 2: A few variable density samplers. (a) density π. (b) π-variable den-
sity sampler with i.i.d. drawings. (c) π-variable density sampler constructed
using a Markov chain. (d) π-variable density sampler with a traveling sales-
man problem solution.
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(X,Σ) be a measurable space, f : X → Ω denote a measurable mapping
and µ : X → [0,+∞] denote a measure. The pushforward measure of µ is
denoted ν : B → R and defined by

ν(B) = f∗µ(B) = µ
(
f−1(B)

)
, ∀B ∈ B.

The function f is called parameterization of ν. Note that if µ is a probability
measure, then ν is also a probability measure. Let us now illustrate this
concept with two concrete examples.

Example 1 (Atomic measures). The set of m points in Figure 2 (b) can be
ordered and parameterized as a function f : {1, . . . ,m} → Ω, where f(i) = pi
denotes the i-th point. Set µ as the normalized counting measure defined for
any set I ⊆ {1, . . . ,m} by µ(I) = |I|

m . Let B ∈ B, then f−1(B) is the set of
indices of points in B. The pushforward of µ is therefore an atomic measure
defined by

ν = f∗µ =
1

m

m∑
i=1

δpi .

Example 2 (Measures supported on curves). Let s : [0, T ] → Ω denote a
parameterized curve. Set µ as the normalized Lebesgue measure on [0, T ]

defined for any interval I ⊆ [0, T ] by µ(I) = |I|
T . Then ν(B) = s∗µ(B)

measures the relative time spent by the curve s in the set B.

4.2 Measure sets in the MRI context

Now, let P denote a set of admissible parameterizations. Let M(P) be the
set of pushforward measures associated with elements of P:

M(P) = {ν = f∗µ, f ∈ P} .

Depending on the context, µ will be either the normalized counting measure
or the normalized Lebesgue measure. Hereafter, we will be particularly
interested in exploring 3 different sets P which are particularly relevant in
MRI.

Isolated points. The set of sums of m Dirac delta functions is:

M(Ωm) =

{
ν =

1

m

m∑
i=1

δpi , pi ∈ Ω

}
. (10)

This case is time-consuming and thus inefficient in MRI, but it is
commonly used in retrospective CS simulations. We will therefore use
it as reference.
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Segments of variable length. A more promising parameterization is the
set of N segments with variable lengths (or crossed with variable speed
at constant time). To this end, let

L = {λ : [0, 1]→ Ω, ∃(x1, x2) ∈ Ω2, λ(t) = (1−t)x1 +tx2, ∀t ∈ [0, 1]}.

The associated set of measures is defined by:

M(LN ) =

{
ν =

1

N

N∑
i=1

(λi)∗µ, λi ∈ L

}
, (11)

where µ is the Lebesgue measure on [0, 1]. In this description, we
implicitly assume that segments of different lengths are traversed at
different speeds since the traversal time is fixed to 1.

Admissible curves for MRI. It corresponds to M(ST ), where ST is de-
fined by Equation (2). This case allows us to exploit the full sampling
potential in MRI.

4.3 Measuring distances between measures

Pushforward measures allow us to map a sampling pattern to the space of
probability measures M∆ on Ω. The target distribution π also belongs to
M∆. This mapping therefore permits to perform quantitative comparisons
by defining distances on M∆. Various distances exist to compare probabil-
ity measures (e.g. total variation, Wasserstein distance, ...). In this work,
motivated by our previous results in [15], we propose to construct a distance
as follows. Let h : Ω→ R denote a continuous function with a Fourier series
that does not vanish. The following mapping:

dist(π, ν) = ‖h ? (π − ν)‖22 (12)

defines a distance (or metric) on M∆. Moreover, we showed in [15] that it
metrizes the weak convergence. Therefore, if π and ν are sufficiently weakly
close, their distance will be small.

This measure is interesting numerically for at least two reasons. First,
it has a simple direct expression compared to more standard tools such as
the Wasserstein distance. Second, it is quadratic and this property will be
exploited intensively in the numerical algorithms.
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4.4 Design of sampling scheme as a projection problem

The distance on M∆ being defined, we can construct a sampler by solving
the following variational problem:

min
ν∈M(P)

dist(π, ν) (13)

where P is the set of admissible parameterizations. In other words, we
are looking for the admissible measure ν∗ that is the closest to the target
measure π. This is therefore a projection problem onto M(P).

Let us mention that the mapping ν 7→ dist(π, ν) is a nice convex and
smooth function. However, for most parameterization sets P, the associated
measure setM(P) is highly nonconvex. This makes the resolution of Prob-
lem (13) very involved. In fact, in the “simple case” P = Ωm, Problem (13)
corresponds to Smale’s 7th problem to solve for the XXIst century [55].

5 Numerical implementation

In this section, we propose a numerical algorithm to solve Problem (13).

5.1 The attraction-repulsion formulation

To numerically solve the infinite dimensional Problem (13), we need to dis-
cretize it. It was shown in [15] that any measure set M(P) can be ap-
proximated by a subset of p-point measures Np ⊆M(Ωp) with an arbitrary
precision. More precisely, it is possible to control the Hausdorff distance,
defined by:

Hdist(Np,M(P)) = max

(
sup
π∈Np

inf
ν∈M(P)

dist(ν, π), sup
ν∈M(P)

inf
π∈Np

dist(ν, π)

)
.

Moreover, the set Np can always be written as

Np =

{
ν =

1

p

p∑
i=1

δqi , for q = (qi)1≤i≤p ∈ Qp

}
,

where the parameterization set Qp depends on P. The abstract definition
of Qp proposed in [15] is not constructive. Explicit constructions for the
parameterizations given in section 4.2 are provided in the next part. Notice
that the discretization step is very different from what was done in many
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papers [7, 54, 49, 20] where the authors propose to select samples among
fixed blocks of measurements.

Once an approximate space of parameterizationsQp has been constructed,
Problem (13) can be replaced by its discrete approximation:

min
ν∈Np

1

2
‖h ? (ν − π)‖22 , (14)

where Np = M(Qp) is a suitable approximation of M(P). Then, by ex-
panding the L2-norm, we may rewrite Problem (14) as follows:

min
q∈Qp

1

2

p∑
i=1

p∑
j=1

H(qi − qj)︸ ︷︷ ︸
J1(q)

−
p∑
i=1

∫
Ω
H(x− qi)dπ(x)︸ ︷︷ ︸
J2(q)

, (15)

where H is defined in the Fourier domain by Ĥ(ξ) = |ĥ|2(ξ) for all ξ ∈ Zd.
In this paper, we consider a kernel H defined by H(x) = −‖x‖2. This choice
ensures rotation and translation invariance with respect to the input measure
π. In addition, it is nonlocal: the forces between particles is independent of
the distance. This choice was initially introduced in [53].
Then, functional (15) can be decomposed in two terms:

• The first one J1 is a repulsion potential : it tends to maximize the
distance between all point pairs. It will guarantee that no cluster of
points emerges and therefore ensures a good space coverage.

• The second one J2 is an attraction potential : it attracts the particles
qi in the high density regions of π. This term ensures that the solution
of Problem (15) will match the target density π.

Let us point out that the attraction-repulsion functional (15) was initially
proposed in [53, 59] as an alternative to Poisson disk sampling [8, 64]. The
proposed idea can therefore be considered as a generalization of Poisson disk
sampling, allowing to handle arbitrary additional constraints.

5.2 Projected gradient descents

The attraction-repulsion formulation (15) of the projection problem (13) is
amenable to a numerical resolution. Similarly to [15], we propose to use a
projected gradient descent. We only describe it briefly hereafter and refer
to [15] for its theoretical guarantees and more details. The algorithm reads
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as follows:

Input:
An initial parameterization q(0) ∈ Qp
A number of iterations nit.
Output:
An approximation q̃ of the solution q∗ of (15)
for k = 1 to nit do

q(k+1) ∈ ΠQp

(
q(k) − τ∇(J1 − J2)(q(k))

)
(16)

end
Algorithm 1: Projected gradient descent to solve the projection
Problem (15).

The step-size τ should be selected depending on the regularity of the kernel
h. The projector ΠQp can be expressed as an optimization problem and we
will provide algorithms adapted to specific choices of Qp in the next sections.
Note that Qp has no reason to be convex in general and the projection on
Qp (ie, ΠQp) might therefore not be unique. This explains the sign ∈ instead
of = in Equation (16). If τ is well chosen, this algorithm is shown to converge
to critical points of (15) in [15]. Let us finally mention that computing the
gradients ∇J1 and ∇J2 is also a challenging issue that requires the use of
tools developed for particle simulations such as fast multipole methods. In
this work, we used the parallelized non-uniform fast Fourier transform [29,
59].

5.3 Discretization of the parameterization sets

In this section, we explicitly give the expressions of Qp and ΠQp for the
measures sets given in paragraph 4.1.

Isolated points. In the context of isolated points, Qp = Ωp, hence the
projection ΠQp is the identity on Ωp. The updating step 16 in Algorithm 1

is then q(k+1) = q(k) − τ∇(J1 − J2)(q(k)).

Segments of variable length. In this case, the measures are supported
by N segments. Assuming that each segment is discretized into k points,
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the total number of discretization points is p = kN and the set Qp reads:

Qp(LN ) =

{
q ∈ Ωp×d , qj = qi + j−i−1

k−1 (qi+k−1 − qi) ,
for i = 1 : k : kN and i ≤ j < i+ k

}
,

where 1 : k : kN denotes the set {1, k + 1, 2k + 1, . . . , (N − 1)k + 1}.
The projection onto this set can be computed via Algorithm 2. For the sake
of clarity, Algorithm 2 describes the projection onto the set of measures
supported by only one segment (N = 1) in two dimensions.

Input:
u : a vector of k points
Output:
q : a vector of Qp(L)

• Compute C = k(k2 − 3k + 2)/(6(k − 1)2)

• Compute D = k(2k2 − 3k + 1)/(6(k − 1)2)

• Compute x
(1)
i = (k − i)ui for 1 ≤ i ≤ k

• Compute x
(2)
i = (i− 1)ui for 1 ≤ i ≤ k

• Compute s(1) = 1
k−1

∑k
i=1 x

(1)
i

• Compute s(2) = 1
k−1

∑k
i=1 x

(2)
i

• Evaluation of the end points

– qk = C/(C2 −D2)
(
s(1) −D/Cs(2)

)
– q1 = 1/C(s(2) −Dqk)

• Place (qi)2≤i≤k−1 uniformly spaced on [q1, qk]

Algorithm 2: Projection on Qp(L1).

Proof. The set Qp
(
L1
)

can be rewritten as follows

Qp
(
L1
)

=

{
p = (pi)1≤i≤k , pi =

i− 1

k − 1
pk +

k − i
k − 1

p1

}
.
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To define a projector on Qp
(
L1
)
, one should solve the following opti-

mization problem

ΠQp(L1)(q) = arg min
p∈Qp(L1)

1

2
‖p− q‖22,

for some fixed q = (qi)1≤i≤k, where qi ∈ Rd for all 1 ≤ i ≤ k
This problem can be reformulated by optimizing only the end points of

the projected segment, as follows

min
(p1,pk)∈Rd×Rd

1

2

k∑
i=1

∥∥∥∥ i− 1

k − 1
pk +

k − i
k − 1

p1 − qi
∥∥∥∥2

2

. (17)

The optimality conditions of Problem 17 read
∑k

i=1
k−i
k−1

(
i−1
k−1pk + k−i

k−1p1 − qi
)

=0∑k
i=1

i−1
k−1

(
i−1
k−1pk + k−i

k−1p1 − qi
)

=0

Set

C :=

k∑
i=1

(k − i)(i− 1)

(k − 1)2
=
k3 − 3k2 + 2k

6(k − 1)2
and D :=

k∑
i=1

(i− 1)2

(k − 1)2
=

2k3 − 3k2 + k

6(k − 1)2
.

The system can be rewritten as follows{
Cpk +Dp1 −

∑k
i=1

k−i
k−1qi=0

Dpk + Cp1 −
∑k

i=1
i−1
k−1qi=0

This 2× 2 system can be easily inverted leading to Algorithm 2.

Admissible curves for MRI. The projection onto M(ST ) is the topic
of [17]. The discretization of an element of ST is a vector of Rp·d where d
is the space dimension and p is the number of points. Let s(i) denote the

curve location at time (i − 1)δt with δt =
T

p− 1
. We define the first-order

derivative by:

ṡ(i) =

{
0 if i = 1,
(s(i)− s(i− 1))/δt if i ∈ {2, . . . , p}.

In the discrete setting, the first-order differential operator can be represented
by a matrix Ṁ ∈ Rp·d×p·d, i.e. ṡ = Ṁs. We define the discrete second-order
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differential operator by M̈ = −Ṁ∗Ṁ ∈ Rp·d×p·d. In a discrete setting, the
projection problem reads:

ΠQp(c) = arg min
‖Ṁs‖6α
‖M̈s‖6β

‖s− c‖22

This problem can be solved using an accelerated proximal gradient descent
algorithm by resorting to the dual formulation of the problem [17].

5.4 Implementation details

Solving the projection problem (15) is computationally demanding. Hope-
fully, the design of sampling patterns is performed offline and large comput-
ing times are therefore acceptable. In practice, we used a workstation with
192 Gb of RAM and 32 Cores at 2.4 GHz and all codes were multithreaded.

The computing times varied from 2 hours to generate the sampling
schemes for low resolution images proposed in Figure 5 up to 48 hours for
the schemes adapted to very high resolutions images in Figure 12. In prac-
tice, we used 4,000 iterations to generate the sampling schemes with isolated
measurements. For the sampling schemes composed of lines or curves, we
used a multi-resolution strategy: we first optimize an undersampled curve
and progressively interpolate it, thus reducing the number of iterations as
the resolution increases. We observed that this strategy provides improved
results and speeds up convergence. As detailed in the next section, our
trajectories based on lines or curves are not made by a connected path but
instead by several disconnected pieces. In that case, the optimization of (15)
is performed over multiple curves simultaneously. The set of independent
curves with kinematic constraints is still a convex set and projections onto
this set can be performed efficiently using specific convex programming ap-
proaches [17].

6 Results

In this section, we test the proposed ideas for reconstructing a 2D image (i.e.
a slice) of a brain phantom at 2 different resolutions on a field of view of
20 cm. In all experiments, we used the analytical phantoms provided in [25].

The first image is of size 256× 256, which approximately corresponds to
an isotropic resolution of 780× 780µm. This is a pretty standard resolution
for actual MRI scanners (eg, 3 Tesla machine). The second image size is
2048 × 2048, which corresponds to an isotropic resolution of 98 × 98µm.
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The latter is really uncommon in the literature and is actually an important
challenge since it might permit to uncover the meso-scale brain architecture
at ultra-high magnetic field (7 T and above). For instance, [21] reported ex-
vivo experiments on brains at a resolution of 78× 78× 500µm allowing to
much better understand the cytoarchitecture of the human cortex. However,
such spatial resolution cannot be achieved during in-vivo experiments owing
to the very long scanning times. For instance, the images used in [21] took
more than 14 scanning hours. Compressed sensing may therefore play a
key role in the future to push forward such resolutions, especially with the
emergence of ultra-high field MRI at 7T or even 11.7T in the near future.
Moreover, recent theoretical results [51] suggest that compressed sensing
should be used as a resolution enhancer rather than a time saver.

6.1 Constraints used in our experiments

To apply our projection algorithm, the kinematic constraints have to be
specified. To this end, we used typical constraints met on real MRI scanners,
namely the same as the ones specified in [35]. The kinematic constraints
imposed by MRI acquisition are the gradient magnitude and slew-rate: here,
we set Gmax = 40 mT.m−1 and Smax = 150 mT.m−1.ms−1. For proton
imaging, γ = 42.576 MHz.T−1, which allows to compute α = γGmax and
β = γSmax in Equation (2). In addition to those constraints, we imposed
our trajectories to last less than 200 ms2 to keep a sufficient amount of signal.

6.2 Empirical choice of the target density π

The theorems in Section 3 provide some general guidelines to design a rea-
sonable density. However, finding the best target density π is still an open
issue depending on the number of measurements, the sparsity basis and the
signal structure.

In this paper, we therefore used an empirical method. The basic idea was
to optimize π experimentally in the family of polynomially decaying densities
of type 1/(|k|+ 1)η. Those simple parametric densities have been used a lot
in recent articles [1, 31] and have proved their efficiency in practice. Note
however that they increase rapidly at the origin, leading to high samples
concentrations. For Cartesian sampling, it was proved in references [1, 31]
that the density should not exceed some threshold. Here, we are considering
non-Cartesian sampling and there is no formal proof of this fact. We still
observed that high concentrations were deleterious. The basic reason is that

2Beyond this limit, the T ∗2 relaxation decay makes the noise predominant.
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Figure 3: Action of the thresholding algorithm. The initial density πη in
dashed line and its thresholded version π̃η defined in (18) in solid line.

they bring more information than necessary for low frequencies, which in
turn, reduces the number of samples available for higher frequencies.

Given an initial discrete distribution πη with a profile proportional to
1/(|k|+ 1)η, we therefore constructed a truncated version π̃η of πη defined
by

π̃η = min(λπη, τ) (18)

where λ is chosen in such a way that ‖π̃η‖1 = 1. The distribution π̃η has
all components less than τ , and approximates πη.

In all our experiments, the threshold τ was chosen in such a way that
the expectation of the number of samples in each pixel does not exceed 4
with an i.i.d. drawing. Assuming that πη ∈ Rn where n is the number of
pixels in the image, this means that mτ = 4, where m is the number of
drawn samples. An illustration of density (18) is given in Figure 3.

6.3 New sampling patterns

We designed sampling schemes with the proposed algorithm and compared
them to the state-of-the-art on the reconstructed brain phantom images.
We compared 6 sampling patterns identified by letters:

• Standard patterns:
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– (a) Independent and identically distributed drawings ac-
cording to a prescribed density πη. This is the pattern considered
in most compressed sensing theories. This pattern is not feasible
in 2D in reasonable acquisition times, but serves as a reference.

– (b) Equispaced radial lines. This is another commonly used
sampling pattern in MRI [65]. We assume that a spoke is a
segment composed of

√
n/2 samples. Samples are equispaced

along a line and the distance between two samples depends on
the segment length.

– (c) Spiral sampling. We consider a spiral with the chosen target
density πη (see [13]), and reparameterize it to be admissible [35].
We replicate and rotate it a few times, to obtain a pattern made
of interleaved spirals.

• Measure projection patterns:

– (d) Projection of πη on the set of isolated measurements
defined in (10). The initial parameterization q(0) in Algorithm 1
is defined as an independent point process with distribution π.

– (e) Projection of πη on the set of segments with varying
lengths. It is denotedM(LN ) and defined in (11). Each segment
contains the same number of samples

√
n/2 as a radial spoke. The

initial parameterization q(0) in Algorithm 1 is defined as a set of
equispaced radial segments.

– (f) Projection of πη on the set of admissible curves ST ,
defined in Equation (2). The initial parameterization q(0) in Al-
gorithm 1 is defined as a set of equispaced radial segments.

6.3.1 Standard resolution imaging

In this section, we focus on the reconstruction of 256× 256 images.

Parameters setting. In this experiment, 25% of the k-space is sampled,
corresponding to m = 16, 384 samples. The sampling period (or dwell time)
was fixed to 20 µs, which would correspond to a high SNR in a clinical
setting. The total sampling time for each pattern is therefore 16384 ∗ 20µs
= 327.68 ms. The minimal amount of time for a full acquisition (i.e., time
necessary to probe each of the 256×256 discrete Fourier coefficients) is 256×
256×20 µs = 1.31s. This time is too long given the scanning constraints (MR
signal decay, ...), but will serve as reference to measure the acceleration
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Figure 4: Axial slice of the phantom used in the experiments of size 256×
256. The left brain hemisphere is shown on the right: left is right.

provided by each undersampling strategy. For this resolution, we found out
that the best decay η defined in Section 6.2 was η = 1.5. This number was
optimized by reconstructing images from i.i.d. drawings and keeping the
decay corresponding to the best reconstruction.

To collect m Fourier coefficients, we used specific parameters to each
sampling scheme as detailed below:

(b) 128 equispaced radial segments made of 128 samples;

(c) 2 spirals made of 8192 samples each; More details are given in Section
6.3.

(e) 128 segments made of 128 samples;

(f) 2 curves made of 8, 192 samples each; This corresponds to a typical
buffer size.

Image and reconstruction. Data were simulated using the phantom
depicted in Figure 4. The inverse problem used to reconstruct an image
from simulated k-space data is Problem (7). Parameter λ was selected by
hand once for all (λ = 10−5) so as to nearly reach the equality constraint
SΨx = y and to provide a visually satisfactory solution in less than 1,000
iterations.



29

(a) (b) (c)

(d) (e) (f)

Figure 5: Classical sampling schemes (a-c) and sampling schemes obtained
with the proposed projection algorithm (d-f). Top row: (a): independent
drawing; (b): radial lines ; (c): spiral trajectory. Second row: zooms in the
k-space centers. Third row: (d): isolated points; (e): segments of variable
length; (f): admissible curves for MRI. Bottom row: zooms in the k-space
center. Corresponding reconstruction results are provided in Figure 6.
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Results. In Figure 6, we show the reconstruction results for the different
sampling schemes depicted in Figure 5. Hereafter, we summarize our main
findings.

• First, we noticed that the two schemes composed of isolated measure-
ments provided rather satisfactory reconstruction results despite a few
artifacts (17.7 and 18.3 dB in (a) and (d), respectively) with one fourth
of the measurements. This is an appealing result, but unfortunately
the schemes cannot be implemented on a scanner, at least in a time
efficient manner.

• The repulsion between isolated samples in (d) improved the recon-
struction result slightly by 0.6 dB. This result tends to validate the
interest for this strategy as it provides improved coverage of the sam-
pling space.

• Classical sampling patterns were feasible and yield a 4-fold acceleration
of scanning time but delivered images that cannot be considered as
good enough by clinicians (15.4 dB for radial in (b) and 13.2 dB for
spirals in (c)). The reconstruction based on radial lines induced many
small artifacts whereas the reconstruction based on spirals suffered
from ringing effects.

• In this experiment, the new sampling patterns generated by our al-
gorithm yielded improved reconstruction results as compared to i.i.d.
drawings. This may be surprising since our sampling schemes are con-
strained to satisfy additional kinematic constraints. The basic reason
for this phenomenon is that i.i.d. sampling tends to produce clusters
in some regions of space, while the repulsion term J2 in equation (15)
avoids this deleterious effect.

This result shows that adding complicated but realistic sampling con-
straints can still permit to get competitive reconstruction results. In
particular, the sampling pattern in Figure 6(f) took only one fourth
of the reference scanning time and yielded satisfactory reconstructed
images.

6.3.2 Very high resolution imaging

Here, we focused on the reconstruction of very high resolution (2, 048 ×
2, 048) images.
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(a) SNR=17.7 dB (b) SNR=15.4 dB (c) SNR=13.2 dB

(d) SNR=18.3 dB (e) SNR=18.0 dB (f) SNR=18.0 dB

Figure 6: Reconstruction results for the sampling patterns proposed in
Figure 5 on the phantom (Figure 4).
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Parameters setting. We used the same constraints as before including
the maximum sampling time ts = 200 ms per trajectory. Hence, we de-
creased the sampling period down to its minimal value for a clinical scanner:
∆t = 8µs. We no longer managed the buffer size constraint and performed
experiments with 100,000 and 200,000 measurements. This corresponds to
2.4% and 4.8% of the total number of pixels in the image respectively. This
also corresponds to a total acquisition duration of 0.8 s or 1.6 s, respectively.

The parameters specific to each sampling scheme are provided below:

(b) For the radial lines, we used 98 equispaced radial segments made of
1, 024 samples each for the experiment with 100, 000 samples experi-
ment. We used 176 segments made of 1, 024 samples for the experiment
with 200, 000 samples.

(c) For the spirals, we used 4 (resp. 8) rotated versions of spirals made of
25, 000 samples each for the 100, 000 (resp. 200, 000) experiment.

(e) For the repulsed segments, we used 196 (resp. 391) segments made of
512 samples for the 100, 000 (resp. 200, 000) experiment.

(f) For the projected curves, we used 4 (resp. 8) curves made of 25, 000
samples each.

Similarly to the previous section, the sampling density was optimized
experimentally in the family of truncated, polynomially decaying densities
of type 1/(|k| + 1)η. For this resolution, the best decay was achieved for
η = 2.

Image and reconstruction. We aimed at reconstructing the very high
resolution phantom depicted in [25]. We modified it slightly by superimpos-
ing the high resolution text COGITO ERGO SUM to white matter in the left
frontal region (see Figure 7).

Results. The resulting patterns are shown at different resolutions in Fig-
ures 8–9 for 100,000 measurements and Figures 11–12 for 200,000 measure-
ments. For each scheme we reconstructed a 2, 048× 2, 048 image by solving
Problem (7). Hereafter, we summarize our main observations.

• The use of 200, 000 measurements yielded significantly better recon-
struction results than 100, 000 samples. However, the relative differ-
ences between the sampling schemes did not vary between the two
sampling ratios. In what follows, we therefore draw conclusions that
are valid for both.
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Figure 7: Axial slice of the brain phantom used in our 2, 048 × 2, 048 im-
ages (left) with a magnification on the left frontal area where the text has
been superimposed (right).

• Similarly to the standard resolution experiment, sampling schemes
made of i.i.d. drawings significantly outperformed radial lines and spi-
rals sampling.

• Radial lines performed particularly poorly. This was probably due to
the fact that for this resolution, the best sampling decay was η = 2,
whereas we found η = 1.5 for the standard resolution experiment. Note
that radial lines have a slow decay of order 1/|k|, which might explain
the observed discrepancy. Also note that the embedded text for radial
reconstruction was readable, whereas it was not for spiral sampling.
Once again, this is very likely a consequence of the slower decay for the
sampling density. In contrast, the cortex was not correctly recovered
by radial lines, whereas the reconstruction was acceptable for spirals.
This experiment thus suggests that the sampling density should de-
pend on the relative importance of low and high resolution details.

• The repulsed isolated measurements scheme performed slightly better
than i.i.d. drawings, but not significantly so.

• Similarly to the previous section, the sampling schemes generated by
our algorithm performed significantly better than spiral and radial
patterns. The gain ranged from 1.7 dB to 3.6 dB which is significant,
since they require the same scanning time.
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• In contrast to the previous section, we observed that the feasible sam-
pling schemes performed significantly worse than i.i.d. drawings in
terms of SNR. A reason that might explain this behavior was that
∆t = 8µs for this resolution while we used ∆t = 20µs in the previous
experiment. This means that the distance between consecutive sam-
ples was more than twice smaller (harder constraint). It is also impor-
tant to realize that, although the differences between reconstructions
were strong in terms of SNR, the visual perceptual differences mainly
rely on small artifacts which do not severely degrade image analysis.

• The results obtained with 200, 000 samples were of a high quality, de-
spite the realistic sampling constraints added. This very positive result
suggests that obtaining 2, 048×2, 048 images might be feasible in 1.6 s
by using a segmented acquisition (8 segments) scheme. This should be
definitely deemed as a major advance for MRI. Of course, these results
were preliminary since we did not manage all degradations appearing
on actual scanners such as noise, Eddy currents, off-resonance effects
...

• Last, it is possible to infer the gain in terms of scanning times using
the proposed approach by comparing Figure 10 and Figure 13. The
SNR of the reconstructed image with 4 admissible curves and 0.8 s is
20.7 dB (see Figure 10 (f)). To reach the same quality, radial lines and
spirals need roughly twice longer acquisition times, ie 1.6 s (see Figure
13(b)-(c)). This result shows that the proposed ideas may reduce the
actual scanning times by a factor 2 compared to existing compressed
sensing approaches.

7 Conclusion

This paper has provided an overview of existing compressed sensing results
for MRI, both from theoretical and practical points of view. We also pro-
posed an original approach to design efficient sampling schemes complying
with physical constraints of MRI scanners. Even though we focused on
standard anatomical MRI, the proposed ideas could be used, with some
adaptations, in nearly all MRI fields (functional imaging, diffusion-weighted
imaging, perfusion imaging, ...) and might have applications well beyond.

The numerical procedure we proposed for generating sampling schemes
was based on a projection of sampling distributions onto a set of admissible
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(a) (b) (c)

Figure 8: Standard sampling schemes composed of 100, 000 samples. (a):
i.i.d. drawings. (b): Radial lines. (c): 4 interleaved spirals.
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(d) (e) (f)

Figure 9: Sampling schemes yielded by our algorithm and composed of
100, 000 samples. (d): Isolated measurements. (e): Segments of variable
length. (f): 4 feasible curves in MRI.
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(a) SNR=23.0 dB (b) SNR=16.1 dB (c) SNR=19.0 dB

(d) SNR=23.2 dB (e) SNR=19.7 dB (f) SNR=20.7 dB

Figure 10: Very high resolution reconstructions using 100, 000 samples
(2.4% of the number of pixels) and different sampling schemes. Letters
correspond to Figures 8–9.
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Figure 11: Standard sampling schemes composed of 200, 000 samples. (a):
i.i.d. drawings. (b): Radial lines. (c): 8 interleaved spirals.
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Figure 12: Sampling schemes yielded by our algorithm and composed of
200, 000 samples. (d): Isolated measurements. (e): Segments of variable
length. (f): 8 feasible curves in MRI.
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(a) SNR=26.7 dB (b) SNR=20.6 dB (c) SNR=21.0 dB

(d) SNR=27.0 dB (e) SNR=22.9 dB (f) SNR=23.5 dB

Figure 13: Very high resolution reconstructions using 200, 000 sam-
ples (4.8% of the pixels number) and different sampling schemes. Letters
correspond to Figures 11–12.
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measures using a tailored dissimilarity measure. Even though computation-
ally intensive, this algorithm was able to solve very large scale problems and
could be extended to 3D quite easily. Probably the most promising result
of this paper is practical: we showed through simulations that 1.6 s using a
multi-shot acquisition (8 segments) might be enough to reconstruct a very
high resolution slice of size 2048 × 2048. The validity of this result will be
tested quite soon on the 7T scanner of NeuroSpin to check whether this
constitutes a major improvement over existing sampling strategies which
currently need a dozen of hours to reconstruct a hundred slices at this spa-
tial resolution.
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