
HAL Id: hal-01373666
https://hal.science/hal-01373666

Submitted on 29 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the numerical accuracy of programs by
automatic transformation

Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot

To cite this version:
Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot. Improving the numerical accuracy of pro-
grams by automatic transformation. International Journal on Software Tools for Technology Transfer,
2017, 19, pp.427-448. �10.1007/s10009-016-0435-0�. �hal-01373666�

https://hal.science/hal-01373666
https://hal.archives-ouvertes.fr

Improving the numerical accuracy of programs by automatic
transformation

Nasrine Damouche1 · Matthieu Martel1 · Alexandre Chapoutot2

Abstract The dangers of programs performing floating-
point computations are well known. This is due to the
sensitivity of the results to the way formulæ are written.
These last years, several techniques have been proposed
concerning the transformation of arithmetic expressions in
order to improve their numerical accuracy and, in this arti-
cle, we go one step further by automatically transforming
larger pieces of code containing assignments and control
structures. We define a set of transformation rules allowing
the generation, under certain conditions and in polynomial
time, of larger expressions by performing limited formal
computations, possibly among several iterations of a loop.
These larger expressions are better suited to improve, by re-
parsing, the numerical accuracy of the program results. We
use abstract interpretation-based static analysis techniques
to over-approximate the round-off errors in programs and
during the transformation of expressions. A tool has been
implemented and experimental results are presented con-
cerning classical numerical algorithms and algorithms for
embedded systems.

Keywords Program transformation · Floating-point
numbers · Static analysis · IEEE754 standard · Numerical
accuracy

B Nasrine Damouche
nasrine.damouche@univ-perp.fr

Matthieu Martel
matthieu.martel@univ-perp.fr

Alexandre Chapoutot
alexandre.chapoutot@ensta-paristech.fr

1 LAMPS Laboratory, University of Perpignan Via Domitia,
Perpignan, France

2 U2IS, ENSTA ParisTech, Université Paris-Saclay, 828 bd des
Maréchaux, 91762 Palaiseau cedex, France

1 Introduction

These last years, as the complexity of the floating-point com-
putations carried out in embedded systems and elsewhere
increased, numerical accuracy has become a more and more
sensible subject in computer science. Due to the important
impact of accuracy on the reliability of embedded systems,
many industries encourage research to validate [6,16,18,19],
verify [15,36] and improve [24,31] their software in order to
avoid failures and eventually disasters in aeronautics, auto-
motive, robotics, etc.

In this article, we focus on the transformation [9,14] of
intra-procedural pieces of code in order to automatically
improve their accuracy. For automatic transformation of sin-
gle arithmetic expressions, several techniques have already
been proposed.We canmention [24] which introduces a new
intermediary representation (IR) that manipulates in a single
data structure a large set of equivalent arithmetic expres-
sions. This IR, called APEG [24,31] for Abstract Program
Expression Graph, succeeds to reduce the complexity of the
transformation in polynomial size and time. Starting from
this state of the art, we aim at going a step further by auto-
matically transforming larger pieces of code.Our interest is to
transformautomatically sequences of commands that contain
assignments and control structures in order to improve their
numerical accuracy. This transformation consists in optimiz-
ing a target variable with respect to some given ranges for
the input variables of the program. Accuracy bounds are
computed by abstract interpretation [8] techniques for the
floating-point arithmetic [12,30].

We start bymotivating ourworkwith a case study concern-
ing an algorithm frequently used in robotics for odometry.
We show how to rewrite it into another program which is
numerically more accurate but semantically equivalent, in
the sense that both programs compute the same function in

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-016-0435-0&domain=pdf

exact arithmetic. More generally, our transformation oper-
ates by simplifying and developing expressions and inlining
them into other expressions. This allows one to generate new
formulæ. We also rewrite the codes by unfolding the body
of loops, in order to have more computations inside a single
iteration. The rewriting rules used to automatically rewrite
codes and their proof of correctness are the main contribu-
tion of this article. These rules are presented as sequents
containing conditions under which transformations may be
applied without breaking the semantic equivalence between
the source and target programs. In addition, these rules are
deterministically applied, yielding a polynomial time trans-
formation. Our work is completed by experimental results
involving the transformation of codes coming from multiple
domains of sciences.

This article is organized as follows. We start in Sect. 2
by introducing what kind of transformations we do through
a case study. Section 3 introduces related work concerning
the analysis and transformation of arithmetic expressions.
Next, we give in Sect. 4 the set of transformation rules for
commands together with the conditions required to preserve
the semantic equivalence of programs. In Sect. 5, we present
the correctness proof of the transformation rules. Section 6
performs experimental results and shows various experimen-
tations obtained using our tool. Finally, Sect. 7 concludes and
presents future work.

2 Case study: odometry

In this section, we are interested in an example taken from
robotics and whose code is given in Listing 1. It concerns the
computation of the position (x, y) of a two-wheeled robot by
odometry. Given the instantaneous rotation speeds sl and sr
of the left and right wheels, it aims at computing the position
of the robot in a Cartesian space. Let C be the circumference
of the wheels of the robot and L the length of its axle (see
Fig. 1). We assume that sl and sr , are coming from sensors,
are updated by the system, by side-effect. The computation
of the position of the robot is given by

x(t + 1) = x(t)+Δd(t + 1)× cos

(
θ(t)+ Δθ(t + 1)

2

)
,

(1)

y(t + 1) = y(t)+Δd(t + 1)× sin

(
θ(t)+ Δθ(t + 1)

2

)
,

(2)

with

θ(t + 1) = θ(t)+Δθ(t), (3)

Δd(t) = (
Δdr (t)+Δdl(t)

)× 0.5, (4)

Listing 1 Listing of the initial odometry program

sl = [0.52 ,0.53]; sr = 0.785398163397;
theta = 0.0;

t = 0.0; x = 0.0; y = 0.0; inv_l = 0.1;
c = 12.34;
while (t < 100.0) do {
delta_dl = (c * sl);
delta_dr = (c * sr);
delta_d = ((delta_dl + delta_dr) * 0.5);
delta_theta = ((delta_dr - delta_dl) * inv_l);
arg = (theta + (delta_theta * 0.5));
cos = (1.0 - ((arg * arg) * 0.5))

+ ((((arg * arg)* arg)* arg) / 24.0);
x = (x + (delta_d * cos));
sin = (arg - (((arg * arg)* arg)/6.0))

+ (((((arg * arg)* arg)* arg)* arg)/120.0);
y = (y + (delta_d * sin));
theta = (theta + delta_theta);
t = (t + 0.1);

}

Fig. 1 Parameters of the two-wheeled robot

Δdl(t) = sl(t)× C, (5)

Δdr (t) = sr (t)× C, (6)

Δθ(t) = (
Δdr (t)−Δdl(t)

)× 1

L
. (7)

In Eqs. (1)–(7), θ(t) is the direction of the robot, d(t) is the
elementary movement of the robot at time t and dl(t) and
dr (t) are the elementary movements of the left and right
wheels. We assume that cos and sin, not computed by a
library, are obtained by a Taylor series expansion as shown
in Eq. (8).

cos(x) ≈ 1− x2
2! + x4

4! , sin(y) ≈ x − x3
3! + x5

5! . (8)

We aim at rewriting the initial program described in List-
ing 1 into a better program which improves the numerical
accuracy of the computed position. The speed of the left
wheel is assumed to belong to an interval of [0.52, 0.53]
radians per second (π

6 ≈ 0.523598) so that the program is
optimized for a range of values of sl and not only for a single
value. Our prototype develops and simplifies the expressions
Δd , cos and sin and then inlines them within the loop, in

123

Listing 2 Listing of the transformed odometry program

sl = [0.52 ,0.53]; theta = 0.0; y = 0.0; x
= 0.0; t = 0.0;
while (t < 100.0) do {
TMP_6 = (0.1 * (0.5 * (9.691813336318980

- (12.34 * sl))));
TMP_23 = ((theta + (((9.691813336318980 - (sl

* 12.34)) * 0.1) * 0.5)) * (theta
+ (((9.691813336318980 - (sl * 12.34))
* 0.1) * 0.5)));

TMP_25 = ((theta + TMP_6) * (theta + TMP_6))
* (theta + (((9.691813336318980
- (sl * 12.34)) * 0.1) * 0.5));

TMP_26 = (theta + TMP_6) ;
x = ((0.5 * (((1.0 - (TMP_23 * 0.5)) +

((TMP_25 * TMP_26) / 24.0)) * ((12.34 * sl)
+ 9.691813336318980))) + x);

TMP_27 = ((TMP_26 * TMP_26) * (theta
+ (((9.691813336318980 - (sl * 12.34))
* 0.1) * 0.5)));

TMP_29 = (((TMP_26 * TMP_26) * TMP_26) *
(theta

+ (((9.691813336318980 - (sl * 12.34))
* 0.1) * 0.5)));

y = (((9.691813336318980 + (12.34 * sl))
* (((TMP_26 - (TMP_27 / 6.0)) + ((TMP_29
* TMP_26) / 120.0)) * 0.5)) + y);

theta = (theta + (0.1 * (9.691813336318980
- (12.34 * sl))));

t = t + 0.1;
}

x and y. In addition, it creates new intermediary variables,
called TMP, in order to avoid to have too large expressions.
This transformation offers several advantages:

– it creates large enough formulæ well-suited to be effi-
ciently rewritten by existing techniques for the transfor-
mation of arithmetic expressions, based on the use of
abstract program expression graphs [24,31].

– it may create static formulæ made of constant terms
which can be evaluated statically in an extended pre-
cision arithmetic. This may also reduce the number of
operations in the target program and then optimizes its
execution time (see [11] and Sect. 6).

Using our tool, we obtain the final program given in List-
ing 2. If we compare the resulting values xo and xt of the
original and transformed odometry programs, we observe
that the transformation leads to a significant difference in
the accuracy of the computations, as shown in Table 1. The
results show an important difference on the third or even on
the second digit of the decimal values of the result. The dif-
ference in the computed trajectory of the robot is shown in
Fig. 2.

In previous work [14], we have detailed how to transform
a PID controller by hand and the results obtained were sig-
nificantly important in industrial contexts where end-users
sometimes want ten decimal correct digits for this algorithm.
In this article, the transformation of the odometry code has
been achieved automatically by using our tool. The results
show that the accuracy is augmented by several percents [12].

Table 1 Values of x before and after transformation of odometry pro-
gram at the first iterations

It xo (initial code) xt (transformed code)

1 8.681698 8.444116

2 17.038230 16.589474

3 24.756744 24.147995

4 31.549016 30.852965

5 37.163761 36.469708

6 41.398951 40.806275

7 44.114126 43.724118

8 45.242707 45.148775

Fig. 2 Computed trajectories by the initial and the transformed odom-
etry programs

We have experimented our tool on various examples coming
from different areas such as control-command programs and
numerical algorithms [26]. Generally, the relative accuracy is
increased by 15 % at least. We have also tested the ability of
our tool to generate accurate code on a larger program con-
cerning the simulation of the trajectory of a rocket and whose
size is about 100 lines of code [13]. We have shown that we
optimize it by up to 25 %. Finally, in recent work, we have
demonstrated the usefulness of our tool to accelerate the con-
vergence of numerical iterative methods [11]. Among these
methods we find an iterative Gram–Schmidt method as well
as Jacobi’s and Newton–Raphson’s method. We have suc-
ceed to reduce significantly the number of iterations needed
by each of the methods to converge and, consequently, we
have improved the execution time required by each of them.

3 Analysis and transformation of expressions

In this section, we provide a brief summary of the methods
that we use to bound and reduce the errors on arithmetic
expressions, see [24] for more details. Section 3.1 is dedi-

Table 2 Basic IEEE754 floating-point formats

Format Name p e emin emax

Binary 16 Half precision 11 5 −14 +15
Binary 32 Single precision 24 8 −126 +127
Binary 64 Double precision 53 11 −1122 +1223
Binary 128 Quadratic precision 113 15 −16382 +16383

cated to static analysis of numerical accuracy, while Sect. 3.2
concerns the transformation of arithmetic expressions.

3.1 Static analysis of the numerical accuracy

The floating-point arithmetic is defined by the IEEE754
Standard [2,34]. Floating-point numbers are used to encode
real numbers. However, because they are a finite represen-
tation of their mathematical cousins, round-off errors arise
during computations. A floating-point number x is defined
by

x = s · (d0.d1 . . . dp−1) · βe = s · m · βe−p+1, (9)

where s ∈ {−1, 1} is the sign, m = d0d1 · · · dp−1 is the
mantissa with digits 0 ≤ di < β, 0 ≤ i ≤ p−1, p is the pre-
cision and e is the exponent, emin ≤ e ≤ emax. The IEEE754
Standard specifies several formats for floating-point num-
bers by providing specific values for p, β, emin and emax as
described in Table 2. It also defines some rounding modes,
towards +∞, −∞, 0 and to the nearest. Let F be the set of
floating-point numbers used by the program for the current
operation (e.g., binary 32 or binary 64 a.k.a single or dou-
ble precision) and let us write ↑+∞, ↑−∞, ↑0 and ↑∼ for
the rounding functions, the IEEE754 Standard defines the
semantics of the elementary operations, with ↑r : R → F,
by

x �r y =↑r (x ∗ y), (10)

where �r denotes a floating-point operation +, −, × or ÷
computed using the rounding mode r and ∗ denotes an exact
operation. Because of the round-off errors, the results of the
computations are not exact. In this article, we also use the
function ↓r : R→ R which returns the round-off errors. We
have

↓r (x) = x− ↑r (x). (11)

Our transformation technique, introduced in Sect. 3, is
independent of the selected rounding mode and, in this
article, for the sake of simplicity, we assume that all the
floating-point computations are done by using the rounding

mode to the nearest. We write ↑ and ↓ instead of ↑r and ↓r
whenever the rounding mode r does not matter.

We present now the computation of errors during the
evaluation of arithmetic expressions [30]. Formally, we use
values which are pairs (x, μ) ∈ F×R = E, where x denotes
the floating-point number used by themachine andμ denotes
the exact error attached toF, i.e., the exact difference between
the real and floating-point numbers as defined in Eq. (11).
For example, the real number 1

3 is represented by the value
v = (↑∼ (1

3

)
,↓∼

(1
3

)) = (
0.333333,

(1
3 − 0.333333

))
.

The semantics of the elementary operations on E is defined
in [30].

We do not wish to optimize our programs for a given data
set, but for all the possible values of the inputs. Consequently,
our tool uses an abstract semantics [8] based on E. The
abstract values are represented by a pair of intervals. The first
interval contains the range of the floating-point values of the
program and the second one contains the range of the errors
obtained by subtracting the floating-point values from the
exact ones. In the abstract value denoted by (x�,μ�)∈E�, we
have x� the interval corresponding to the range of the values
and μ� the interval of errors on x�. This value abstracts a set
of concrete values {(x, μ) : x ∈ x� and μ ∈ μ�} by intervals
in a component-wise way. We introduce now the semantics
of arithmetic expressions on E�. We approximate an interval
x� with real bounds by an interval based on floating-point
bounds, denoted by ↑� (x�). Here bounds are rounded to the
nearest (see Eq. (12)).

↑� ([x, x]) = [↑ (x),↑ (x)]. (12)

In the other direction, we have the function ↓� that
abstracts the concrete function ↓. It over-approximates the
set of exact values of the error ↓ (x) = x− ↑ (x). Every
error associated to x ∈ [x, x] is included in ↓� ([x, x]). We
also have for a rounding mode to the nearest

↓� ([x, x]) = [−y, y] with y = 1

2
ulp

(
max(|x |, |x |)).

(13)

Formally in Eq. (13), the unit in the last place, denoted
by ulp(x), is the weight of the least significant digit of the
floating-point number x . Equations (14) to (16) give the
semantics of the addition, subtraction andmultiplication over
E

�, for other operations see [30]. If we sum two floating-
point numbers, we must add the errors on the operands to
the error produced by the round-off of the result. If we sub-
tract two floating-point numbers, we must subtract errors on
the operands and add the error produced by the round-off
of the result. When multiplying two floating-point numbers,
the semantics is given by the development of (x�

1 + μ
�
1) ×

(x�
2 + μ

�
2).

(x�
1, μ

�
1)+ (x�

2, μ
�
2) =

(↑� (x�
1 + x�

2), μ
�
1 + μ

�
2+ ↓� (x�

1 + x�
2)

)
,

(14)

(x�
1, μ

�
1)− (x�

2, μ
�
2) =

(↑� (x�
1 − x�

2), μ
�
1 − μ

�
2+ ↓� (x�

1 − x�
2)

)
,

(15)

(x�
1, μ

�
1)× (x�

2, μ2,
�) =(↑� (x�

1 × x�
2), x

�
2 × μ

�
1 + x�

1 × μ
�
2 + μ

�
1 × μ

�
2+ ↓� (x�

1 × x�
2)

)
.

(16)

Example 1 In order to illustrate the semantics of the elemen-
tary operations given in Eqs. (14) to (16), we consider the
product of two floating-point numbers x1 and x2 with initial
errors on them of, respectively, μ1 and μ2. In our example,
we have chosen that

([x1, x1], [μ1, μ1]) = ([3.141, 3.142], [0.00059, 0.000592])

and

([x2, x2], [μ2, μ2]) = ([99.98, 99.99], [0.09, 0.1]).

The computation is processed as following:

– First, we multiply x1 by x2. The product [3.141, 3.142]
× [99.98, 99.99] gives [314.03718, 314.16858]. For the
sake of simplicity, we use in this example a simplified
system of floating-point numbers whose mantissas are
made of four decimal digits. So, we keep only four digits,
the result is ↑� (x�

1 × x�
2) = [314.0, 314.2],

– Next, the global error generated by the product is equals
to [0.3790174, 0.40487328], obtained by the sum of:

– The first floating-point interval x1 multiplied by the
error μ2 gives [0.28269, 0.3142],

– The second floating-point interval x2 multiplied by
the error μ1 results [0.0589882, 0.05919408],

– The error μ1 multiplied by the error μ2 is equals to
[0.0000531, 0.0000592],

– The error generated bymultiplying x1 and x2 which is
equals to [0.03718, 0.03142] in our case because we
have chosen to keep only four digits for the floating-
point numbers.

We assume that y = max([|0.3790174|, |0.40487328|])
= 0.40487328. Let us consider that u = ulp(y). We have
ulp(y) = 2ufp(y)−p, where ufp() and p, respectively, are
the unit in the first place and the precision of the number
in question.We have that, in binary, 0.40487328 is equals
to 2−2 + 2−3 + 2−6 + 2−7 + 2−8 + This results that
ufp(0.40487328) = −2. Note that, by taking p = 4, we
find that ulp(y) = 2−2−4 = 2−6. In our case, we have

chosen to use the rounding mode to the nearest, (↓ (x) =
1
2ulp(x)), which gives us at the last the following interval

↓� ([0.40487328, 0.40487328]) = [2−7, 27].

��

Note that more precise abstract domains than intervals
exist, e.g., [6,18,19] as well as complementary tech-
niques [4,5,15,36]. Let us also mention that other methods
exist to transform, synthesize or repair arithmetic expres-
sions in the integer or fixed arithmetic [21]. We cite also [6,
20,32,33,36] which are interesting to improve the ranges of
the floating-point variables which could be complementary
of our approach.

3.2 Accuracy improvement of expressions

In this section,webrieflypresent formerwork to semantically
transform [9] arithmetic expressions using Abstract Program
EquivalentGraphs (APEG) [24]. This intermediary represen-
tation (IR) of programs is an extension of another IR called
equivalent program expression graphs [38,39]. EPEGs have
been introduced to address the phase of ordering problems in
compilers [1,7,29,40], that is the problem of determining in
which order to apply the optimizations of compilers to obtain
the best result. For example, this makes it possible to search
for the maximal shared sub-expressions [27,37].

Contrary to EPEGs, APEGs make it possible to remain
in polynomial size while dealing with an exponential num-
ber of equivalent expressions. To prevent any combinatorial
problem, APEGs hold in abstraction boxes many equiva-
lent expressions up to associativity and commutativity. A
box containing n operands can represent up to 1 × 3 ×
5 · · · × (2n − 3) possible formulæ. In order to build large
APEGs, two algorithms are used propagation and expansion
algorithm. The first one searches recursively in the APEG
where a symmetric binary operator is repeated and intro-
duces abstraction boxes. Then, the second algorithm finds a
homogeneous part and inserts a polynomial number of boxes.
In order to add new shapes of expressions in an APEG,
one propagates recursively subtractions and divisions into
the concerned operands, propagate products, and factorizing
common factors. Finally, an accurate formula is searched
among all the equivalent formulæ represented in an APEG
using the abstract semantics of Sect. 3.1.

In their article on EPEGs, Tate et al. use rewriting rules
to extend the structure up to saturation [38,39]. In our con-
text, such rules would consist of performing some pattern
matching in an existing APEG p and then adding new nodes
in p, once a pattern has been recognized. For example, the
rules corresponding to distributivity and box construction are
given in Fig. 3. An alternative technique for APEG construc-

p1 p2

+ p3

p1 p2

+ p3

p1 p3

+

p2 p3

p1 p2

p3 (p1,p2,p3)

 (p1 n,p'1 m)

 (p'1 m) (p1 n)

Fig. 3 Some rules for APEG construction by pattern matching

2 a

+

b +(a,a,b)

c

+

c b c

a a

+

+

Fig. 4 APEG for the expression e = (
(a + a)+ c

)× c

tion is to use dedicated algorithms. Such algorithms, working
in polynomial time, have been proposed in [24].

Let Expr and BExpr be the set of arithmetic and boolean
expressions, respectively. We have

Expr
 e ::= id | cst | e + e | e − e | e × e | e ÷ e.
BExpr
 b ::= true | false | b ∧ b | b ∨ b | ¬b | e = e |

e < e | e > e.

(17)

In Eq. (17), id is an identifier in a finite set V and cst a
constant in R.

The APEGs are an extension of the Equivalence Program
Expression Graphs (EPEGs) introduced by Tate et al. [38,
39]. An APEG is defined inductively as follows:

1. A constant cst or an identifier id is an APEG,
2. An expression p1 ∗ p2 is an APEG, where p1 and p2 are

APEGs and ∗ is a binary operator among {+,−,×,÷},
3. A box ∗(p1, . . . , pn) is an APEG, where ∗ ∈ {+,×} is

a commutative and associative operator and the pi,1≤i≤n ,
are APEGs,

4. A non-empty set {p1, . . . , pn} of APEGs consists in an
APEG, where pi,1≤i≤n , is not a set of APEGs itself. We
call the set {p1, . . . , pn} the equivalence class.

An example of APEG is given in Fig. 4. When an equiv-
alence class (denoted by a dotted ellipse in Fig. 4) contains
many APEGs p1, . . . , pn then one of the pi , 1 ≤ i ≤ n

may be selected in order to build an expression. A box
∗(p1, . . . , pn) represents any parsing of the expression
p1∗. . .∗pn . Froman implementationpoint of view,when sev-
eral equivalent expressions share a common sub-expression,
the latter is represented only once in the APEG. Then
APEGs provide a compact representation of a set of equiv-
alent expressions and make it possible to represent in an
unique structure many equivalent expressions of very dif-
ferent shapes. For readability reasons, in Fig. 4, the leaves
corresponding to the variablesa, b and c are duplicatedwhile,
in practice, they are defined only once in the structure.

The set A (p) of expressions contained inside an APEG
p is defined inductively as follows:

1. If p is a constant cst or an identifier id then A (p) =
{cst} or A (p) = {x},

2. If p is an expression p1 ∗ p2 then

A (p) =
⋃

e1∈A (p1), e2∈A (p2)

e1 ∗ e2,

3. If p is a box ∗(p1, . . . , pn) thenA (p) contains all the
parsings of e1 ∗ . . . ∗ en for all e1 ∈ A (p1), . . . , en ∈
A (pn),

4. If p is an equivalence class thenA (p) =⋃
1≤i≤n A (pi).

For instance, the APEG p of Fig. 4 represents all the follow-
ing expressions:

A (p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
(a + a)+ b

)× c,
(
(a + b)+ a

)× c,(
(b + a)+ a

)× c,
(
(2× a)+ b

)× c,
c × (

(a + a)+ b
)
, c × (

(a + b)+ a
)
,

c × (
(b + a)+ a

)
, c × (

(2× a)+ b
)
,

(a + a)× c + b × c, (2× a)× c + b × c,
b × c + (a + a)× c, b × c + (2× a)× c

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(18)

4 Transformation of commands

In this section, we describe the formal rules used to transform
intra-procedural pieces of code.

The syntax of commands is given in Eq. (19). It corre-
sponds to the core of an imperative language.

Com
 c ::= id = e | c1; c2 | ifΦ e then c1 else c2

| whileΦ e do c | nop. (19)

Our command language admits assignments id = e (e ∈
Expr), sequences of instructions, a conditional
ifΦ b then c1 else c2 (b ∈ BExpr), a loop statement
whileΦ b do c (b ∈ BExpr) and the void operation nop.

Fig. 5 Transformation rules used to improve the accuracy of programs

We write ≡ the syntactic equivalence, in other words, x ≡ c
means that x is syntactically the command c. In addition,
we recall V denotes the finite set of identifiers. We assume
that our programs are written in SSA form [10]. The Φ vari-
ables attached to conditional and while statements denote
their sets of Φ-nodes. A Φ-node Φ(id, id1, id2) is under-
stood as an assignment of the form id = Φ(id1, id2) where
Φ(id1, id2) = id1 or Φ(id1, id2) = id2 depending on the
control flow. The construction of Φ-nodes is classical and is
left to the reader [3,10]. We only illustrate it by means of the
Example 2.

Example 2 Initially,wegive the original program inEq. (20).

x = 2;
if (x > 1) then
x = x × 2;

else
x = x ÷ 2;

z = x

(20)

The SSA form of the program given in Eq. (20) is:

x1 = 2;
if (x1 > 1) then
x2 = x1 × 2;

else
x3 = x1 ÷ 2;

φ(x4, x2, x3);
z = x4

(21)

In the new program given in Eq. (21), the variables are
assigned only once. Then x as been split into x1, x2, x3 and
x4. The Φ-node Φ(x4, x2, x3) states that x4 is assigned to x2
or x3 depending on the branch taken by the control flow. ��

The rewriting rules ⇒ϑ that allow us to transform pro-
grams, in order to optimize a user-defined variable ϑ , i.e.,
the target variable, are presented of Fig. 5. We denote by
⇒∗

ϑ the transitive closure of ⇒ϑ . In our approach, we use
states of the form 〈c, δ,C, β〉 where:

– c is a command, as defined in Eq. (19),
– δ is an environment δ : V → Expr which maps vari-
ables to expressions. Intuitively, this environment, fed
by Rule (A1), records the expressions assigned to vari-
ables in order to inline them later on in larger expressions
thanks to Rule (A2). We write δ[x �→ e], the environ-
ment which is equal to δ(x) for all id ∈ V such that
id �= x , otherwise, it returns the value e.

– C ∈ Ctx is a single hole context [22] defined in Eq. (22).
It records the program enclosing the current expression
to be transformed and which is intended to fit in the hole
denoted by [].

Ctx
 C :: = [] | id = e | C1 ;C2 | ifΦ e then C1 else C2

| whileΦ e do C | nop. (22)

– let β ⊆ V be a list of assigned variables that should not
be removed from the source program. Initially, β = {ϑ},
i.e., the target variable ϑ may not be removed. The set β
is modified by rules (C1), (C2), (C4) and (W2).

Let us now describe the rules of Fig. 5. Rule (A1) allows
one to discard an assignment id = e by memorizing in δ

the formal expression e in order to inline it later, in a larger
expression. When using Rule (A1), to get a semantically
equivalent program, we must respect a restriction which is
that the transformation is done only if Identifier id does not
belong to the set β of variables which must not be removed.
Note that we always haveϑ ∈ β so that the identifier id of the
assignment cannot be the target variable when using (A1).

Rule (A2) offers an alternative way of processing assign-
ments, when the conditions of Rule (A1) is not fulfilled.
The action of substituting the variables of e by their def-
initions in δ is denoted by δ(e). We also use the function
Size(e) which computes the size of the expression e (i.e.,
the number of nodes of its syntactic tree). Rule (A2) trans-
forms the expression e′ = δ(e) into an expression e′′ by a call
〈e′, σ �〉�∗ e′′ to the tool based on APEGs and which trans-
forms expressions, as described in Sect. 3.2. The abstract
environment σ� : V → E

� used for this transformation
results from a static analysis using the domain E� also intro-
duced in Sect. 3.1. As mentioned earlier, in Rule (A2), ι�

denotes the user-defined initial environment which binds the
free variables of the program to intervals. For example, in
Sect. 2, the variable sl is set to [0.52,0.53] in ι�. The
program given to the static analyzer is C[c], i.e., the pro-
gram obtained by inserting the command c into the context
C . Accordingly to these notations, if the size of the inlined
expression e′ = δ(e) is less than a user-defined maximal size
Smax, then the expression e′ is transformed into an expression
e′′ by 〈e′, σ �〉 �∗ e′′ which transforms the source expres-
sion into a more accurate one for the environment σ�. In

our implementation, this corresponds to a call to the APEG
tool [24,31]. The returned expression e′′ is inserted in the
new assignment id = e′′.

Remark that by inlining expressions in variables when
transforming programs, we create large formulæ. In our
implementation, in order to facilitate their manipulation, we
slice these formulæ at a defined level of the syntactic tree on
several sub-expressions and we assign them to intermediary
variables. Finally, we inject these new assignments into the
main program, for example, see Listing 2.

Example 3 To explain the use of rules (A1) and (A2), let
us consider the example of Eq. (23) in which three variables
x , y and z are assigned. In this example, ϑ consists of the
variable z that we aim at optimizing and a = 0.1, b = 0.01,
c = 0.001 and d = 0.0001 are constants.

〈x = a+ b; y = c+ d; z = x+ y, δ, [], {z}〉
�⇒ϑ
(A1)

〈nop; y = c+ d; z = x+ y, δ′ = δ[x �→ a+ b], [], {z}〉
�⇒ϑ
(S1)

〈y = c+ d; z = x+ y, δ′ = δ[x �→ a+ b], [], {z}〉
�⇒ϑ
(A1)

〈nop; z = x+ y, δ′′ = δ′[y �→ c+ d], [], {z}〉
�⇒ϑ
(S1)

〈z = x+ y, δ′′ = δ′[y �→ c+ d], [], {z}〉
�⇒ϑ
(A2)

〈z = ((d+ c)+ b)+ a, δ′′, [], {z}〉

(23)

In Eq. (23), initially, the environment δ is empty. If we
apply the first rule (A1), we may remove the variable x and
memorize it in δ. So, the line corresponding to the variable
discarded is replaced by nop and the new environment is
δ = [x �→ a+ b]. We then repeat the same process by using
(A1) on the variable y and Rule (S1) which discards the
nopstatement. For the last step, we may not apply (A1) to
z because the condition is not satisfied (z = ϑ). Then we
use (A2), we substitute x and y by their value in δ and we
transform the expression. ��

Rules (S1) to (S3) deal with sequences. Rules (S1) and
(S2) are special cases enabling the system to discard the
nop statements while the general rule for sequences is (S3).
The first command c1 is transformed into c′1 in the current
environment δ, C , ϑ and β and a new context C ′ is built
which inserts c′1 inside C . Then c2 is transformed into c′2
using the context C[c′1; []], the formal environments δ′ and
the list β ′ resulting from the transformation of c1. Finally,
we return the state 〈c′1 ; c′2, δ′′,C, β ′′〉.
Example 4 Back to the example of Eq. (23), the rules (S1)
and (S3) are needed to achieve the transformation: first, (S3)
is used with c1 = {x = a + b} and c2 = {y = c + d ; z
= x + y }. For c1, (A1) is called from (S3) and, concerning
c2, (S3) is recursively called, as well as (A1) and (S1). ��

Rules (C1) to (C4) concern conditionals. The first two
rules correspond to a partial evaluation of the program [25],
when the test evaluates to true or false in the environment
σ� which is computed by static analysis

σ� = [[C[ifΦ e then c1 else c2]]]�ι�.

The conditional, in rules (C1) and (C2), is replaced by either
theBranch c1 or c2. Since the conditional is removed,wehave
to take care of the Φ-nodes. We use the function Ψ (Φ, c)
which replaces in the command c any assignment x = e by
y = e if Φ(y, u, v) ∈ Φ with u = x or v = x . Similarly,
Ψ (Φ, δ) replaces, in the formal environment δ, x �→ e by
y �→ e if Φ(y, u, v) ∈ Φ with u = x or v = x . Doing so,
we propagate the effect of the Φ-nodes when a conditional
is removed.

Example 5 Let us consider the program p, in SSA form.

p ≡

x1 = 0;
ifΦ(x4,x2,x3) cond then
x2 = a + b

else
x3 = c + d;

ϑ = x4

(24)

In the rest of this example, we assume that c1 ≡ a + b
and c2 ≡ c + d. Depending on the value of condition, we
transform this program into

⎧⎪⎨
⎪⎩
x1 = 0;
ϑ = a + b if cond,

ϑ = c + d if ¬cond.

(25)

For example, if the condition is true, the steps followed by
the transformation are

〈p, δ,C, β〉 �⇒ϑ
(C1)

〈Ψ (Φ, c1), Ψ (Φ, δ),C, β〉
≡ 〈Ψ (Φ, x2 = a + b;ϑ = x2), Ψ (Φ, δ),C, β〉
≡ 〈x4 = a + b;ϑ = x4), δ,C, β〉
�⇒ϑ
(A1)

〈nop;ϑ = x4, δ
′[x4 �→ a + b],C, β〉

�⇒ϑ
(S1)

〈ϑ = x4, δ
′[x4 �→ a + b],C, β〉

�⇒ϑ
(A2)

〈ϑ = a + b, δ′,C, β〉

��
Rule (C3) is the general rule for conditionals. The then and
else branches are transformed, assuming that the variables
of the condition do not appear in the domain of δ. Here,
Assigned(c) denotes the set of identifiers assigned in the
command c, Dom(δ) denotes the list of variables memorized

in δ and Var(e) denotes the set of variables of the expression
e.

The variables assigned in the branches have to be added to
β and the environment δ′ resulting from the transformation
joins the environments of both branches (thanks to the SSA
form, the variables assigned in both branches are distinct).
The function Var(e) returns the set of variables occurring in
the expression e while Dom(δ) denotes the domain of defi-
nition of δ. Finally, Rule (C4) is used when the conditions
for Rule (C3) do not hold. In this case, Var(e)∩Dom(δ)�
= ∅ and we need to reinsert the common variables into the
source code. Let Var(e) be the list of variables occurring in
the expression e. Firstly, a new command c′ corresponding
to sequences of assignments of the form id = δ(id) is built
from AddDef s(Var(e), δ) such that for any set of variables
V

AddDef s(V, δ) ≡ id1 = δ(id1); . . . ; idn = δ(idn)

with V = {id1, . . . , idn}. (26)

Secondly, the variables of Var(e) are removed from the
domain of δ, yielding δ′. The resulting command is the com-
mand c′′ obtained by transforming c′; ifΦ e then c1 else c2
with δ′ and β ∪ Var(e).

Example 6 Let us take another example to explain the rules
(C3) and (C4). Initially, we have 〈q, δ,C, β = {ϑ}〉 and

q ≡

x1 = a;
ifΦ(y3,y1,y2) (x1 > 1) then
y1 = x1 + 2;

else
y2 = x1 − 1;

ϑ = y3

(27)

By rule (A1), x1 is stored in δ. Then, we transform recur-
sively the new program

q ′ ≡

ifΦ(y3,y1,y2) (x1 > 1) then
y1 = x1 + 2;

else
y2 = x1 − 1;

ϑ = y3

(28)

We write 〈q, δ,C, β = {ϑ}〉 �⇒ϑ
(A1)

〈q ′, δ′[x1 �→ 0],C, β =
{ϑ}〉.

This program is semantically incorrect since the test is
undefined. However, Var(e) ∩ Dom(δ) �= ∅ and we cannot
apply Rule (C3). Instead, Rule (C4) is used to re-inject the
statements x1 = 0 in the program and to add x1 to the black-
list β in order to avoid an infinite loop in the transformation.
The new blacklist is β ′ = {ϑ, x1}. ��

The last two rules (W1) and (W2) are for the while state-
ments. They follow the same spirit than the rules (C3) and
(C4) for the conditional statement. Rule (W1) makes it pos-
sible to transform the body c of the loop assuming that the
variables of the condition e have not been stored in δ. In this
case, c is optimized in the context C[whileΦ e do []] where
C is the context of the loop itself. Rule (W2) first builds the
list V = Var(e)∪Var(Φ)where Var(Φ) is the list of vari-
ables read and written in the Φ nodes of the loop. The set V
is used to achieve two tasks: firstly, it is used to build a new
command c′ corresponding to the sequence of assignments
id = δ(id), for all id ∈ V (as for Rule (C4)). Secondly, the
variables of V are removed from the domain of δ and added
to β. The resulting command is the command c′′ obtained by
transforming c′;whileΦ e do c with δ′ and β ∪ V .

We end this section with complexity considerations. At
each step of the transformation of a program p, only one rule
of Fig. 5 may be selected. Consequently, the transformation
would be linear in the size n, i.e., the number of statements,
of p if we would not re-inject assignments. However, a given
assignment cannot be removed twice, so the transformation
is quadratic. Finally, the entire transformation of a program
p is repeated until nothing changes, that is at most n times.
Hence, the global complexity for a program transformation
of size n is O(n3).

Note that, in this article, we optimize only one variable at
once. The simplest way to optimize a set of variables X at the
same time is by code duplication, by optimizing the original
program independently for each id ∈ X and by merging
the resulting programs. Obviously, this makes the code grow
too much in practice. In future work, we aim at defining a
better method to improve the accuracy of several variables
simultaneously without code duplication. A first difficulty is
to define a (partial) order relation to compare the accuracy of
programs on several variables at once. This relation would be
used insteadof theorder� introduced inSect. 5 (Definition1)
and which states that a program is better than another one if
the accuracy of the reference variable has been improved.

5 Soundness of transformations

In order to ensure the soundness of our transformation, we
introduce a theoremwhich compares twoprograms and states
that the more accurate one may be used in place of the less
accurate one.

5.1 Operational semantics

In this section, we introduce an usual SOS operational
semantics for our while language defined in Sect. 4. This
semantics is standard, but we need tomake it explicit in order

to achieve the proof of correctness of our transformation in
Sect. 5.2.

Let V be a finite set of variables and let σ ∈ Mem be an
environment that map variables to values

σ : V → E (29)

withE the concrete domain of values introduced in Sect. 3.1.
In Fig. 6, we define

→e : Expr→ E (30)

and

→b : BExpr→ {true, false} (31)

the transition functions for the evaluation of arithmetic and
boolean expressions. Note that in Fig. 6 only the most
relevant, for the proof of correctness, definitions of the opera-
tional semantics are given as they follow a standard definition
as found in [41].

The operational semantics uses states which are defined
by a pair of command and memory. We assume that

State = {〈c, σ 〉 : c ∈ Cmd, σ ∈ Mem}. (32)

The operational semantics maps States to States:

→ : State → State
〈c, σ 〉 �→ 〈c′, σ ′〉. (33)

The standard semantics of programs is given in Fig. 6
(rules (R8) to (R15)). The rules for assignments rely on the
semantics→e of expressions also given in Fig. 6 (rules (R1)
to (R4)). Recall that, as explained in Sect. 3.1, our technique
is independent of the rounding mode used in the floating-
point arithmetics and, in Fig. 6, we omit to mention it (Figs.
7, 8, 9).

For a sequence of commands (rules (R10) and (R11)),
we execute the first command in the initial environment, and
then we execute the second in the resulting environment. The
next kind of rules is for conditionals and uses the semantics
→b also given in Fig. 6 (rules (R5) to (R7)). If the condition
is evaluated to true (rule (R12)), we take the semantics of
the then branch, otherwise, we take the semantics of the else
branch (rule (R13)). The rules for while loops execute the
body c if the condition is true and then run again the loop.
They return the environment unchanged if the condition is
false (Rule (R15)).

5.2 Proof of correctness

In an effort to assert the correctness of our transformation
for numerical accuracy, we now prove that our approach

Fig. 6 Small-step operational
semantics of programs

Fig. 7 Output of a PID controller

Fig. 8 The lead–lag system

really generates a more accurate and correct program among
the many equivalent programs. This proof relies on the
operational semantics of both arithmetic expressions and
commands. It is crucial because the transformed programs
are really different from the original ones. Indeed, if we oper-
ate on critical embedded systems, one necessarily needs to
be sure that the transformed programs really behave like the
original ones.

Key to our approach is the use of Theorem 1 introduced
later on in this section and which compares two programs
and states that the most accurate one may be used in place
of the less accurate one. This comparison needs to specify a
variable of reference ϑ defined by the user. More precisely,
a transformed program pt is more accurate than an original
program po if and only if the two conditions given hereafter
are verified:

– The first condition consists in ensuring that the target
variable ϑ of both programs corresponds to the same
mathematical expression.

– The second condition requires that the target variable ϑ

is more accurate in the transformed program pt than in
the original program po.

Fig. 9 Difference between the
initial and the transformed
trajectories of the rocket

The main difficulty of the proof comes from the fact that
the transformation discards some assignments which have to
be re-injected later on to build larger expressions. Thismakes
our transformation unusual and forms the originality of the
proof presented below.

In the rest of this section, we are going to use the rules
introduced in Sect. 3, 〈c, δ,C, β〉 ⇒∗

ϑ 〈c′, δ′,C, β ′〉.
We denote by⇒∗

ϑ the reflexive transitive closure of⇒ϑ .
In order to define the correctness of the transformation, we
introduce two order relations which make it possible to com-
pare commands based on their accuracy.

First, we use an order relation�⊆ E×Ewhich states that
a value (x, μ) is more accurate than a value (x ′, μ′) if they
correspond to the same real value and if the error μ is less
than μ′.

Definition 1 (comparison of expressions) Let us consider
v1 = (x1, μ1) ∈ E and v2 = (x2, μ2) ∈ E. We say that v1
is more accurate than v2, denoted by v1 � v2 iff x1 + μ1 =
x2 + μ2 and |μ1| ≤ |μ2|. ��

Second, Definition 2 says that both commands compute
the same value of ϑ in any environment in the exact arith-
metic, that the transformed command is more accurate and
that if a variable is not defined in σt then the corresponding
formal expression has been stored in δt .

Definition 2 (comparison of commands) Let co and ct be
two commands, let δo and δt be two formal environments.
Finally, let ϑ be the reference variable. We say that

〈ct , δt 〉 ≺ϑ 〈co, δo〉

if and only if for all σ ∈ Mem,

∃σo ∈ Mem,〈co, σ 〉 →∗ 〈nop, σo〉,
∃σt ∈ Mem,〈ct , σ 〉 →∗ 〈nop, σt 〉,

such that σt (ϑ) � σo(ϑ) and such that for all id ∈ Dom(σo)\
Dom(σt), δt (id) = e and 〈e, σ 〉 →∗

e σo(id). ��
Let δ : V → Expr be a formal environment. In the fol-

lowing, δ(e) is the expression obtained by substituting in the
expression e any identifier id of δ by its value δ(id).

First of all, we introduce a lemma which states that we
may substitute an expression e to a variable id inside a larger
expression as long as e evaluates to σ(id).

Lemma 1 (sub-expression substitution) Let e be an expres-
sion containing the identifier id. Assume a formal environ-
ment δ such that δ(id) = e′ with e′ another expression.
Moreover, assume that ∀σ ∈ Mem, ∃cst ∈ E,

〈e′, σ 〉 →∗ cst.

If, ∀σ ∈ Mem,

∃r ∈ E, 〈e, σ [id �→ cst]〉 →∗ r,
∃r ′ ∈ E, 〈δ(e), σ 〉 →∗ r ′,

then r = r ′. ��
Proof Given Lemma 1, the proof is done by induction on the
structure of the expressions introduced in Eq. (17). We have
to consider the following cases:

– If the expression is a constant, in other words, e ≡ cst ,
then we know that δ(cst) = cst . Obviously, there is
no change. In addition, we have 〈cst, σ 〉 → cst and

〈δ(e), σ 〉 → cst . Consequently, when we deal with con-
stants the lemma is always correct.

– If the expression is a variable then e ≡ id and we know
by hypothesis that δ(id) = e′. In this case, we have
that 〈id, σ 〉 → v and, by hypothesis, we know that if
〈δ(id), σ 〉 →∗ v′ then v = v′. So the lemma is also
correct in this case.

– Finally, if we have an expression of the form e ≡ e1 e2
where ∈ {+,−,×,÷} then we apply the induction
hypothesis separately to both expressions e1 and e2. So,
we have δ(e1) = e′1, 〈e1, σ [id �→ v1]〉 → v′1 and
〈δ(e1), σ 〉 → v′′1 . The same process is applied to e2
and we know by induction hypothesis that v′1 = v′′1 and
v′2 = v′′2 .We conclude that v′1 v′′1 = v′2 v′′2 . The lemma
is correct for arithmetic operations.

��
We introduce now a second lemma concerning the sound-

ness of the transformation of arithmetic expressions. As in
Sect. 4, we assume that a function� transforming arithmetic
expressions is given; see [24]. This function transforms an
expression eo into a more accurate expression et in the envi-
ronmentσ . Again,�∗ denotes the reflexive transitive closure
of �.

Lemma 2 (soundness of expressions transformation) Let eo
be an original arithmetic expression, et be the transformed
expression. For all σ ∈ Mem, assume that 〈eo, σ 〉�∗ et , i.e.,
eo is transformed into a mathematically equivalent expres-
sion et , such that

∃vo ∈ E, 〈eo, σ 〉 →e vo,

∃vt ∈ E, 〈et , σ 〉 →e vt ,

then vt � vo. ��
Proof Such a transformation is proved correct in [24].

The following theorem relates the original commands and
the transformed commands by using the relation ≺ϑ intro-
duced in Definition 2.

Theorem 1 (soundness of command transformation) Let co
be the original code, ct be the transformed code, δo be the
initial environment of the transformation, δt be the final envi-
ronment of the transformation,

then we have

(〈co, δo,C, β〉 ⇒ϑ 〈ct , δt ,C, β〉)
�⇒ (〈ct , δt ,C, β〉 ≺ϑ 〈co, δo,C, β〉).

��

Proof The proof is by structural induction on commands.
Hence, we consider each kind of expression and each rule of
transformation of programs presented in Fig. 6 which applies
to the current kind of expression. ��
Assignments The first case is when the command c is an
assignment, i.e., c ≡ id = e. In this case, we have two
transformation rules, (A1) and (A2). Rule (A1) consists in
discarding an assignment when some conditions are satis-
fied while Rule (A2) is used to substitute expressions within
the assignment using the information already stored in the
environment δ.

– Let us start with (A1) which produces

〈id = e, δ,C, β〉 ⇒ϑ 〈nop, δt ,C, β〉.

We consider two cases:

1. id ≡ ϑ is impossible because the variable id is in
the black list β. In Rule (A1), all the variables of the
black list may not be discarded from the source code.

2. id �≡ ϑ then the new program is nop and the assign-
ment is memorized in δt . That is to say, if (i) id �≡ ϑ

and (ii) id /∈ β then ct ≡ nop and δt = δ[id �→ e].
In one hand,wehave by composition ofRule (R9) and
(R10) of the operational semantics, for all σ ∈ Mem

∃σo ∈ Mem, ∃v ∈ E 〈id = e, σ 〉 →∗ 〈nop, σo〉
with σo = σ [id �→ v]

On the other hand, by discarding the previous assign-
ment id = e, we have ct ≡ nop. The execution ends
with 〈nop, σt 〉 where σ = σt . Then, since ϑ �= id,
we have that σo(ϑ) = σt (ϑ). In addition, we have
〈id, σ 〉 → v = σo(id). This proves that the theorem
holds in this case, i.e., 〈co, δo〉 ≺ϑ 〈ct , δt 〉.

– The second part of the proof in the case of assignments
is dedicated to demonstrate (A2). First, if

〈id = e, δ,C, β〉 ⇒ϑ 〈id = e′′, δ,C, β〉,

then the initial program co is the assignment id = e and
the transformed program ct is id = e′′, such that

e′ = δ(e), 〈e′, σ 〉�∗ e′′.

In other words, the new expression e′′ is obtained by
inlining in the expression e the variables stored in the
environment δ, yielding an expression e′. Next, e′′ is
obtained from e′ using the transformation of the expres-
sions �∗.

Let us assume that ∀σ ∈ Mem, we have

∃v ∈ E, 〈id = e, σ 〉 →∗ 〈nop, σ [id �→ v]〉
with 〈e, σ 〉 →∗

e v

For the transformed program, assuming that ∀σ ∈ Mem,
we have

∃v′ ∈ E, 〈id = e′′, σ 〉 →∗ 〈nop, σ [id �→ v′]〉
with 〈e′′, σ 〉 →∗

e v′

According to Lemma 1, we kown that ∀σ ∈ Mem

∃v ∈ E, 〈e, σ ′〉 →∗
e v,

∃v′ ∈ E, 〈e′, σ 〉 →∗
e v′,

such that v = v′, with σ ′ = σ [id �→ v] for all id ∈
Dom(δ) and 〈δ(id), σ 〉 →∗

e v.
According to Lemma 2, we know that if ∀σ ∈ Mem

〈e′, σ 〉�∗ e′′

we have

∃v′ ∈ E, 〈e′, σ 〉 →∗
e v′,

∃v′′ ∈ E, 〈e′′, σ 〉 →∗
e v′′,

and

v′′ � v′ = v.

In addition, we know that δo = δt . This demonstrates that
〈ct , δ〉 ≺ϑ 〈co, δ〉.

Sequences For a sequence of commands, if one member
of sequence of commands is nop, we have the following
situations.

– According to Rule (S1), if c ≡ nop; c2, then we have
(〈nop; c2, δ,C, β〉 ⇒ϑ 〈c2, δ′,C, β〉)

and δ = δ′. So, for all σ ∈ Mem, we have

〈nop; c2, σ 〉 →∗ 〈nop, σ ′〉,
〈c2, σ 〉 →∗ 〈nop, σ ′′〉,

and σ ′ = σ ′′. Consequently,

〈c2, δ,C, β〉 ≺ϑ 〈nop; c2, δ′,C, β〉.

– The case for Rule (S2) is similar to the former one.

– For the general case c ≡ c1; c2, we know by induction
hypothesis that:

(〈c1, δ,C[[]; c2], β〉 ⇒ϑ 〈c′1, δ′,C
[[]; c2], β〉) �⇒(〈c′1, δ′,C[[]; c2], β〉 ≺ϑ 〈c1, δ,C
[[]; c2], β〉),(〈c2, δ,C[

c′1; []
]
, β〉 ⇒ϑ 〈c′2, δ′,C

[
c′1; []

]
, β〉) �⇒(〈c′2, δ′,C[

c′1; []
]
, β〉 ≺ϑ 〈c2, δ,C

[
c′1; []

]
, β〉).

We know that ∀σ ∈ Mem, we have 〈c1, σ 〉 → 〈c′1, σ 〉
and 〈c2, σ 〉 → 〈c′2, σ 〉. According to Rule (S3), we have

〈c1; c2, δ,C, β〉 ⇒ϑ 〈c′1; c′2, δ′′,C, β〉 wi th δ = δ′′.

Then for all σ ∈ Mem, we have that

〈c1; c2, σ 〉 →∗ σ2, 〈c′1; c′2, σ 〉 →∗ σ ′2 and σ ′2(ϑ) � σ2(ϑ).

Consequently, 〈c′1; c′2, δ′2,C, β〉 ≺ϑ 〈c1; c2, δ1,C, β〉.

Conditionals The next case concerns the conditional state-
ment c ≡ ifΦ e then c1 else c2. We have to demonstrate the
correctness of the transformation for the four cases corre-
sponding to rules (C1) to (C4) introduced in Fig. 5. If the
condition is statically known then:

– If the condition e is always evaluated to true, then by
induction hypothesis we write

〈c1, δ,C, β〉 ⇒ϑ 〈c′1, δ′,C, β〉,

and, for all σ ∈ Mem we have

〈c1, σ 〉 →∗ 〈nop, σ1〉,
〈c′1, σ 〉 →∗ 〈nop, σ ′1〉,

and σ ′1(ϑ) � σ1(ϑ).

By using the Rule (C1), we have that

〈ifΦ e then c1 else c2, δ,C, β〉 ⇒ϑ 〈c′1, δ′,C, β〉

and δ = δ′. Consequently, we deduce that for all σ , that

〈ifΦ e then c1 else c2, σ 〉 →∗ 〈nop, σ1〉,
〈ifΦ e then c′1 else c′2, σ 〉 →∗ 〈nop, σ ′1〉,

and σ ′1(ϑ) � σ1(ϑ). Thus it results that:

〈c′1, δ′,C, β〉 ≺ϑ 〈ifΦ e then c1 else c2, δ,C, β〉.

– If the condition e is always false, then we execute only
the else branch. This case is similar to the previous one.

Otherwise:

Improving the numerical accuracy of programs by automatic transformation 441

– ifVar(e)∩Dom(δ) �=∅ thenweuse (C3) andby induction
hypothesis, we have:

〈c1, δ,C, β〉 ⇒ϑ 〈c′1, δ′,C, β〉,
〈c2, δ,C, β〉 ⇒ϑ 〈c′2, δ′,C, β〉,

and, for all σ ∈ Mem we have

〈c1, σ 〉 →∗ 〈nop, σ1〉, 〈c′1, σ 〉 →∗ 〈nop, σ ′1〉,
〈c2, σ 〉 →∗ 〈nop, σ2〉, 〈c′2, σ 〉 →∗ 〈nop, σ ′2〉,

and σ ′1(ϑ) � σ1(ϑ) and σ ′2(ϑ) � σ2(ϑ). In the program
transformation,we transform c1 and c2 as indicated above
and, at the end, δ′ = δ′1 ∪ δ′2. In the operational seman-
tics, we execute either 〈c′1, σ 〉 →∗ 〈nop, σ ′1〉 instead of
〈c1, σ 〉 →∗ 〈nop, σ1〉 or 〈c′2, σ 〉 →∗ 〈nop, σ ′2〉 instead
of 〈c2, σ 〉 →∗ 〈nop, σ2〉. In any case,

σ ′1(ϑ) � σ1(ϑ) or σ ′2(ϑ) � σ2(ϑ).

Consequently, since δ′ = δ′1 ∪ δ′2,

〈ifΦ e then c′1 else c′2, δ′,C, β〉
≺ϑ 〈ifΦ e then c1 else c2, δ,C, β〉.

– In the last case, let c ≡ ifΦ e then c1 else c2. If

〈c′, δ′,C, β〉 ≺ϑ 〈c, δ,C, β〉,

and if we add the same assignments within a com-
mand ca at the beginning of c and c′ then necessarily,
〈ca; c′, δ′〉 ≺ϑ 〈ca; c, δ〉.

While Loop The last kind of transformation rules concerns
the while loop c ≡ whileΦ e do c. The rules (W1) and (W2)
are similar to the transformation rules (C3) and (C4) for
conditionals. The most important rule is (W1).

– if Var(e)∩Dom(δ) �= ∅ then by induction hypothesis, we
have:

〈c, δ,C, β〉 ⇒ϑ 〈c′, δ′,C, β〉,

and, for all σ ∈ Mem we have

〈c, σ 〉 →∗ 〈nop, σ ′〉,
〈c′, σ 〉 →∗ 〈nop, σ ′′〉,

and σ ′(ϑ) � σ(ϑ). We transform c as in the case of
conditionals. In the operational semantics, we execute
repeatedly 〈c′, σ 〉 →∗ 〈nop, σ ′′〉 instead of 〈c, σ 〉 →∗
〈nop, σ ′〉 as long as the condition e is true. Then at each

iteration σ , and σ ′′(ϑ) � σ ′(ϑ). Consequently, by tran-
sitivity of � we obtain that

〈whileΦ e do c′, δ′,C, β〉 ≺ϑ 〈whileΦ e do c, δ,C, β〉.

��
We give hereafter a general case of Theorem 1.

Theorem 2 (multi-steps transformation)We assume that co
is the original program, ct is the transformed program and
ϑ is the reference variable to be improved. Assume also that
〈co, δo,C, β〉 ⇒∗

ϑ 〈ct , δt ,C, β〉, then

〈ct , δt ,C, β〉 ≺ϑ 〈co, δo,C, β〉.

��
Proof By induction on the length of the transformation
(number of application of⇒ϑ). ��

In the following, we extend our definitions and theorems
to the abstract semantics introduced in Sect. 3.1.

Definition 3 (abstract comparison of expressions) Let v�
1 =

(x�
1, μ

�
1) ∈ E

� and v
�
2 = (x�

2, μ
�
2) ∈ E

�. We say that v
�
1 is

more accurate than v
�
2, denoted by v

�
1 �� v

�
2 iff x

�
1 +� μ

�
1 ⊆

x�
2 +� μ

�
2 and

max(|μ1|, |μ1|) ≤ max(|μ2|, |μ2|),

where μ
�
1 = [μ1, μ1] and μ

�
2 = [μ2, μ2]. ��

Abstract environments of values are defined, which map
identifiers to abstract values. Let V be a set of identifiers and
let σ� ∈ Mem� be an environment that map variables of V
to abstract values

σ� : V → E
�. (34)

We assume given an abstract semantics of commands
which uses states defined by a pair of command and abstract
memory:

State� = {〈c, σ �〉 : c ∈ Cmd, σ � ∈ Mem�}. (35)

The operational semantics maps abstract states to abstract
states

→� : State� → State�

〈c, σ �〉 �→ 〈c′, σ ′�〉. (36)

Suchoperational semantics correspond to standard abstract
interpretations used in static analyses [8,18,19,30]. Defi-
nition 4 extends the comparison of commands to abstract
environments.

123

Definition 4 (abstract comparison of commands)Let co and
ct be two commands, let δo and δt be two formal environ-
ments. Finally, let ϑ be the reference variable. We say that

〈ct , δt 〉 ≺�
ϑ 〈co, δo〉

if and only if for all σ� ∈ Mem,

∃σ�
o ∈ Mem,〈co, σ �〉 →�∗ 〈nop, σ �

o 〉,
∃σ�

t ∈ Mem,〈ct , σ �〉 →�∗ 〈nop, σ �
t 〉,

such that:

– σ
�
t (ϑ) �� σ

�
o (ϑ),

– ∀id ∈ Dom(σ
�
o)\Dom(σ

�
t), δt (id) = e and

〈e, σ �〉 →�∗
e σ�

o (id).

��

Theorem 3 (static soundness of commands transformation)
Let co be the original code, ct be the transformed code, δo be
the initial environment of the transformation, δt be the final
environment of the transformation, then we have

(〈co, δo,C, β〉 ⇒ϑ 〈ct , δt ,C, β〉)
�⇒ (〈ct , δt ,C, β〉 ≺�

ϑ 〈co, δo,C, β〉).
��

Obviously, Theorem 2 can be easily extended to the
abstract case in the same way than Theorem 3. Beside this
formal proof of correctness, to go further with this question,
complementary work is carried out in this direction in order
to certify and validate that the programs transformed by our
tool are equivalent to the original programs by using theCoq
proof assistant [23].More precisely,we aimat generating cer-
tificates, written as formal proofs, stating that the generated
programs are mathematically equivalent and more accurate
than the source programs.

6 Examples

In Sect. 4, we have presented the transformation rules imple-
mented in our tool in order to improve the numerical accuracy
of programs and we have shown their ability to improve the
numerical accuracy of pieces of code, especially for standard
control-command algorithms used in embedded systems.

As a step toward ensuring the efficiency of our tool and
in order to perform experiments with it, we have considered
a number of examples in the domains of robotics, avionics,
numerical analysis, etc. These examples have been chosen

Listing 3 Listing of the initial PID program

m = [4.5 ,9.0]; kp = 9.4514; ki = 0.69006;
kd = 2.8454; t = 0.0; i = 0.0; eold = 0.0;
c = 5.0; dt = 0.2; invdt = 5.0;
while true do {
e = c - m;
p = kp * e;
i = i + ((ki * dt) * e);
d = ((kd * invdt) * (e - eold));
r = ((p + i) + d);
m = m + (0.01 * r);
eold = e;
t = t + dt;

}

for their representativity and have beenwritten as the average
programmer would do since our tool is intended to optimize
programs written by non-specialists. In another work, we
are participating in the definition of FPBench a benchmark
suite for numerical accuracy optimization tools [12,35] and
numerical validation [15,18,36].

First, we briefly describe each of these programs and of
their parameters. As for the odometry example of Sect. 2, in
our experiments, some of inputs of the programs are intervals
and our tool optimizes the accuracy of the reference variable
in the worst case for all the possible values given by the
ranges.

Obviously, our tool is sensitive to the given intervals and
since we compute the accuracy in the worst case, the larger
the intervals are, the least the optimization is. The impact of
the width of the intervals is discussed in [24,28]. In Sects. 6.1
to 6.5, we give the listings before and after being optimized.
Their accuracy is then discussed in Sect. 6.6. Note that all our
experiments are done using the roundingmode to the nearest.

6.1 PID controller

The PID [14] is an algorithm widely used in embedded and
critical systems, like aeronautic and avionic systems. It keeps
a physical parameter at a specific value known as the setpoint.
In other words, it tries to correct a measure by maintaining it
at a defined value. To compute this correction, the controller
incorporates three terms: the integral term i and the derivative
term d of the error, as well as a proportional error term p.
The error e is the difference between the setpoint c and the
measure m. After discretization, we have

e = c − m,

p = kp × e,
i = i + ki × e × dt,
d = kd × (e − eold)× 1

dt .

(37)

The weighted sum of these terms contributes to improve
the reactivity, the robustness and the speed of the program.
We assume that m ∈ [4.5, 9.0]. The program correspond-

Listing 4 Listing of the optimized PID program

m = [4.5 ,9.0]; t = 0.0; i = 0.0;
while true do {
i = (i + (0.138012 * (5.0 - m)));
eold = (5.0 - m);
m = (m + (0.01 * ((((5.0 - m) * 9.4514)

+ i) + (((5.0 - m) - eold) * 14.227))));
t = t + 0.2;

}

Listing 5 Listing of the initial Lead–Lag program

y = [2.1 ,17.9]; xc0 = 0.0; xc1 = 0.0; yd = 5.0;
Ac11 = 1.0; Bc0 = 1.0; Bc1 = 0.0; Cc0 = 564.48;
Ac00 = 0.499; Ac01 = -0.05; Ac10 = 0.01;
Cc1 = 0.0; Dc = -1280.0; t = 0.0;
while(t < 5.0) do {
yc = (y - yd);
if(yc < -1.0) { yc = -1.0; }
if(1.0 < yc) { yc = 1.0; }
xc0 = (Ac00 * xc0)+(Ac01 * xc1)+(Bc0 * yc);
xc1 = (Ac10 * xc0)+(Ac11 * xc1)+(Bc1 * yc);
u = (Cc0 * xc0)+(Cc1 * xc1)+(Dc * yc);
t = (t + 0.1);

}

ing to the implementation of the PID controller is given in
Listing 7.

We optimize the initial PID program shown in Listing 7,
in order to improve its numerical accuracy, by applying the
transformation rules presented previously on Fig. 5 to it. In
this case, our tool has simplified and developed expressions
and then inlined them into other expressions. Listing 4 shows
the optimized program.

6.2 Lead–lag system

Our second example is a dynamical system. This system
includes a single mass and a single spring and is governed by
an automatically synthesized controller [17] which tries to
move the mass from the initial position y to the desired one
yd as illustrated in Listing 8. The main variables in this algo-
rithm are: xc consists of the discrete-time controller state,
yc is the bounded output tracking error and u presents the
mechanical system output. We assume that the position y of
the mass m ∈ [2.1,17.9]. The parameters of the system are
given in Eq. (38).

yc = max(min(y − yd, 1),−1);
u = Cc ∗ xc + Dc ∗ yc;
xc = Ac ∗ xc + Bc ∗ yc.

(38)

Listing 5 gives the code of the original Lead–Lag program.
By optimizing the numerical accuracy of the program pre-
sented in Listing 5, we obtain the transformed program given
in Listing 6.

Listing 6 Listing of the transformed Lead–Lag program

y = [2.1 ,17.9]; t = 0.0; xc1 = 0.0; xc0 = 0.0;
while true do {
yc = (-5.0+y);
if(yc < -1.0) { yc = -1.0; }
if(1.0 < yc) { yc = 1.0; }
u = (((564.48 * xc0)+(0.0 * xc1))+

(-1280.0 * yc));
xc0 = (((-0.05 * xc1)+(1.0 * yc))+

(0.499 * xc0));
xc1 = (((0.01 * xc0)+(0.0 * yc))+(1.0 * xc1));
t = (t + 0.1);

}

Listing 7 Listing of the initial Runge–Kutta program

yn = [-10.1 ,10.1]; t = 0.0; k = 1.2; c = 100.1;
h = 0.1;
while (t < 1.0) do {
k1 = (k * (c - yn)) * (c - yn);
k2 = (k * (c - (yn + ((0.5 * h) * k1))))

* (c - (yn + ((0.5 * h) * k1)));
k3 = (k * (c - (yn + ((0.5 * h) * k2))))

* (c - (yn + ((0.5 * h) * k2)));
k4 = (k * (c - (yn + (h * k3))))

* (c - (yn + (h * k3)));
yn+1 = yn + ((1/6 * h) * (((k1 + (2.0 * k2))

+ (2.0 * k3)) + k4));
t = (t + h);

}

6.3 Runge–Kutta methods

This example concerns Runge–Kutta methods [26]. We con-
sider an order 2 and an order 4 method. They are employed
to solve the equation describing the dynamics of a chemical
reaction A + B → C. The order 2 method integrates a dif-
ferential equation whose solution is y(t). The second-order
method uses the derivative on the starting point xi in order
to find the intermediary point. Then, it uses this intermediary
point to have the next value of the function. The derivative
of y(x) at the points xi and xi + h

2 are

k1 =
(
dy

dx

)
= h × f (xi , yi),

k2 =
(
dy

dx

)
= h × f

(
xi + h

2
, yi + h

2

)
. (39)

Finally, we have yi+1 = yi + k2 + O(h3). We assume that
initially, y0 ∈ [−10.1, 10.1]. For the order 4 method, we
obtain as final formula:

yi+1 = y1 + 1
6 [k1 + 2× k2 + 2× k3 + k4]× h, (40)

with

k1 = h × f (xi , yi), k2 = h × f

(
xi + h

2
, yi + h

2

)
,

k3 = h × f

(
xi + h

2
, yi + h

2

)
, k4 = h × f

(
xi + h

2
, yi + h

2

)
.

Listing 8 Listing of the transformed Runge–Kutta program

yn = [-10.1 ,10.1]; t = 0.0;
while(t < 1.0) do {
TMP_7 = (1.2 * (100.099 - yn));
TMP_8 = (100.099 - yn);
TMP_13 = (1.2 * (100.099 - (yn + (0.05 * ((1.2

* (100.099 - (yn + (0.05 * (TMP_7
* TMP_8))))) * (100.099 - (yn + (0.05
* ((1.2 * TMP_8) *

(100.099 - yn))))))))));
TMP_14 = (100.099 - (yn + (0.05 * ((1.2 *

(100.099
- (yn + (0.05 *(TMP_7 * TMP_8))))) *

(100.099
- (yn + (0.05 * ((1.2 * TMP_8)
* (100.099 - yn));

TMP_18 = (yn + (0.05 * ((1.2 * (100.099 - (yn
+ (0.05 *(TMP_7 * TMP_8))))) * (100.099
- (yn + (0.05 * ((1.2 * TMP_8)
* (100.099 -yn))))))));

TMP_28 = ((1.2 * (100.099 - (yn + (0.05 *
(TMP_7

* TMP_8))))) *(100.099 - (yn + (0.05
* ((1.2 * TMP_8) * (100.099 - yn))))));

TMP_38 = ((TMP_14 * TMP_13) * 0.1) + yn;
TMP_40 = 0.1 * ((1.2 * TMP_14)*(100.099 -

TMP_18));
yn_plus_1 = (yn + (0.016666667 *

((((TMP_7 * TMP_8)
+ (2.0 * TMP_28)) + (2.0 * (TMP_13
* TMP_14))) + ((1.2 * (100.099

- TMP_38))
* (100.099 - (yn + TMP_40))))));

[...] ;
t = (t + 0.1);

}

The function f (see Eq. (39)) needs to be evaluated four
times to improve its accuracy. We assume that ki = dy

dx .
Equation (40) will be described by:

yi+1 = y1 + 1

6
[k1 + 2× k2 + 2× k3 + k4] . (41)

The listing of the initial program performing the Eq. (41) is
presented in Listing 7.

Instead, by applying a sequence of transformation rules to
the initial Runge–Kutta code, we obtain a program consid-
erably more accurate than the original one. This optimized
program is given in Listing 8.

6.4 The Trapezoidal rule

This example concerns an algorithm for the trapezoidal rule
[26], well known in numerical analysis to approximate the
definite integral

∫ b
a f (x) dx . This trapezoidal rule works by

approximating the region between x and x + h under the
graph of the function f(x) as a trapezoid and calculates its
area. Here, we compute the integral

∫ 5000
0.25 g(x)dx of some

function:

g(x) = u

0.7x3 − 0.6x2 + 0.9x − 0.2
. (42)

Listing 9 Listing of the initial trapeze program

u = [1.11, 2.22]; a = 0.25; b = 5000.0;

n = 25.0;
r = 0.0; xa = 0.25; h = ((b - a) / n);
while (xa < 5000.0) do {
xb = (xa + h) ;
if(xb > 5000.0) {

xb = 5000.0 ;
gxa = (u / ((((((0.7 * xa) * xa) * xa)

- ((0.6 * xa) * xa)) + (0.9 * xa))
- 0.2));

gxb = (u / ((((((0.7 * xb) * xb) * xb)
- ((0.6 * xb) * xb)) + (0.9 * xb))

- 0.2));
r = (r + (((gxb + gxa) * 0.5) * h));
xa = (xa + h);

}
}

Listing 10 Listing of the transformed trapeze program

u = [1.11, 2.22]; xa = 0.25; r = 0.0;
while (xa < 5000.0) do {
TMP_1 = (0.7 * (xa + 199.99));
TMP_2 = (xa + 199.99);
TMP_9 = ((((0.7 * xa) * xa) * xa) - ((0.6 * xa)

* xa)) + (0.9 * xa);
TMP_11= (((199.99 + xa) * (TMP_2 * TMP_1))

- ((199.99 + xa) * (TMP_2 * 0.6)))
+ (0.9 * TMP_2);

r = (r + ((((u / (TMP_11 - 0.2)) + (u / (TMP_9
- 0.2))) * 0.5) * 199.99));

xa = (xa + 199.99);
}

We assume that u is a user-defined parameter in the range
[1.11, 2.22]. In addition, we have unfolded the body of the
loop twice to obtain better results with our tool. The program
performing the function g(x) corresponding to Eq. (42) is
described in Listing 9.

Once the trapezoidal rule program is given to our tool,
many transformation rules would be applied on it to improve
its accuracy. Listing 10 corresponds to the programgenerated
after optimization.

6.5 Rocket trajectory simulation

Our tool demonstrated its efficiency on small programs by
improving their numerical accuracy. Among other examples,
we have taken a larger example that contains more than
one hundred lines of code [13]. The example computes the
positions of a rocket and a satellite in space. It consists of sim-
ulating their trajectories around the Earth using the Cartesian
and polar systems, in order to project the gravitational forces
in the system composed of the Earth, the rocket and the satel-
lite. Note that the coordinates of the satellite ui and of the
rocket wi , 1 ≤ i ≤ 4 are computed by Euler’s method.

The program corresponding to this example is given in
Listing 11. The else branch is similar to the then branch
at the difference that w′2 and w′4 are computed without the

Listing 11 Listing of the initial rocket trajectory simulation program

u = [1.11, 2.22]; xa = 0.25; r = 0.0; M_f
= 150000;
R = 6.4 * 10e6; G = 6.67428 * 10e-11; A = 140;
M_t = 5.9736 * 10e24;
D = R + 4.0 * 10e5;
v_l = 0.7 * sqrt((G * M_t)(D));
while (i < nbsteps) do {
if(m_f > 0.0){

u’1 = u2 * dt + u1;
u’3 = u4 * dt + u3;
w’1 = w2 * dt + w1;
w’3 = w4 * dt + w3;
u’2 = -G * Mt / (u1 * u1) * dt + u1 *

u4 * u4
* dt + u2;

u’4 = -2.0 * u2 * u4 / u1 * dt + u4;
w’2 = -G * Mt / (w1 * w1) * dt + w1 *

w4 * w4
* dt + (A * w2) / (Mf - A * t) * dt

+ w2;
w’4 = -2.0 * w2 * w4 / w1 * dt + A * w4

/ (Mf - A * t) * dt + w4;
m’f = mf - A * t ;
t = t + dt;

}
else
{ [...] }
x = cos(w’3)*w’1);
y = sin(w’3)*w’1);
i = i + 1.0 ;
[...]

}

expression A · wi/(M f − A · t) · dt . At the end of the loop,
variables are updated, for example u1 = u′1, etc.
Constants are: the radius of the Earth R = 6.4 · 106 m,
the gravity G = 6.67428 · 10−11 m3 kg−1 s−2, the mass of
the Earth Mt = 5.9736 × 1024 kg, the mass of the rocket
M f = 150, 000 kg and the gas mass ejected by second
A = 140 kg · s−1. The release rate of the rocket vl is 0.7 ·√

((G · Mt)(D) with D = R + 4.0 · 105 m the distance
between the rocket and the Earth. Other variables are set to
0.

Listing 11 illustrates the initial rocket trajectory simula-
tion program. Table 3 shows the program that corresponds
to the optimized rocket trajectory simulation. Lastly, when
observing the behavior of both trajectories before and after
being optimized, a significant difference between the two
curves can be seen. This difference shows on how much we
improve the numerical accuracy of this large program. Note
that Listing 9 is obtained after 2.25 days of simulated time.

6.6 Experiments

Our prototype consists of an implementation of the rules
described in Sect. 4 coupled to theAPEG tool for the transfor-
mation of expressions. For the demonstration of its efficiency,
we evaluate through it the examples described previously in
this section. Our tool takes as input an initial program and
intervals for some parameters and returns another program

Listing 12 Listing of the transformed rocket trajectory simulation pro-
gram

u = [1.11, 2.22]; xa = 0.25; r = 0.0;
while (i < nbsteps) do {
if (m_f > 0.0) {

TMP_2 = (u1 * u1);
TMP_4 = (59735.99 e20 / (w1 * w1));
TMP_10 = (140.0 * t);
m’f = (mf + (t * (-140.0)));
u’1 = (u1 + (u2 * 0.1));
u’3 = (u3 + (u4 * 0.1));
w’1 = (w1 + (w2 * 0.1));
w’3 = (w3 + (w4 * 0.1));
u’2 = ((-((0.66743e(-10) * (59735.99e(20)

/ TMP_2)) * 0.1) + (((u1 * u4) * u4)
* 0.1)) + u2);

u’4 = (((-2.0 * (u2 * (u4 / u1))) * 0.1)
+ u4);

w’2 = (((-((0.66743e(-10) * TMP_4) * 0.1)
+ (((w1

* w4) * w4) * 0.1)) + (((140.0 * w2)
/ (150000.0 - (140.0 * t))) * 0.1))

+ w2);
w’4 = (((-2.0 * (w2 * (w4 / w1))) * 0.1)

+ ((140.0 * ((w4 / (150000.0 - TMP_10))
* 0.1)) + w4));

t = t + 0.1;
}
else { [...] }
x = (cos (((0.1 * w’4)+w’3)) * (w’1+w’2

* 0.1)));
y = (sin (((0.1 * w’4)+w’3)) * (w’1+(w’2

* 0.1)));
i = i + 1.0;
[...]

}

mathematically equivalent but numerically more accurate as
long as the parameters remain in the given ranges.

Table 3 compares the initial and the new error of each
of programs presented in this section and shows as well as
howmuch our tool improves the numerical accuracy of these
programs. For example, if we take the case of odometry,
we observe that we optimize it by 21.43 %. If we compare
the implementation of Runge–Kutta method, we remark that
the order four methods is improved of 15.87 %. The lead–
lag system is optimized by 19.96 %. The improvement of the
error is given in Table 3, where s is the slice size, i.e., the
parameter defining at which height of the syntactic tree we
cut the expressions.

Note that all the example programs are optimized. This is
natural since the original codes are direct implementations of
the mathematical formulæ and have not been written for the
floating-point arithmetic.Nevertheless, our tool never returns
a code whose accuracy in the worst case is worst than the
original program. In the worst case, we return the original
program without optimization.

In general, execution times matter when dealing with
programs performing floating-point computations. Indeed,
numerical simulations are time consuming and embedded
software is real time. So, in addition to improving the
accuracy of programs described above by using automatic
transformation,we evaluated our tool on their execution time.

Table 3 Initial and new errors on the examples programs of Sect. 6

Code Initial error New error s %

PID 0.453945103062736 × 10−14 0.440585745442590 × 10−14 5 2.94

Odometry 0.106578865995068 × 10−10 0.837389354639250 × 10−11 5 21.43

RK2 0.750448486755706 × 10−7 0.658915054553695 × 10−7 5 12.19

RK4 0.201827996912328 × 10−1 0.169791306481639 × 10−1 5 15.87

Lead–Lag 0.294150262243136 × 10−11 0.235435212105148 ×10−11 10 19.96

Trapezoid 0.536291684923368 × 10−9 0.488971110442931 × 10−9 20 8.82

Table 4 Execution time measurements of programs of Sect. 6

Original
code
execution
time in s

Optimized
code
execution
time in s

Percentage
improvement
(%)

Mean on
n runs

Odometry 3.2× 10−2 2.0× 10−2 37.5 104

PID controller 2.0× 10−2 0.8× 10−2 60.0 102

Lead–lag system 8.0× 10−2 6.0× 10−2 25.0 103

Runge–Kutta 4 1.6× 10−2 1.2× 10−2 25.0 103

Trapezoidal rule 2.0× 10−2 0.8× 10−2 60.0 104

Rocket 0.82× 102 0.61× 102 25.6 102

Our evaluation shows the effect of improving the numerical
accuracy of programs through the examples described pre-
viously, on their execution time. In Table 4, we compare the
execution time needed by each program before and after opti-
mization. For example, if we take the case of odometry,
we observe that we optimize its execution time by 37.5 %.
More generally, the percentage of execution time improve-
ment of all programs presented before, is between 25 and
60 % which is significantly important. Note that, the orig-
inal and optimized programs have been implemented in an
imperative programming language, compiled with our tool,
and made them run on an Intel Core i5 with 4 Go memory in
IEEE754 single precision in order to emphasize the effect of
the finite precision.

Our tool relies on a static analysis which computes a range
for each variable at each control point of program. Obvi-
ously, the more the static analysis is precise, the more the
transformation is efficient. In our current implementation,
we use a simple non-relational abstract domain described in
Sect. 3. For this reason, in our examples, we have given a
finite number of iterations to the loops, in order to help the
static analysis. However, this is independent of the transfor-
mation itself and we would obtain similar results with more
general exit conditions (e.g.,with a convergence criterion) if a
better static analysis were used. Indeed, in another side of our
research,wehave exploredmanynumerical iterativemethods
to detect the impact of improving their numerical accuracy
on their convergence speed [11]. We have carried out our

experiments using four well-known methods, namely the
Jacobi’smethod, theNewton–Raphson’smethod, an iterative
Gram–Schmidt method and finally a method that computes
the eigenvalues of a matrix. We have demonstrated that we
can reduce the total number of iterations required by these
methods to converge by about 20% when their accuracy is
optimized.

7 Conclusion

In this article, we have presented the principles of a tool that
rewrites automatically programs in order to improve their
numerical accuracy. More precisely, we have shown how to
perform intra-procedural rewritings of commands and how
to transform assignments. In the rules of Fig. 5, correctness
conditions have been defined to guarantee that the depen-
dencies are respected and to ensure the correctness of the
rewritings in conditions and loops.

The soundness of the transformation relies on Theo-
rems 1, 2 and 3 given in Sect. 5. In order to validate our tool,
we have chosen a set of representative programs taken from
various fields of sciences and engineering. We have auto-
matically tuned them and analyzed their accuracy before and
after transformation. The experimental results show the use-
fulness of our approach on the accuracy. A step further, we
have extended this study with complementary results con-
cerning the execution time of each of programs.

In future research, we will generalize our techniques to
cover other kinds of programming language patterns like
pointers, arrays, and especially functions in order to obtain
an intra-procedural program transformation with function
refactoring and specialization with respect to the values of
arguments.

Another extension aims at extending our approach to opti-
mize several reference variables simultaneously. A difficulty
is that the optimization of one variable may decrease the
accuracy of other variables. Compromises have to be made.
Finally, our transformation relies on a static analysis of the
source code. Indeed, we select the optimized program by
using the abstract semantics in Sect. 3.1, we compute certi-
fied error boundswhich can be over-approximated.Wewould
like to improve it by using more accurate relational domains
in order to obtain finer error bounds completed by statistical
results on the actual accuracy gains on concrete executions.

The transformation introduced in this article is based on
a static analysis which computes an over-approximation of
the round-off errors due to the floating-point arithmetics.
However, the transformation itself is independent of the
computation of the errors, it only depends on the order �
introduced in Definition 1 and using another order would
change the objective of the transformation. We could use it
with another static analysis which would estimate differently
which expression of an APEG is the best. For example, we
could use the compromise between accuracy and execution
time or different arithmetics such as the fixed-point arith-
metics which is widely used in embedded systems. A way
of coupling our transformation with fixed, integer or interval
arithmetics is discussed in [31].

A key issue is to study the impact of accuracy optimization
on the convergence time of distributed numerical algorithms
like the ones used usually for high-performance comput-
ing. In addition, still on distributed systems, an important
issue concerns the reproducibility of the results: different
runs of the same application yield different results due to
the variations in the order of evaluation of the mathematical
expression. We would like to study how our technique could
improve reproducibility.

References

1. Almagor, L., Cooper, K.D., Grosul, A., Harvey, T.J., Reeves, S.W.,
Subramanian, D., Torczon, L., Waterman, T.: Finding effective
compilation sequences. In: Whalley D.B., Cytron, R. (eds.) ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES’04), pp. 231–239. ACM
(2004)

2. ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic,
std 754-2008 edition (2008)

3. Appel, A.-W.: Modern compiler implementation in ML. Cam-
bridge University Press, Cambridge (1998)

4. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-
point exceptions. In: Giacobazzi, R., Cousot, R. (eds.) ACM
SIGPLAN-SIGACT POPL’13, pp. 549–560, ACM (2013)

5. Benz, F., Hildebrandt, A., Hack, S.: A dynamic program analysis
to find floating-point accuracy problems. In: Vitek, J., Lin, H., Tip,
F. (eds.) ACM SIGPLAN PLDI’12, pp. 453–462. ACM (2012)

6. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Rival, X.: Static analysis by abstract interpretation of embedded
critical software. ACM SIGSOFT Softw. Eng. Notes 36(1), 1–8
(2011)

7. Cooper, K.D., Subramanian, D., Torczon, L.: Adaptive optimizing
compilers for the 21st century. J. Supercomput. 23(1), 7–22 (2002)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxi-
mation of fixpoints. In: Graham, R.M., Harrison, M.A., Sethi, R.
(eds.) POPL’77, pp. 238–252 ACM (1977)

9. Cousot, P., Cousot, R.: Systematic design of program transfor-
mation frameworks by abstract interpretation. In: Launchbury, J.,
Mitchell, J.C. (eds.) POPL’02, pp. 178–190. ACM (2002)

10. Cytron, R., Gershbein, R.: Efficient accomodation of may-alias
information in SSA form. In PLDI’93, pp. 36–45, ACM (1993)

11. Damouche, N.,Martel,M., Chapoutot, A.: Impact of accuracy opti-
mization on the convergence of numerical iterative methods. In:
Falaschi, M. (ed.) LOPSTR 2015, volume 9527 of Lecture Notes
in Computer Science, pp. 143–160. Springer (2015)

12. Damouche, N., Martel, M., Chapoutot, A.: Intra-procedural opti-
mization of the numerical accuracy of programs. In M. Núñez and
M. Güdemann, editors, FMICS’15, volume 9128 of Lecture Notes
in Computer Science, pp. 31–46 Springer (2015)

13. Damouche,N.,Martel,M.,Chapoutot,A.:Optimizing the accuracy
of a rocket trajectory simulation by program transformation. In:
CF’15, pp. 40:1–40:2. ACM (2015)

14. Damouche,N.,Martel,M., Chapoutot, A.: Transformation of a PID
controller for numerical accuracy. Electr. Notes Theor. Comput.
Sci. 317, 47–54 (2015)

15. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Jagan-
nathan, S., Sewell, P. (eds.) POPL’14, pp. 235–248. ACM (2014)

16. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K. Védrine,
F.: Towards an industrial use of FLUCTUAT on safety-critical
avionics software. In: FMICS’09, pp. 53–69 (2009)

17. Feron, E.: From control systems to control software, ieee control
systems magazine. IEEE 30, 50–71 (2010)

18. Goubault E.: Static analysis by abstract interpretation of numer-
ical programs and systems, and FLUCTUAT. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS’13, volume 7935 of Lecture Notes in
Computer Science, pp. 1–3. Springer (2013)

19. Goubault E., Putot S.: Static analysis of finite precision compu-
tations. In: Jhala, R., Schmidt, D.A. (eds.) VMCAI’11, volume
6538 of LectureNotes in Computer Science, pp. 232–247. Springer
(2011)

20. Feret, J.: Static analysis of digital filters. In: Schmidt, D.A. (ed.)
Programming Languages and Systems, 13th European Symposium
on Programming, ESOP 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS, volume
2986 of Lecture Notes in Computer Science, pp. 33–48. Springer
(2004)

21. Gao, X., Bayliss, S., G. A. Constantinides. SOAP: structural opti-
mization of arithmetic expressions for high-level synthesis. In:
FPT’13, pp. 112–119. IEEE (2013)

22. Hankin, E.: Lambda Calculi A guide for computer scientists.
Clarendon Press, Oxford (1994)

23. Huet, G., Kahn, G., Paulin-Mohring, Ch.: The Coq
ProofAssistant—A tutorial-Version 8.0, (2004)

24. Ioualalen, A., Martel, M.: A new abstract domain for the repre-
sentation of mathematically equivalent expressions. In: SAS’12,
volume 7460 of LNCS, pp. 75–93. Springer (2012)

25. Jones, N.D.: An introduction to partial evaluation. ACM Comput.
Surv. 28(3), 480–503 (1996)

26. Kendall, A.: An introduction to numerical analysis. Wiley, Hobo-
ken (1989)

27. Knoop, J., R”uthing, O., Steffen, B.: Optimal code motion: Theory
and practice. ACM Transactions on Programming Languages and
Syst. 16(4):1117–1155 (1994)

28. Langlois, P., Martel, M., Thévenoux, L.: Accuracy versus time:
a case study with summation algorithms. In: Maza, M.M., Roch,
J.-L. (eds) 4th International Workshop on Parallel Symbolic Com-
putation, PASCO, pp. 121–130. ACM (2010)

29. Lerner, S., Grove, D., Chambers, C.: Composing dataflow analy-
ses and transformations. In: Launchbury, J., Mitchell, J.C. (eds)
29th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 270–282. ACM (2002)

30. Martel, M.: Semantics of roundoff error propagation in finite preci-
sion calculations. High. Order Symb. Comput. 19(1), 7–30 (2006)

31. Martel, M.: Accurate evaluation of arithmetic expressions (invited
talk). Electr. Notes Theor. Comput. Sci. 287, 3–16 (2012)

32. Miné, A.: Relational abstract domains for the detection of floating-
point run-time errors. In D. A. Schmidt, editor, Programming
Languages and Systems, 13th European Symposium on Program-
ming, ESOP 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Proceedings,
volume 2986 of Lecture Notes in Computer Science, p. 3–17.
Springer (2004)

33. Monniaux, D.: The pitfalls of verifying floating-point computa-
tions. ACM Trans. Program. Lang. Syst. 30(3) 2008

34. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P.,
Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Hand-
book of floating-point arithmetic. B. Boston (2010)

35. Wilcox, J. R., Panchekha, P., Sanchez-Stern, A., Tatlock, Z.: Auto-
matically improving accuracy for floating point expressions. In:
Grove, D., Blackburn, S. (eds.) ACM SIGPLAN PLDI’2015, pp.
1–11. ACM (2015)

36. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.:
Rigorous estimation of floating-point round-off errors with sym-
bolic taylor expansions. In FM’15, volume 9109 of LNCS, pp.
532–550. Springer (2015)

37. Steffen,B.,Knoop, J., Rüthing,O.: Thevalueflowgraph: a program
representation for optimal program transformations. In: Jones,
N.D. (ed.) ESOP’90, 3rd European Symposium on Programming,
volume 432 of Lecture Notes in Computer Science, pp. 389–405.
Springer (1990)

38. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a
new approach to optimization. In Z. Shao and B. C. Pierce, edi-
tors, ACM SIGPLAN-SIGACT POPL’09, pages 264–276. ACM,
(2009)

39. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation:
a new approach to optimization. Logical Methods in Computer
Science 7(1) (2011)

40. Whitfield, D., Lou Soffa, M.: An approach for exploring code-
improving transformations. ACM Trans. Program. Lang. Syst.
19(6), 1053–1084 (1997)

41. Winskel, G.: The formal semantics of programming languages -
an introduction. Foundation of computing series. MIT Press, Cam-
bridge (1993)

	Improving the numerical accuracy of programs by automatic transformation
	Abstract
	1 Introduction
	2 Case study: odometry
	3 Analysis and transformation of expressions
	3.1 Static analysis of the numerical accuracy
	3.2 Accuracy improvement of expressions

	4 Transformation of commands
	5 Soundness of transformations
	5.1 Operational semantics
	5.2 Proof of correctness

	6 Examples
	6.1 PID controller
	6.2 Lead--lag system
	6.3 Runge--Kutta methods
	6.4 The Trapezoidal rule
	6.5 Rocket trajectory simulation
	6.6 Experiments

	7 Conclusion
	References

