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State-of-the-art methods for solving smooth optimization problems are nonlinear conjugate gradient, low memory BFGS, and Majorize-Minimize (MM) subspace algorithms. The MM subspace algorithm which has been introduced more recently has shown good practical performance when compared with other methods on various optimization problems arising in signal and image processing. However, to the best of our knowledge, no general result exists concerning the theoretical convergence rate of the MM subspace algorithm. This paper aims at deriving such convergence rates both for batch and online versions of the algorithm and, in particular, discusses the influence of the choice of the subspace.

Introduction

The Majorize-Minimize (MM) subspace algorithm [START_REF] Chouzenoux | A majorize-minimize subspace strategy for subspace optimization applied to image restoration[END_REF] is based on the idea of constructing, at the current iteration, a quadratic majorizing approximation of the cost function of interest [START_REF] Hunter | A tutorial on MM algorithms[END_REF], and generating the next iterate by minimizing this surrogate function within a subspace spanned by few directions [START_REF] Elad | Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization[END_REF][START_REF] Conn | On iterated-subspace minimization methods for nonlinear optimization[END_REF][START_REF] Yuan | Subspace techniques for nonlinear optimization[END_REF]. Note that the MM subspace algorithm can be viewed as a special instance of nonlinear conjugate gradient (NLCG) [START_REF] Hager | A survey of nonlinear conjugate gradient methods[END_REF] with closed form formula for the stepsize and conjugacy parameter, or as a particular low memory BFGS (L-BFGS) algorithm [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF] with a specific combination of memory directions. The MM subspace algorithm enjoys nice convergence properties [START_REF] Chouzenoux | A majorize-minimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF], and shows good performance in practice, when compared with NLCG, L-BFGS, and also with graph-cut based discrete optimization methods, and proximal algorithms [START_REF] Chouzenoux | A majorize-minimize subspace strategy for subspace optimization applied to image restoration[END_REF][START_REF] Chouzenoux | A memory gradient algorithm for ℓ 2 -ℓ 0 regularization with applications to image restoration[END_REF][START_REF] Florescu | A majorizeminimize memory gradient method for complex-valued inverse problem[END_REF]. It has recently been extended to the online case when only a stochastic approximation of the criterion is employed at each iteration [START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF]. All these works illustrate the fact that the choice of the subspace has a major impact on the practical convergence speed of the algorithm (see, for instance [1, Section 5], [START_REF] Chouzenoux | A majorize-minimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF]Section 5.1]). In particular, it seems that the best performance is obtained for the memory gradient subspace [START_REF] Miele | Study on a memory gradient method for the minimization of functions[END_REF], spanned by the current gradient and the previous direction, leading to the so-called MM Memory Gradient (3MG) algorithm. However, only an analysis concerning the convergence rates of half-quadratic algorithms (corresponding to the case when the subspace spans the whole Euclidean space) is available [START_REF] Allain | On global and local convergence of half-quadratic algorithms[END_REF][START_REF] Nikolova | Analysis of half-quadratic minimization methods for signal and image recovery[END_REF]. Section 2 describes the general form of the MM subspace algorithm and its main known properties. In Section 3, a convergence rate analysis is performed for both batch and online versions of the algorithm for minimizing a wide class of strongly convex cost functions.

MM subspace algorithm 2.1 Optimization problem

In this paper, we will be interested in the minimization of the penalized quadratic cost function:

F : R N → R : h → 1 2 h ⊤ Rh -r ⊤ h + Ψ(h), (1) 
where r ∈ R N , R ∈ R N ×N is a symmetric positive definite matrix, and Ψ is a lower-bounded twice-continuously differentiable convex function. In this paper, it will be assumed that F is only accessible through a sequence (F n ) n 1 of approximations estimated in an online manner, such that, for every n ∈ N * ,

F n : R N → R : h → 1 2 h ⊤ R n h -r ⊤ n h + Ψ(h), (2) 
where the vector r n and the symmetric nonnegative definite matrix R n are approximations of r and R. For simplicity, we will suppose that Assumption 1.

(i) ( r n -r n+1 ) n 1 and ( R n -R n+1 ) n 1 are summable sequences, (ii) (r n ) n 1
, and (R n ) n 1 converge to r and R, respectively.

It is worth emphasizing that Assumption 1 encompasses the batch case when F n ≡ F . Moreover, it should be pointed out that all the results presented subsequently can be easily extended to a stochastic framework where r n and R n are consistent statistical estimates of r and R, and convergence arises almost surely.

Majorant function

At each iteration n ∈ N * of the MM subspace algorithm, the available estimate F n of F is replaced by a surrogate function Θ n (•, h n ) based on the current point h n (computed at the previous iteration). This surrogate function [START_REF] Jacobson | An expanded theoretical treatment of iterationdependent Majorize-Minimize algorithms[END_REF][START_REF] Zhang | Surrogate maximization/minimization algorithms and extensions[END_REF][START_REF] Hong | A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing[END_REF] must be such that

(∀h ∈ R N ) F n (h) -F n (h n ) Θ n (h, h n ) -Θ n (h n , h n ). (3) 
We assume that Θ n (•, h n ) is a quadratic function of the form

(∀h ∈ R N ) Θ n (h, h n ) = F n (h n ) + ∇F n (h n ) ⊤ (h -h n ) + 1 2 (h -h n ) ⊤ A n (h n )(h -h n ), (4) 
where

A n (h n ) = R n + B(h n ) and B(h n ) ∈ R N ×N
is some symmetric nonnegative definite matrix (see [START_REF] Figueiredo | Majorization-minimization algorithms for wavelet-based image restoration[END_REF][START_REF] Fessler | A paraboloidal surrogates algorithm for convergent penalized-likelihood emission image reconstruction[END_REF][START_REF] Repetti | Euclid in a taxicab: Sparse blind deconvolution with smoothed l1/l2 regularization[END_REF][START_REF] Ning | Chromatogram baseline estimation and denoising using sparsity (beads)[END_REF][START_REF] Song | Sparse generalized eigenvalue problem via smooth optimization[END_REF] for examples).

MM subspace algorithm

The MM subspace algorithm consists of defining the following sequence of vectors (h n ) n 1 :

(∀n ∈ N * ) h n+1 ∈ Argmin h∈ran D n Θ n (h, h n ), (5) 
where h 1 is set to an initial value, and ran D n is the range of matrix D n ∈ R N ×M n with M n 1, constructed in such a way that the steepest descent direction -∇F n (h n ) belongs to ran D n . Several choices have been proposed in the literature for matrices (D n ) n∈N * . On the one hand, if, for every n ∈ N * , rank(D n ) = N , Algorithm (5) becomes equivalent to a halfquadratic method with unit stepsize [START_REF] Allain | On global and local convergence of half-quadratic algorithms[END_REF][START_REF] Idier | Convex half-quadratic criteria and interacting auxiliary variables for image restoration[END_REF][START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF]. Half-quadratic algorithms are known to be effective optimization methods, but the resolution of the minimization subproblem involved in [START_REF] Yuan | Subspace techniques for nonlinear optimization[END_REF] requires the inversion of matrix A n (h n ) which may have a high computational cost. On the other hand, if for every n ∈ N * , D n reduces to [-∇F n (h n ), h n ], then (5) reads: for every n ∈ N * h n+1 = u n,2 h n -u n,1 ∇F n (h n ), where (u n,1 , u n,2 ) ∈ R 2 . In the special case when u n,2 = 1, we recover the form of a gradient-like algorithm with step-size u n,1 [START_REF] Labat | Convergence of conjugate gradient methods with a closed-form stepsize formula[END_REF][START_REF] Lange | A gradient algorithm locally equivalent to the EM algorithm[END_REF]. An intermediate size subspace matrix is obtained by choosing, for every n > 1,

D n = [-∇F n (h n ), h n , h n -h n-1 ].
This particular choice for the subspace yields the 3MG algorithm [START_REF] Chouzenoux | A majorize-minimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF][START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF].

Convergence result

The convergence of the MM subspace Algorithm (5) has been studied in [START_REF] Chouzenoux | A majorize-minimize subspace strategy for subspace optimization applied to image restoration[END_REF][START_REF] Chouzenoux | A majorize-minimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF][START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF] under various assumptions. We now provide a convergence result which is a deterministic version of the one in [START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF]Section IV]. This result requires the following additional assumption:

Assumption 2. (i) For every n ∈ N * , {∇F n (h n ), h n } ⊂ ran D n ,
(ii) There exists a positive definite matrix V such that, for every

n ∈ N * , ∇ 2 Ψ(h n ) B(h n )
V , where ∇ 2 Ψ denotes the Hessian of Ψ, 1

(iii) At least one of the following statements holds:

(a) r n ≡ r and R n ≡ R, (b) h → B(h)h -∇Ψ(h) is a bounded function.
Remark 1. Note that the convexity of Ψ and Assumption 2(ii) implies that [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. However, better choices for the curvature matrix are often possible [START_REF] Repetti | Euclid in a taxicab: Sparse blind deconvolution with smoothed l1/l2 regularization[END_REF][START_REF] Song | Sparse generalized eigenvalue problem via smooth optimization[END_REF]. In particular, Assumption 2(iii)(b), required in the online case, is satisfied for a wide class of functions and majorants [START_REF] Chouzenoux | A majorize-minimize subspace strategy for subspace optimization applied to image restoration[END_REF][START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF].

Ψ is Lipschitz dif- ferentiable on R N , with Lipschitz constant |||V |||. Conversely, if Ψ is β-Lipschitz differentiable with β ∈]0, +∞[, Assumption 2(ii) is satisfied with V = B(h n ) = βI N
Proposition 1. Assume that Assumptions 1 and 2 are fulfilled. Then, the following hold:

(i) ( ∇F n (h n ) ) n 1 is square-summable. (ii) (h n ) n 1 converges to the unique (global) minimizer h of F .
Proof. See Appendix A. 3 Convergence rate analysis

Convergence rate results

We will first give a technical lemma the proof of which is in the spirit of classical approximation techniques for the study of first-order optimization methods (see [28, Section 1]):

Lemma 1. Suppose that Assumptions 1 and 2 hold. Let ǫ ∈]0, +∞[ be such that ǫI N ≺ R.

Then, there exists n ǫ ∈ N * such that, for every

n n ǫ , ∇ 2 F n (h n ) R -ǫI N and F n (h n ) -inf F n 1 2 (1 + ǫ) ∇F n (h n ) ⊤ ∇ 2 F n (h n ) -1 ∇F n (h n ). (6) 
Proof. See Appendix B.

We now state our main result which basically allows us to quantify how fast the proposed iterative approach is able to decrease asymptotically the cost function:

Proposition 2. Suppose that Assumptions 1 and 2 hold. Let ǫ ∈]0, +∞[ be such that ǫI N ≺ R. Then, there exists n ǫ ∈ N * such that, for every

n n ǫ , ∇ 2 F n (h n ) R -ǫI N and F n (h n+1 ) -inf F n θ n F n (h n ) -inf F n ( 7 
)
where

θ n = 1 -(1 + ǫ) -1 θ n , θ n = ∇F n (h n ) ⊤ C n (h n )∇F n (h n ) ∇F n (h n ) ⊤ ∇ 2 F n (h n ) -1 ∇F n (h n ) , (8) 
C n (h n ) = D n (D ⊤ n A n (h n )D n ) † D ⊤ n ,

and (•)

† denotes the pseudo-inverse operation. Furthermore, some lower and upper bounds on θ n are given by

θ n = 1 -(1 + ǫ) -1 κ -1 n > 0, (9) 
θ n = 1 -(1 + ǫ) -1 κ -1 n 1 - σ n -σ n σ n + σ n 2 < 1, ( 10 
)
where κ n 1 (resp. κ n ) is the minimum (resp. maximum) eigenvalue of

A n (h n ) 1 2 ∇ 2 F n (h n ) -1 A n (h n ) 1 2 , and σ n (resp. σ n ) is the minimum (resp. maximum) eigenvalue of ∇ 2 F n (h n ).
Proof. See Appendix C.

Discussion on the choice of the subspace

Let us make some comments about the above results. First, as enlightened by our proof, at iteration n n ǫ , the upper value of θ n (i.e. the slowest convergence) is obtained in the case of a gradient-like algorithm. As expected, θ n has a larger value when the eigenvalues of the Hessian of F n are dispersed. Note that, according to (50),

σ n -σ n σ n + σ n η -η + 2ǫ η + η , (11) 
where η > 0 is the minimum eigenvalue of R and η is the maximum eigenvalue of R + V . Since

A n (h n ) 1 2 ∇ 2 F n (h n ) -1 A n (h n ) 1 2
n n ǫ is bounded, there exists κ max ∈ [1, +∞[ such that (∀n n ǫ ) κ n κ max . All these show that the decay rate is uniformly strictly lower than 1.

In contrast, when the search subspace is the full space, the lower value of θ n (i.e. the fastest convergence) is obtained. The expression θ n in [START_REF] Chouzenoux | A memory gradient algorithm for ℓ 2 -ℓ 0 regularization with applications to image restoration[END_REF] shows that the decay is then faster when the quadratic majorant constitutes a tight approximation of function F n at h n . Ideally, if A n (h n ) can be chosen equal to ∇ 2 F n (h n ) and D n is full rank, then θ n = O(ǫ). Such a behavior similar to Newton's method behavior leads to the best performance one can reasonably expect from the available data at iteration n.

Finally, when a mid-size subspace is chosen (as in the 3MG algorithm), an intermediate decay rate is obtained. Provided that D n captures the main eigendirections in A n (h n ), a behavior close to the one previously mentioned can be expected in practice with the potential advantage of a reduced computational complexity per iteration.

Batch case

The case when F ≡ F n is of main interest since it is addressed in most of the existing works. Then, Proposition 2 and (11) lead to

(∀n n ǫ ) F (h n ) -inf F µϑ n , (12) 
where µ = F (h n ǫ ) -inf F /ϑ n ǫ and the worst-case geometrical decay rate ϑ ∈]0, 1[ is given by

ϑ = 1 - 1 (1 + ǫ)κ max 1 - η -η + 2ǫ η + η 2 . ( 13 
)
Since F is an η-strongly convex function, the following inequality is satisfied [27, Definition 10.5], for every α ∈]0, 1[,

F αh n + (1 -α) h + 1 2 α(1 -α)η h n -h 2 αF (h n ) + (1 -α)F ( h), (14) 
or, equivalently,

1 2 α(1 -α)η h n -h 2 α F (h n ) -F ( h) + F ( h) -F αh n + (1 -α) h . (15) 
Thus,

1 2 (1 -α)η h n -h 2 F (h n ) -F ( h). (16) 
Letting α tend to 0 in the latter inequality implies that

1 2 η h n -h 2 F (h n ) -F ( h) µϑ n . ( 17 
)
This shows that the MM subspace algorithm converges linearly with rate √ ϑ.

Conclusion

In this paper, we have established expressions of the convergence rate of an online version of the MM subspace algorithm. These results help in better understanding the good numerical behaviour of this algorithm in signal/image processing applications and the role played by the subspace choice. Even in the batch case, the provided linear convergence result appears to be new. In future work, it could be interesting to investigate extensions of these properties to more general cost functions than [START_REF] Chouzenoux | A majorize-minimize subspace strategy for subspace optimization applied to image restoration[END_REF].

A Proof of Proposition 1

A.1 Boundedness of (h n ) n 1 (online case)

Assume that Assumption 2(iii)(b) holds. For every n ∈ N * , minimizing Θ n (•, h n ) is equivalent to minimizing the function

(∀h ∈ R N ) Θ n (h, h n ) = 1 2 h ⊤ A n (h n )h -c n (h n ) ⊤ h, (18) 
with

c n (h n ) = A n (h n )h n -∇F n (h n ) = r n + B(h n )h n -∇Ψ(h n ) ( 19 
)
According to Assumption 2(iii)(b), these exists η ∈]0, +∞[ such that

(∀n 1) c n (h n ) η, (20) 
In addition, because of Assumption 1(ii), there exists ǫ ∈]0, +∞[ and n 0 ∈ N * such that

(∀n n 0 ) A n (h n ) R -ǫI N ≻ O N , (21) 
Using now the Cauchy-Schwarz inequality, we have

(∀n n )(∀h ∈ R N ) 1 2 h ⊤ (R -ǫI N )h -h η Θ n (h, h n ). (22) 
Since R -ǫI N is a positive definite matrix, the lower bound corresponds to a coercive function with respect to h. There thus exists ζ ∈]0, +∞[ such that, for every

h ∈ R N , h > ζ ⇒ (∀n n 0 ) Θ n (h, h n ) > 0. ( 23 
)
On the other hand, since 0 ∈ ran D n , we have

Θ n (h n+1 , h n ) Θ n (0, h n ) = 0. ( 24 
)
The last two inequalities allow us to conclude that

(∀n n 0 ) h n+1 ζ. (25) 
A.2 Convergence of (F n (h n )) n 1

According to Assumption 2(i), the proposed algorithm is actually equivalent to

(∀n ∈ N * ) h n+1 = h n + D n u n (26) 
u n = arg min u∈R M n Θ n (h n + D n u, h n ). ( 27 
)
By using (4) and cancelling the derivative of the function

u → Θ n (h n + D n u, h n ), D ⊤ n ∇F n (h n ) + D ⊤ n A n (h n )D n u n = 0. (28) 
Hence,

Θ(h n+1 , h n ) = F n (h n ) - 1 2 u ⊤ n D ⊤ n A n (h n )D n u n = F n (h n ) - 1 2 (h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ). ( 29 
)
In view of ( 3) and ( 4), this yields

(∀n ∈ N * ) F n (h n+1 ) + 1 2 (h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ) F n (h n ). (30) 
In addition, the following recursive relation holds

(∀h ∈ R N ) F n+1 (h) = F n (h) -(r n+1 -r n ) ⊤ h + 1 2 h ⊤ (R n+1 -R n )h. ( 31 
)
It can thus be deduced that

F n+1 (h n+1 ) + 1 2 (h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ) F n (h n ) + χ n ( 32 
)
where

χ n = -(r n -r n+1 ) ⊤ h n+1 + 1 2 h ⊤ n+1 (R n -R n+1 )h n+1 . ( 33 
)
We have

|χ n | r n -r n+1 h n+1 + 1 2 |||R n -R n+1 ||| h n+1 2 . ( 34 
)
If Assumption 2(iii)(b) holds, then, according to ( 25), (h n ) n 1 is bounded, so that Assumption 1(i) guarantees that

+∞ n=1 |χ n | < +∞. ( 35 
)
Otherwise, if Assumption 2(iii)(a) holds, then χ n ≡ 0 and ( 35) is obviously fulfilled. The lowerboundedness property of Ψ entails that, for every n ∈ N * , F n is lower bounded by inf Ψ > -∞. Furthermore, (32) leads to

F n+1 (h n+1 ) -inf Ψ + 1 2 (h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ) F n (h n ) -inf Ψ + |χ n |. ( 36 
)
Since, for every

n ∈ N * , F n (h n ) -inf Ψ and (h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ) are nonnegative, (h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ) n 1 is a summable sequence, and (F n (h n )) n 1 is convergent. A.3 Convergence of (∇F n (h n )) n 1
According to (4), we have, for every φ ∈ R and n ∈ N * ,

Θ n h n -φ∇F n (h n ), h n = F n (h n ) -φ ∇F n (h n ) 2 + φ 2 2 ∇F n (h n ) ⊤ A n (h n )∇F n (h n ). ( 37 
) Let Φ n ∈ Argmin φ∈R Θ n h n -φ∇F n (h n ), h n . ( 38 
)
The following optimality condition holds:

∇F n (h n ) ⊤ A n (h n )∇F n (h n ) Φ n = ∇F n (h n ) 2 . ( 39 
)
As a consequence of Assumption 2(i), (∀φ ∈ R) h n -φ∇F n (h n ) ∈ ran D n . It then follows from ( 5) and (39) that

Θ n h n+1 , h n Θ n h n -Φ n ∇F n (h n ), h n = F n (h n ) - Φ n 2 ∇F n (h n ) 2 , (40) 
which, by using ( 29), leads to

Φ n ∇F n (h n ) 2 (h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ). ( 41 
)
Let ǫ > 0. Assumption 2(ii) yields, for every n ∈ N * ,

A n (h n ) (|||R n ||| + |||V |||)I N . (42) 
Therefore, according to Assumption 1(ii),

(∃n 0 ∈ N * )(∀n n 0 ) O N ≺ A n (h n ) α -1 ǫ I N ( 43 
)
where

α ǫ = (|||R||| + |||V ||| + ǫ) -1 > 0. ( 44 
)
By using now (39), it can be deduced from (43) that, if n n 0 and ∇F n (h n ) = 0, then Φ n α ǫ . Then, it follows from (41) that

α ǫ +∞ n=n 0 ∇F n (h n ) 2 +∞ n=n 0 h n+1 -h n ⊤ A n (h n ) h n+1 -h n . (45) 
By invoking the summability property of (

h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ) n 1 , we can con- clude that ( ∇F n (h n ) 2 ) n 1 is itself summable. A.4 Convergence of (h n ) n 1 We have shown that (h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ) n 1 converges to 0.
In addition, we have seen that ( 21) holds for a given ǫ ∈]0, +∞[ and n 0 ∈ N * . This implies that, for every n n 0 ,

|||R -ǫI N ||| h n+1 -h n 2 h n+1 -h n ⊤ A n (h n ) h n+1 -h n (46) 
where |||R -ǫI N ||| > 0. Consequently, (h n+1h n ) n 1 converges to 0. In addition, (h n ) n 1 belongs to a compact set. Thus, invoking Ostrowski's theorem [START_REF] Ostrowski | Solution of Equations in Euclidean and Banach Spaces[END_REF]Theorem 26.1] implies that the set of cluster points of (h n ) n 1 is a nonempty compact connected set. By using (1)-( 2), we have (∀n

∈ N * ) ∇F n (h n ) -∇F (h n ) = (R n -R)h n -r n + r. (47) Since 
(h n ) n 1 is bounded, it follows from that ∇F n (h n ) -∇F (h n ) n 1 converges to 0. Since ∇F n (h n ) n 1 converges to 0, this implies that ∇F (h n ) n 1 also converges to 0. Let h be a cluster point of h n n 1 . There exists a subsequence h k n n 1 such that h k n → h. As F is continuously differentiable, we have ∇F ( h) = lim n→+∞ ∇F h k n = 0. (48) 
This means that h is a critical point of F . Since F is a strongly convex function, it possesses a unique critical point h, which is the global minimizer of F [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Prop.11.7]. Since the unique cluster point of (h n ) n 1 is h, this shows that h n → h.

B Proof of Lemma 1

Because R is positive definite, according to Assumption 1(ii), there exists n 0 ∈ N * such that, for every n n 0 ,

O N ≺ R -ǫI N R n R + ǫI N . (49) 
Let n n 0 . Then, F n is a strongly convex continuous function. From standard results, this function possesses a unique global minimizer h n . According to Assumption 2(ii), and (49), ∇ 2 F n is such that

(∀h ∈ R N ) O N ≺ R -ǫI N R n + ∇ (2) Ψ(h) = ∇ 2 F n (h) R + ǫI N + V . ( 50 
)
By using now the second-order Taylor formula with integral remainder, we get

F n ( h n ) = F n (h n ) + ∇F n (h n ) ⊤ h n -h n + 1 2 h n -h n ⊤ H (2) n (h n ) h n -h n , (51) 
where

∇F n (h n ) = ∇F n ( h n ) + H (1) n (h n )(h n -h n ) = H (1) n (h n )(h n -h n ) (52) 
and, for every h ∈ R N ,

H (1) n (h) = 1 0 ∇ 2 F n h n + t(h -h n ) dt = R n + 1 0 ∇ 2 Ψ h n + t(h -h n ) dt (53) 
H (2) n (h) = 2 1 0 (1 -t)∇ 2 F n h n + t(h -h n ) dt = R n + 2 1 0 (1 -t)∇ 2 Ψ h n + t(h -h n ) dt. (54) 
Because of the lower bound in (50),

(∀h ∈ R N ) O N ≺ R -ǫI N H (1) n (h) (55) 
and H

n (h) is thus invertible. Therefore, combining (51) and (52) yields

F n ( h n ) = F n (h n ) -∇F n (h n ) ⊤ H (1) n (h n ) -1 ∇F n (h n ) + 1 2 ∇F n (h n ) ⊤ H (1) n (h n ) -1 H (2) n (h n ) H (1) n (h n ) -1 ∇F n (h n ). ( 56 
)
According to Assumption 2(ii), for every t ∈ [0, 1],

|||∇ 2 Ψ h n + t(h n -h n ) ||| |||V |||, (57) 
where ||| • ||| denotes the matrix spectral norm. As Proposition 1(ii) guarantees that (h n ) n 1 converges to the unique minimizer h of F , it follows from Proposition 1(i), (52), and (55) that ( h n ) n 1 also converges to h. By using the continuity of

∇ 2 Ψ, ∇ 2 Ψ h n + t(h n -h n ) n 1
converges to ∇ 2 Ψ( h) and, by invoking the dominated convergence theorem, it can be deduced that

1 0 ∇ 2 Ψ h n + t(h n -h n ) dt → ∇ 2 Ψ( h). (58) 
Since (R n ) n 1 converges to R, this allows us to conclude that H

n (h n ) n 1 converges to ∇ 2 F ( h). Proceeding similarly, it can be proved that H [START_REF] Hunter | A tutorial on MM algorithms[END_REF] n (h n ) n 1 also converges to ∇ 2 F ( h). This entails that H (1) n (h n )

-1 - 1 2 H (1) n (h n ) -1 H (2) n (h n ) H (1) n (h n ) -1 → 1 2 ∇ 2 F ( h) -1 . (59) Besides, since ∇ 2 F n (h n ) n 1 = R n +∇ 2 Ψ(h n ) n 1 converges to ∇ 2 F ( h)
, there exists n ǫ n 0 such that, for every n n ǫ ,

H (1) n (h n ) -1 - 1 2 H (1) n (h n ) -1 H (2) n (h n ) H (1) n (h n ) -1 - 1 2 ∇ 2 F n (h n ) -1 (60) 1 2 ǫ(R + ǫI N + V ) -1 1 2 ǫ ∇ 2 F n (h n ) -1 , (61) 
where the last inequality follows from (50). This implies that

H (1) n (h n ) -1 - 1 2 H (1) n (h n ) -1 H (2) n (h n ) H (1) n (h n ) -1 1 2 (1 + ǫ) ∇ 2 F n (h n ) -1 . (62) 
By coming back to (56), we deduce that, for every n n ǫ , (6) holds.

C Proof of Proposition 2

Let n ∈ N * . If ∇F n (h n ) is zero, then h n is a global minimizer of F n and, according to (3)-( 5),

F (h n+1 ) Θ n (h n+1 , h n )-Θ n (h n , h n )+F (h n ) F (h n )
so that h n+1 is also a global minimizer of F n , and ( 7) is obviously satisfied. So, without loss of generality, it will be assumed in the rest of the proof that ∇F n (h n ) is nonzero. Because of Assumption 2(ii) and (49), there exists n 0 ∈ N * such that, for every n n 0 ,

O N ≺ R -ǫI N R n A n (h n ). (63) 
Using (30) and the definition of C n (h n ),

F n (h n+1 ) F n (h n ) - 1 2 (h n+1 -h n ) ⊤ A n (h n )(h n+1 -h n ) = F n (h n ) - 1 2 (∇F n (h n )) ⊤ C n (h n )∇F n (h n ). (64) 
Combining (63), (64) and (40) yields

∇F n (h n ) 4 ∇F n (h n ) ⊤ A n (h n )∇F n (h n ) ∇F n (h n ) ⊤ C n (h n )∇F n (h n ). (65) 
In turn, we have

Θ n h n , h n Θ n h n+1 , h n , (66) 
where h n is a global minimizer of Θ n (•, h n . If n n 0 , then (63) shows that A n (h n ) is invertible, and

h n = h n -A n (h n ) -1 ∇F n (h n ) (67)
which, by using (64) and (66), yields

∇F n (h n ) ⊤ C n (h n )∇F n (h n ) ∇F n (h n ) ⊤ A n (h n ) -1 ∇F n (h n ). ( 68 
)
It can be noticed that the lower bound in (65) is obtained when D n = ∇F n (h n ), while the upper bound in (68) is attained when M n = N and D n is full rank.

Let us now apply Lemma 1. According to this lemma, there exists n ǫ n 0 such that, for every n n ǫ , (6) holds with ∇ 2 F n (h n ) ≻ O N . Let us assume that n n ǫ . By combining ( 6) and (64), we obtain

F n (h n ) -F n (h n+1 ) θ n 1 + ǫ F n (h n ) -inf F n ⇔ F n (h n+1 ) -inf F n 1 - θ n 1 + ǫ F n (h n ) -inf F n , (69) 
which itself is equivalent to [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF]. The following lower bound is then be deduced from (65):

θ n ∇F n (h n ) 4 β n ∇F n (h n ) ⊤ A n (h n )∇F n (h n ) , (70) 
by setting

β n = ∇F n (h n ) ⊤ ∇ 2 F n (h n ) -1 ∇F n (h n )
. Hence, we have

θ n ∇F n (h n ) 4 β n β ′ n ∇F n (h n ) ⊤ ∇ 2 F n (h n )∇F n (h n ) ∇F n (h n ) ⊤ A n (h n )∇F n (h n ) , ∇F n (h n ) 4 β n β ′ n sup g∈R N g =0 g ⊤ A n (h n )g g ⊤ ∇ 2 F n (h n )g -1 , (71) 
where 

β ′ n = ∇F n (h n ) ⊤ ∇ 2 F n (h n )∇F n (h n ).
θ n ∇F n (h n ) ⊤ A n (h n ) -1 ∇F n (h n ) ∇F n (h n ) ⊤ ∇ 2 F n (h n ) -1 ∇F n (h n ) sup g∈R N g =0 g ⊤ A n (h n ) -1 g g ⊤ ∇ 2 F n (h n ) -1 g . ( 74 
)
The sup term in (74) is equal to κ -1 n . Altogether (69), (73), and (74) yield ( 7)- [START_REF] Florescu | A majorizeminimize memory gradient method for complex-valued inverse problem[END_REF], by setting θ n = 1 -(1 + ǫ) -1 θ n . In view of Assumption 2(ii) and the equality in (50), the Hessian of F n is such that (∀h ∈ R N ) ∇ 2 F n (h) A n (h), (75) and therefore κ n 1.

1 and≺

 1 denote the weak and strict Loewner orders, respectively,

  The sup term in (71) corresponds to the generalized Rayleigh quotient of A n (h n ) and ∇ 2 F n (h n ), which is equal to κ n . By invoking now Kantorovich inequality [28, Section 1.3.2], we getθ n 4σ n σ n κ n (σ n + σ n ) 2 ,since σ n σ n > 0. An upper bound on θ n is derived from (68) and (8):

				(72)
	which leads to			
	1 -	θ n 1 + ǫ	θ n < 1	(73)
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