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A 3D MODEL FOR TWO COUPLED TURBULENT FLUIDS: NUMERICAL ANALYSIS OF A FINITE ELEMENT APPROXIMATION §

This paper deals with the numerical analysis for a finite element approximation of a steady coupled two-fluid RANS turbulence equations, used to model, for example, air-ocean flow interaction. Each fluid is modeled by the coupled steady Stokes equations with the equation for the turbulent kinetic energy TKE. The eddy viscosities for velocity and TKE depend on the energy. The production (source) term for the TKEs is only in L 1 , and the boundary condition for the TKEs on the interface between the two flows depends quadratically on the difference of velocities. To overcome the lack of regularity, we approximate the initial system by a regularized one, in which the eddy viscosities and source terms for the TKEs are regularized by convolution. We perform its finite element discretization, combined with a decoupled iterative linearization procedure. We prove that the discrete scheme converges to the continuous one for large enough eddy viscosities in natural norms. Finally, we present some numerical tests where we study the accuracy of the procedure, and simulate a realistic flow in which an imposed wind in the upper atmosphere generates an upwelling in the oceanic flow.

1. Introduction. We consider the numerical analysis for finite element approximation of RANS (Reynolds-Averaged Navier-Stokes) turbulence models, and more precisely of a coupled two-fluid RANS models. This system can model the coupled atmosphere-ocean system, whose accurate numerical simulation is crucial to analyze the main issues related to climate change. From the practical point of view, RANS models are rather diffusive and provide overall predictions of many flows of engineering interest (Cf. Davidson [21]). However, from the mathematical point of view RANS equations are more singular than the Navier-Stokes equations. The main mathematical difficulties comes from the source term (the production term) for the TKE equations which has a L 1 (Ω) regularity only, implying that the TKE equations do not make sense in H -1 (Ω). Their solution must be understood in the renormalized -or entropy-sense (Cf. [START_REF] Bénilan | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF][START_REF] Betta | Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure[END_REF][START_REF] Betta | Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L 1 (Ω)[END_REF][START_REF] Boccardo | Nonlinear elliptic equations with right-hand side measures[END_REF][START_REF] Boccardo | Anisotropic equations in L 1[END_REF][START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF]).

The numerical analysis of the finite element approximation of elliptic equations with r. h. s. in L 1 has only been performed for linear diffusion equations (Cf.

Casado et al. [START_REF] Casado-Díaz | Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1[END_REF]). The main reason is that the extension of the basic estimates of renormalized solutions (the Boccardo-Gallouet estimates) only hold if the numerical scheme satisfies a discrete maximum principle. For convection-diffusion equations there exist a few finite element schemes that satisfy this principle, based upon multidimensional unwinding techniques (Cf. [START_REF] Burman | Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence[END_REF][START_REF] Codina | A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation[END_REF][START_REF] Tabata | Uniform convergence of the upwind finite element approximation for semilinear parabolic problems[END_REF]). However, the extension of the numerical analysis to those equations with L 1 r. h. s. has not been performed yet. For finite volume discretizations there exist more schemes satisfying the maximum principle, and their analysis has s performed in some cases.

Due to these difficulties, the mathematical and numerical analysis of RANS models have been carried on simplified equations. In [START_REF] Bernardi | A model for two coupled turbulent fluids. I. Analysis of the system[END_REF] Bernardi et al. study a model for two-coupled turbulent fluids and its numerical approximation, where the TKE equations only contains eddy diffusion (with bounded eddy viscosities) and a production term. This model also contains a non-linear friction term to model the interactions between the two fluids across the interface:

                   -∇ • (α i (k i )∇u i ) + ∇p i = f i in Ω i , ∇ • u i = 0 in Ω i , -∇ • (γ i (k i )∇k i ) = α i (k i )|∇u i | 2 in Ω i , u i = 0 on Γ i , k i = 0 on Γ i , α i (k i )∂ ni u i -p i n i + κ(u i -u j )|u i -u j | = 0 on Γ, 1 ≤ i = j ≤ 2, k i = λ|u 1 -u 2 | 2 on Γ.
(1.1) Both domains Ω i , i = 1, 2 are bounded in R d , d = 2, 3, are either convex or of class C 1,1 , with boundaries ∂Ω i = Γ i ∪ Γ and Γ = Ω 1 ∩ Ω 1 being the interface between the two fluids. Here, Γ is assumed to be flat. This is the "rigid lid hypothesis" introduced by K. Bryan in [START_REF] Bryan | A numerical method for the study of the circulation of the world ocean[END_REF], an hypothesis which is standard in oceanography for flows at large space and time scales. Each of the two turbulent fluids is modeled by a simplified one-equation turbulence model whose unknowns are the velocity u i , the pressure p i and the turbulent kinetic energy k i . The generation of eddy viscosity in flow i is modeled by the term

-∇ • (α i (k i )∇u i ).
The (positive) quantity α i (k i ) is the eddy viscosity. This is a simplification of the usual modeling of Reynolds Stress Tensor by

R i -α i (k i ) ∇u i + ∇ t u i
to simplify the mathematical analysis. The TKE equations only contains the eddy dissipation and production terms:

-∇ • (γ i (k i )∇k i ), and α i (k i )|∇u i | 2 ,
respectively, where γ i (k i ) is the eddy diffusion for the TKE k i . The interface terms between the two fluids (5th equation in (1.1)) and the generation of TKE (6th equation in (1.1)), are wall laws that model the dissipation of turbulence in the boundary layers on both sides of the interface. The positive parameters κ i and λ i are the friction and energy production coefficients respectively.

The analysis of model (1.1) reported in [START_REF] Bernardi | A model for two coupled turbulent fluids. I. Analysis of the system[END_REF] is based upon the re-formulation of the equations for the TKEs by transposition combined with a compactness argument. The whole system is proved to admit a solution (u i , p i , k i ) having a H 1 (Ω i ) × L 2 (Ω i ) × H s (Ω i ) regularity for all s < 1/2. Several sub-sequent works have dealt with the numerical approximation of this model. The same authors perform in [START_REF] Bernardi | A model for two coupled turbulent fluids. II. Numerical analysis of a spectral discretization[END_REF] an error analysis for spectral discretizations of (1.1) for smooth solutions. In [START_REF] Bernardi | A model for two coupled turbulent fluids. III. Numerical approximation by finite elements[END_REF] a finite element discretization by piecewise affine finite elements of this problem is studied by the compactness method. The convergence of a sub-sequence of the discrete solutions to the continuous solution is proved. In [START_REF] Chacón Rebollo | An iterative procedure to solve a coupled two-fluids turbulence model[END_REF] a iterative procedure to solve the same continuous model for large eddy viscosities is introduced. This procedure is proved to converge for large eddy viscosities, assuming that the discrete velocities and TKEs are uniformly bounded in W 1,3+ε norm, for some ε > 0.

A different approach to study model (1.1) is taken in [START_REF] Rebollo | Mathematical and numerical foundations of turbulence models and applications[END_REF], Chapter 7, where the r.h.s. for the TKE equations are regularized by convolution, for a problem similar to (1.1) with a single flow. It is proved that the regularized problems admit a solution, and that a sub-sequence of these converges to a weak solution of the original problem, in H 1 (Ω) × L 2 (Ω) × W 1,q (Ω) for 1 ≤ q < 3/2, where Ω is the flow domain. The TKE equations are satisfied in the re-normalized sense. The Boccardo-Gallouet estimates play an essential role in the proof, being the origin of the estimates in W 1,q (Ω) of the TKE.

In the present paper, we follow the approach of [START_REF] Rebollo | Mathematical and numerical foundations of turbulence models and applications[END_REF], and study the numerical approximation of a regularized approximation of (1.1) by convolution. More precisely, we consider the numerical solution of a full finite element discretization of the regularized problem by the iterative procedure introduced in [START_REF] Chacón Rebollo | An iterative procedure to solve a coupled two-fluids turbulence model[END_REF]. We prove that the procedure converges under similar conditions, i.e., for large enough eddy viscosities, without any additional boundedness assumptions on the velocities and TKEs. The hardest technical point is the obtention of estimates of the interface quadratic terms. We treat them by specific discrete lifting operators that are compatible with the discretizations of velocity and TKE. We also present some numerical tests. First hand, we study the accuracy of the scheme. Second, we simulate a realistic flow in which an imposed wind in the upper atmosphere generates an upwelling in the oceanic flow.

The paper is organized as follows. In Section 2 we introduce the regularized approximation of model (1.1). Section 3 describes the adaptation of the iterative procedure introduced in [START_REF] Chacón Rebollo | An iterative procedure to solve a coupled two-fluids turbulence model[END_REF] to the scheme of the regularized problem. The full finite element approximation of the regularized problem, and its solution by the iterative procedure are introduced in Section 4. Section 5 is devoted to the convergence analysis of this discretization. Finally, in Section 6 we report the numerical tests.

Regularized Model.

To describe the regularized approximation of model (1.1) that we shall study, let us denote by ω ε (x) = 1 ε d ω x ε a smoothing (mollifier) sequence, defined as follows, see for instance [START_REF] Brezis | Analyse Fonctionnelle : Thorie et Applications. Collection "Mathématiques Appliquées pour la Maîtrise[END_REF]:

(2.1) ω ∈ C ∞ c (R d ), R d ω = 1, supp(ω) ⊂ B(0, 1), ω ≥ 0; for ε > 0.
For a function ψ ∈ L p (Ω), p > 1, consider the convolution

(ψ * ω ε )(x) = R d ψ(x -y) ω ε (y) dy,
where ψ is the extension by zero of ψ outside Ω. Then ψ * ω ε ∈ C ∞ (R d ) and the following properties hold (Cf. [START_REF] Brezis | Analyse Fonctionnelle : Thorie et Applications. Collection "Mathématiques Appliquées pour la Maîtrise[END_REF]):

(2.2) lim ε→0 ψ * ω ε = ψ in L p (Ω), ψ * ω ε W k,q (R d ) ≤ C ε ψ L p (Ω) ,
for any integer k ≥ 1, and real number q ∈ [p, +∞], for some constant C ε such that C ε → +∞ as ε → 0 + . We are now in a position to state the regularized problem that we study in this paper:

                   -∇ • (α i (k ε i )∇u i ) + ∇p i = f i in Ω i , ∇ • u i = 0 in Ω i , -∇ • (γ i (k ε i )∇k i ) = α i (k ε i )∇u i : ∇u ε i in Ω i , u i = 0 on Γ i , k ε i = 0 on Γ i , σ i = 0 on Γ, k i = λ|u ε 1 -u ε 2 | 2 on Γ. (2.3)
Where

u ε i = u i * ω ε (componentwise), k ε i = k i * ω ε and σ i = α i (k ε i )∂ ni u i -p i n i + κ(u i -u j )|u i -u j |, 1 ≤ i = j ≤ 2.
The analysis performed in [START_REF] Rebollo | Mathematical and numerical foundations of turbulence models and applications[END_REF], Sect. 7.4 readily extends to prove that problem (2.3) admits a solution that converges to a solution of (1.1) in H 1 (Ω i )×L 2 (Ω i )×W 1,q (Ω i ) as ε tends to 0, whenever the TKE satisfy a homogeneous Dirichlet boundary condition on Γ (7th equation of (2.3)). However here we prefer to include a more realistic boundary condition, modeling the generation of TKEs by friction at the interfaces. Note that the more singular terms in model (1.1) are those that model the generation of TKEs, either by eddy diffusion (r.h.s. of 3rd. equation), or by friction at the interface (7th. equation). These terms are regularized in model (2.3) in addition to the eddy viscosities.

Let us recall some standard notation that we use throughout the paper. We denote by W s,p (Ω i ) the real Sobolev space, 0 ≤ s < ∞, 0 ≤ p ≤ ∞, equipped with the norm • W s,p (Ωi) . The space W s,p 0 (Ω i ) is the completion of the space of the smooth functions compactly supported in Ω i with respect to the • W s,p (Ωi) norm. For s = 1 and p = 2, we denote the Hilbert spaces

W 1,2 (Ω i ) (resp. W 1,2 0 (Ω i )) by H 1 (Ω i ) (resp. H 1 0 (Ω i ));
The related norm is denoted by • 1,Ωi . The case of s = 0 corresponds to the space L 2 (Ω i ) equipped with its standard norm • 0,Ωi . We finally denote by | • | 1,Ω the semi norm in H 1 (Ω i ) given by |v| 1,Ω = ∇v 0,Ω .

3. Continuous iterative procedure. In this Section we adapt the iterative procedure introduced in [START_REF] Chacón Rebollo | An iterative procedure to solve a coupled two-fluids turbulence model[END_REF] to solve problem (2.3).

To formulate the coupled problem (2.3) in variational form, we introduce the velocity and TKE spaces defined as follows:

X i = {v i ∈ H 1 (Ω i ), v i = 0 on Γ i }. (3.1) K i = { i ∈ H 1 (Ω i ), i = 0 on Γ i }. (3.2)
The trace operator is continuous from X i (resp. K i ) onto the space H 1 2 00 (Γ) (resp. H 1 2 00 (Γ)), (this is the sub-space of H 1 2 (Γ) formed by functions whose prolongation by zero to either ∂Ω 1 -or ∂Ω 2 -belongs to H 1 2 (∂Ω 1 ) -or H 1 2 (∂Ω 2 )-, see Lions et al [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF] for its definition). We next state a crucial hypothesis concerning the eddy viscosities and diffusions: Hypothesis 3.1. The functions α i and γ i belong to W 1,∞ (R + ). Moreover there exist positive constants δ and ν such that

∀ ∈ R + , ν ≤ α (m) i ( ) ≤ δ, ν ≤ γ (m) i ( ) ≤ δ, m = 0 or 1.
This assumption holds in practical applications, as some kind of numerical smoothing or truncation is applied to avoid too small or too large eddy viscosities that may lead to instabilities. From now on, the following spaces are introduced to simplify notations:

F i = X i × L 2 (Ω i ) × H 1 0 (Ω i ), G i = X i × L 2 (Ω i ) × K i .
We now in position to write the weak formulation of problem (2.3):

Given

f i ∈ L 2 (Ω i ), find the triplet (u i , p i , k i ) ∈ G i such that for all test function (v i , q i , ϕ i ) ∈ F i it holds a i (k i ; u i , v i ) + b i (v i , p i ) + κ Γ |u i -u j |(u i -u j ) • v i dτ = Ωi f i • v i dx, (3.3) b i (u i , q i ) = 0, (3.4) 
k i = 0 on Γ i , k i = λ|u ε i -u ε j | 2 on Γ, and (3.5) 
N i (k i ; k i , ϕ i ) = Ωi α i (k ε i ) ∇u i : ∇u ε i ϕ i dx; (3.6)
where the forms a i (•; •, •), b i (•, •) and N i (•; •, •) are defined by

a i ( i ; u i , v i ) = Ωi α( ε i )∇u i : ∇v i dx, b i (v i , q i ) = - Ωi q i ∇ • v i dx,
and

N i ( i ; k i , ϕ i ) = Ωi γ i ( ε i )∇k i • ∇ϕ i dx.
Since u i ∈ H 1 (Ω i ) and according to Proposition IV.20 in [START_REF] Brezis | Analyse Fonctionnelle : Thorie et Applications. Collection "Mathématiques Appliquées pour la Maîtrise[END_REF],

∇u ε i belongs to C ∞ (R d ), then the term Ωi α i (k ε i ) ∇u i : ∇u ε i ϕ i in (3.6
) is well defined for all

ϕ i ∈ H 1 0 (Ω i ). Also, due to the continuous Sobolev embedding from H 1 2 (∂Ω i ) into L 3 (∂Ω i ) d , the term Γ |u i -u j | (u i -u j ) • v i dτ in (3.3) is well defined for all v i ∈ H 1 (Ω i ).
The source functions f i can be taken in H -1 (Ω i ), and then the scalar product in L 2 must be replaced by the duality product between < •, • > H 1 ,H -1 . Nevertheless, we prefer to work with f i ∈ L 2 (Ω i ) d without lost of generality.

4. Discrete iterative procedure. In order to approximate problem (2.3) using finite element method, we assume that both Ω 1 and Ω 2 are polygonal (when d = 2) or polyhedric (when d = 3). As is standard for Stokes problems, we consider pairs of finite element spaces (X i,h , M i,h ) ⊂ X i × M i such that the families (X i,h , M i,h ) h>0 satisfy the discrete Babuska-Brezzi inf-sup condition on Ω i , see for instance [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]: There exists a constant β i > 0, such that:

(4.1) ∀q i,h ∈ M i,h , sup v i,h ∈X i,h b i (v i,h , q i,h ) |v i,h | ≥ β i q i,h 0,Ωi .
On the other hand, we choose the finite element discrete spaces of energies K i,h ⊂ H 1 (Ω i ) and we assume the existence of the following interpolation operators

Q i,h : X i ∩ C 0 (Ω i ) d → X i,h , (4.2) 
P i,h : M i ∩ C 0 (Ω i ) → M i,h , and (4.3) S i,h : H 1 (Ω i ) ∩ C 0 (Ω i ) → K i,h , (4.4)
that satisfy the following approximation and stability properties:

If v ∈ H 1 (Ω i ) d ∩ X i , 1 = 0, • • • , s + 1, p ∈ H 2 (Ω i ) ∩ M i , 2 = 0, • • • , t + 1, k ∈ W 3 (Ω i ) ∩ K i , 3 = 0, • • • , r + 1, v -Q i,h v H 1 (Ωi) d ≤ ch 1 -1 |v| H 1 (Ωi) d , (4.5) 
p -P i,h v H 1 (Ωi) ≤ ch 2 -1 |v| H 1 (Ωi) , (4.6) k -S i,h k H 1 (Ωi) ≤ ch 3 -1 |k| W 2 (Ωi) , (4.7) 
where s, t and r respectively denote the degree of the finite element functions in spaces X i,h , M i,h and K i,h (see Ern et al. [START_REF] Ern | Theory and practice of finite elements[END_REF], Definition 1.104, for more details). Furthermore, we consider a pair of boundary finite element spaces W i,h ⊂ H 1/2 00 (Γ) that we shall use to interpolate the boundary condition for k i on Γ. We assume that there exists an interpolation operator

(4.8) L i,h : H 1 2 00 (Γ) ∩ C 0 (Γ) -→ W i,h
that satisfies the stability property (4.9)

L i,h w i H 1/2 00 (Γ) ≤ C w i H 1/2 00 (Γ) , for any w i ∈ H 1/2 00 (Γ) ∩ C 0 (Γ),
for some constant C > 0. We also assume that the operators L i,h and S i,h satisfy the following compatibility condition:

Hypothesis 4.1. For all w i ∈ H 1 (Ω i ), the trace on Γ of the interpolate S i,h (w i ) coincides with the interpolate of the trace of w i :

(4.10) L i,h w i | Γ = (S i,h w i ) Γ .
We finally assume that there exists a lifting operator R i,h :

W i,h → K i,h such that, (4.11) R i,h (ϕ i,h ) | ∂Ω i = ϕ i,h , for any ϕ i,h ∈ W i,h .
Furthermore, this operator verifies the stability property:

(4.12) R i,h (ϕ i,h ) W 1,p (Ωi) ≤ C p ϕ i,h W 1-1/p,p (∂Ωi) , ∀ p ∈]1, +∞[, for some constant C p > 0.
Note that the standard finite element spaces satisfy these properties. Indeed, consider a family of triangular grids (T i,h ) h of Ω i that we assume to be regular, in the usual sense of the finite element method (see Ciarlet [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF], Girault-Raviart [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations,Theory and Algorithms[END_REF] or Ern-Guermond [START_REF] Ern | Theory and practice of finite elements[END_REF]). We make an additional assumption concerning the compatibility of the grids at the interface:

(4.13) T 1,h Γ = T 2,h Γ .
For each nonnegative integer m and any element K in T i,h , let P m (K) be the space of restriction to K of polynomials with d variables and total degree ≤ m. Thus we choose the following spaces (for s, r ∈ N )

X i,h = v i,h ∈ C 0 Ω i d , ∀K ∈ T i,h , v i,h K ∈ P s+1 (K) d ∩ X i (4.14) M i,h = q i,h ∈ C 0 Ω i , ∀K ∈ T i,h , q i,h K ∈ P s (K) (4.15) K i,h = i,h ∈ C 0 Ω i , ∀K ∈ T i,h , i,h K ∈ P r+1 (K), i,h Γi = 0 , and (4.16) W i,h = ϕ i,h ∈ C 0 (Γ) ; ∀e ∈ E i,h , ϕ i,h e ∈ P r+1 (e), ϕ i,h ∂Γ = 0 , (4.17)
where (E i,h ) i,h denotes all faces (d = 3) or edges (d = 2) of triangulation T i,h , which are contained in Γ (actually, W 1,h = W 2,h due to (4.13)). As interpolation operators Q i,h , P i,h , S i,h and L i,h we choose the standard Lagrange interpolation operators; i. e., for instance Q i,h is defined by: ∀K ∈ T i,h ,

Q i,h v| K = I 1 | K v, ∀v ∈ C 0 Ω i d ,
where I 1 | K v is the only polynomial of P s+1 (K) d that takes the same values as the function v at degrees of freedom of the local Lagrange interpolation on P s+1 (K) d .

Similarly, for all e ∈ E i,h ,

L i,h ω| e = I 3 | e ω, ∀ω ∈ C 0 Γ d ,
where I 3 | e ω is the only polynomial of P r+1 (e) that takes the same values as the function ω at the degrees of freedom of the local Lagrange interpolation on P r+1 (e).

The interpolation operators Q i,h , P i,h , S i,h and L i,h satisfy the estimates (4.5), (4.6), (4.7) and (4.9). For more details, see for instance [START_REF] Bernardi | Discrétisation variationnelles de problèmes aux limites elliptiques[END_REF], [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF], [START_REF] Ern | Theory and practice of finite elements[END_REF] or [START_REF] Rebollo | Mathematical and numerical foundations of turbulence models and applications[END_REF]. Furthermore, Hypothesis 4.1 (inf-sup condition) is verified by the families of pairs of spaces {(X i,h , M i,h )} h>0 as these are the generalized Taylor-Hood spaces. Also, Hyptohesis 4.1 holds as W i,h is the "trace space"on Γ of K i,h . Finally, the existence of a lifting operator verifying (4.11)-(4.12) is proved in Bernardi et al. [START_REF] Bernardi | Discrétisation variationnelles de problèmes aux limites elliptiques[END_REF], (Theorem 4.1).

Let us introduce the discrete spaces:

F i,h = X i,h × M i,h × K i,h , K 0 i,h = K i,h ∩ H 1 0 (Ω i ).
We are in a position to build the discrete problem from (5.1)-(5.5):

Assume known u n i,h , p n i,h , k n i,h ∈ F i,h , n ≥ 0 1. Compute u n+1 i,h , p n+1 i,h ∈ X i,h × M i,h such that ∀(v i,h , q i,h ) ∈ X i,h × M i,h , (4.18) a i k n i,h ; u n+1 i,h , ∇v i,h + b i v i,h , p n+1 i,h + κ Γ u n+1 i,h -u n+1 j,h u n+1 i,h -u n+1 j,h • v i,h dτ = Ωi f i • v i,h , (4.19) b i u n+1 i,h , q i,h = 0, 2. Compute k n+1 i,h ∈ K i,h such that ∀ϕ i,h ∈ K 0 i,h , k n+1 i,h = 0 on Γ i , (4.20) k n+1 i,h = λL i,h |u n+1,ε i,h -u n+1,ε 2,h
| 2 on Γ, and (4.21)

N i (k n i,h ; k n+1 i,h , ϕ i,h ) = Ωi α i (k n,ε i,h )∇u n+1 i,h : ∇u n+1,ε i,h ϕ i,h dx. (4.22)
This system is readily proved to admit a unique solution, similarly to system (5.1)-(5.2)-(5.3)-(5.5).

5. Numerical analysis of the discrete scheme. In this section we prove the convergence of the solution of the algorithm (4.18)-(4.22) to a solution of the regularized problem (2.3). The proof is based upon a recursive estimate of the errors between the finite element sequence u n i,h , k n i,h and the continuous one (u n i , k n i ),: For n ∈ N and for a given (

u n i , p n i , k n i ) ∈ G i , find u n+1 i , p n+1 i , k n+1 i ∈ G i by: 1. Find u n+1 i , p n+1 i ∈ X i × L 2 (Ω i ) such that for all (v i , q i ) ∈ X i × L 2 (Ω i ), (5.1) a i k n i ; u n+1 i , ∇v i + b i v i , p n+1 i +κ Γ u n+1 i -u n+1 j u n+1 i -u n+1 j • v i dτ = Ωi f i • v i , ∀v i ∈ X i .
(5.2)

∀q i ∈ L 2 (Ω i ), b i (u n+1 i , q i ) = 0. 2. Find k n+1 i ∈ K i such that ∀ϕ i ∈ H 1 0 (Ω i ), k n+1 i = 0 on Γ i , (5.3) k n+1 i = λ|u n+1,ε 1 -u n+1,ε 2 | 2 on
Γ, and (5.4)

N i (k n i ; k n+1 i , ϕ i ) = Ωi α i (k n,ε i ) ∇u n+1 i : ∇u n+1,ε i ϕ i dx. (5.5)
In [START_REF] Chacón Rebollo | An iterative procedure to solve a coupled two-fluids turbulence model[END_REF] it is proved that problem (5.1)-(5.5), without regularization, admits a unique solution. The existence follows from Brouwer's Fixed Point Theorem, based upon energy stability estimates (see (5.9) and (5.10) below), and the uniqueness follows because the boundary term in (5.1) is dissipative. This proof readily extends to problems problem (5.1)-(5.5) and (4.18)-(4.22), and we shall omit it for brevity. Also, in [START_REF] Chacón Rebollo | An iterative procedure to solve a coupled two-fluids turbulence model[END_REF], the authors proved that the initial problem (non-regularized) is contracting when the eddy viscosities are large enough: Theorem 5.1 (Convergence of the continuous scheme). Assume that Hypothesis 3.1 holds and that

f i ∈ L 2 (Ω i ) d .
Then if ν is large enough, there exists a positive constant K < 1, depending only on Ω i , M and on the data κ, ν and λ, such that for all n ∈ N * ,

2 i=1 u n+1 i -u n i 2 1,Ωi + k n+1 i -k n i 2 1,Ωi ≤ K 2 i=1 k n i -k n-1 i 2 1,Ωi . (5.6)
In what follows, for simplicity of notation we consider only the three-dimensional case d = 3. The two-dimensional analysis is similar. We shall denote by c a generic positive constant which may vary from line to line but are always independent of the n and h and ν. Also, for the sake of simplicity we take

κ 1 = κ 2 = λ = 1.
According to the interpolation error estimates (4.5) and (4.7), we recall that:

2 i=1 Q i,h u n+1 i -u n+1 i 1,Ωi ≤ c h s 2 i=1 |u n+1 i | s+1,Ωi , and (5.7) 2 i=1 S i,h (k n+1 i ) -k n+1 i 1,Ωi ≤ c h r 2 i=1 |k n+1 i | r+1,Ωi . (5.8)
To go further, we start by proving the boundedness in H 1 norm of the continuous and discrete sequences (u n i , k n i ) and (u n i,h , k n i,h ). To deal with the boundary condition modeling the generation of TKE at the interface, we use a result of continuity of the product of traces on Γ due to Grisvard, see for instance [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations,Theory and Algorithms[END_REF] and [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF], Lemma 5.2. Assume that Ω is a bounded Lipschitz-continuous open subset of R d . Let s, s 1 and s 2 be three non negative reals and p, p 1 , p 2 be three real numbers in [1, +∞) such that s 1 ≥ s, s 2 ≥ s and either

s 1 + s 2 -s ≥ d 1 p 1 + 1 p 2 - 1 p ≥ 0, s i -s > d 1 p i - 1 p i = 1, 2 or 
s 1 + s 2 -s > d 1 p 1 + 1 p 2 - 1 p ≥ 0, s i -s ≥ d 1 p i - 1 p i = 1, 2.
Then the mapping (u, v) → uv is a continuous bilinear map from W s1,p1 (Ω) × W s2,p2 (Ω) to W s,p (Ω), and there exists a constant C depending on s 1 , s 2 , s, p 1 , p 2 and p such that for all f ∈ W s1,p1 (Ω), g ∈ W s,p2 (Ω) it holds

f g W s,p (Ω) ≤ C f W s 1 ,p 1 (Ω) g W s, p 2 (Ω) .
Using the results of Hebey [START_REF] Hebey | Nonlinear analysis on manifolds: Sobolev spaces and inequalities[END_REF], this Lemma also holds for Sobolev spaces defined on compact Riemannian manifolds. This is the case of Γ. We may now state the Proposition 5.3. Assume that Hypothesis (3.1) holds and that f i ∈ L 2 (Ω i ) d . Then, there exists a non negative constant c depending only on the domain Ω i and the coefficients κ, such that far all n ∈ N:

(5.9)

2 i=1 |u n i | 1,Ωi ≤ c ν 2 i=1 f i 2 0,Ωi 1 2 , 2 i=1 u n i,h 1,Ωi ≤ c ν 2 i=1 f i 2 0,Ωi 1 2 
.

(5.10)

2 i=1 |k n i | 1,Ωi ≤ c C ε ν 2 2 i=1 f i 2 0,Ωi , 2 i=1 k n i,h 1,Ωi ≤ c C ε ν 2 2 i=1 f i 2 0,Ωi . 
Proof. To obtain estimates (5.9), let us respectively take (u n i , p 

a i (k i ; u n i , u n i ) + κ Γ |u n 1 -u n 2 | 3 dτ = 2 i=1 Ωi f i • u n i dx,
and the first estimate in (5.9) follows. The second one is similar. The estimates (5.10) are more involved, due to the non-linear boundary equation on Γ. Let us consider the lifting operators (See [START_REF] Bernardi | Discrétisation variationnelles de problèmes aux limites elliptiques[END_REF] for details) R i :

H 1 2 00 (Γ) → H 1 (Ω i ), i = 1, 2 such that, (5.11) R i (ϕ i ) = ϕ i , on Γ, R i (ϕ i ) = 0 on Γ i , R i (ϕ i ) 1,Ωi ≤ c ϕ i H 1 2 00 (Γ)
.

Note that by Proposition 5.3 (with s 1 = s = 1/2, s 2 = 1 -1/5, p 1 = p = 2, p 2 = 5), and the properties of mollifiers (2.2),

R i (k n+1 i ) 1,Ωi ≤ c |u n+1,ε 1 -u n+1,ε 2 | 2 H 1 2 00 (Γ)
(5.12)

≤ c u n+1,ε 1 -u n+1,ε 2 H 1 2 00 (Γ) u n+1,ε 1 -u n+1,ε 2 W 1-1 5 ,5 (Γ) ≤ c |u n+1,ε 1 | 1,Ω1 + |u n+1,ε 2 | 1,Ω2 u n+1,ε 1 W 1,5 (Ω1) + u n+1,ε 2 W 1,5 (Ω2) ≤ c C ε |u n+1 1 | 2 1,Ω1 + |u n+1 2 | 2 1,Ω2
Next, taking

ϕ i = k n+1 i -R i (k n+1 i ) ∈ H 1 0 (Ω i ) in (5.5
), using Holder inequality, (5.11) and (5.12) leads to

N i (k n i ; k n+1 i , k n+1 i ) = Ωi α i (k n,ε i ) ∇u n+1 i : ∇u n+1,ε i ϕ i dx -N i (k n i ; k n+1 i , R i (k n+1 i )) ≤ c |u n+1 i | 1,Ωi ∇u n+1,ε i L ∞ (Ωi) (|k n+1 i | 1,Ωi + |R i (k n+1 i )| 1,Ωi ) + |k n+1 i | 1,Ωi |R i (k n+1 i )| 1,Ωi ≤ c C ε |u n+1 1 | 2 1,Ω1 + |u n+1 2 | 2 1,Ω2 |k n+1 i | 1,Ωi (5.13) Then |k n+1 i | 1,Ωi ≤ c C ε ν |u n+1 1 | 2 1,Ω1 + |u n+1 2 | 2 1,Ω2
and by Hypothesis 3.1 the first estimate in (5.10) follows. To obtain the second estimate, observe that

R i,h (k n+1 i,h ) 1,Ωi ≤ c L i,h |u n+1,ε 1,h -u n+1,ε 2,h | 2 H 1 2 00 (Γ) ≤ c |u n+1,ε 1,h -u n+1,ε 2,h | 2 H 1 2 00 (Γ) ≤ c C ε |u n+1 1,h | 2 1,Ω1 + |u n+1 2,h | 2 1,Ω2 ,
where the last inequality is obtained proceeding as in (5.12), Now, taking

ϕ i,h = k n+1 i,h -R i,h (k n+1 i,h ) ∈ K 0 i,h
and proceeding as to obtain (5.13) leads to the second estimate in (5.10).

Analysis of the velocity sequence u n

i,h . To prove the convergence of the discrete scheme, the idea is to estimate the difference between the continuous and discrete sequences,

u n i,h -u n i 1,Ωi and k n i,h -k n i 1,Ωi
. First, we prove that the velocity error is driven by the TKE error (plus interpolation errors):

Theorem 5.4. Assume that Hypotheses 3.1 and 4.1 hold, and assume that the solution u n+1 i belongs to H s+1 (Ω i ) for a real number s ≥ 0. Then the following estimate holds

2 i=1 u n+1 i,h -u n+1 i 2 1,Ωi ≤ c 2 i=1 (1 + 1 ν ) h 2s |u n+1 i | 2 s+1,Ωi + 1 ν h s |u n+1 i | s+1,Ωi + (1 + 1 ν ) h 2t |p n+1 i | 2 t+1,Ωi + C 2 ε ν 4 |k n i,h -k n i | 2 1,Ωi , (5.14) 
Proof. Let us consider the Stokes projection Π i,h : X i → X i,h defined, for z i ∈ X i , as the solution -together with some discrete pressure r i,h ∈ M i,h -of the problem (5.15)

       Ωi ∇(Π i,h z i ) • ∇v i,h + Ωi r i,h ∇ • v i,h = Ωi ∇z i • ∇v i,h + Ωi p i ∇ • v i,h , Ωi ∇ • (Π i,h z i ) q i,h = Ωi ∇ • z i q i,h , ∀v i,h ∈ X i,h , ∀q i,h ∈ M i,h
. This problem admits a unique solution thanks to the discrete inf-sup condition (4.1). Moreover, it follows (see [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations,Theory and Algorithms[END_REF])

|Π i,h z i -Q i,h z i | 1,Ωi + r i,h -P i,h p i L 2 (Ωi) ≤ (5.16) C i (|z i -Q i,h z i | 1,Ωi + p i -P i,h p i L 2 (Ωi) ),
for some constant C i > 0, i = 1, 2. We multiply (5.1) and (4.18) by v i,h = e n+1 i,h = u n+1 i,h -Π i,h u n+1 i , and we compute the difference between the obtained equations.

Summing upon i = 1, 2, thanks to (5.15) the pressure terms cancel, yielding 

2 i=1 Ωi α i (k n,ε i,h )∇ u n+1 i,h -Π i,h u n+1 i : ∇e n+1 i,h I1 + 2 i=1 Ωi α i (k n,ε i,h )∇ Π i,h u n+1 i -u n+1 i : ∇e n+1 i,h I2 + 2 i=1 Ωi α i (k n,ε i,h ) -α i (k n,ε i ) ∇u n+1 i : ∇e n+1 i,h I3 + Γ u n+1 1,h -u n+1 2,h u n+1 1,h -u n+1 2,h -u n+1 1 -u n+1 2 u n+1 1 -u n+1 2 • u n+1 1 -Π 1,h u n+1 1 -u n+1 2 -Π 2,h u n+1 2 I4 + Γ u n+1 1,h -u n+1 2,h u n+1 1,h -u n+1 2,h -u n+1 1 -u n+1 2 u n+1 1 -u n+1 2 • u n+1 1,h -u n+1 2,h -u n+1 1 -u n+1
|I 1 | = 2 i=1 Ωi α i (k n,ε i,h )∇ u n+1 i,h -Π i,h u n+1 i : ∇e n+1 i,h ≥ ν 2 i=1 |e n+1 i,h | 2 1,Ωi .
Estimation of I 2 : Using Young's inequality, estimates (5.7) and (5.16), we deduce

I 2 = 2 i=1 Ωi α i (k n,ε i,h )∇ Π i,h u n+1 i -u n+1 i : ∇e n+1 i,h ≤ c 2 i=1 Π i,h u n+1 i -u n+1 i 1,Ωi e n+1 i,h 1,Ωi ≤ c ν 2 i=1 Π i,h u n+1 i -u n+1 i 2 1,Ωi + ν 4 2 i=1 e n+1 i,h 2 1,Ωi ≤ c ν h 2s 2 i=1 |u n+1 i | 2 s+1,Ωi + c ν h 2t 2 i=1 |p n+1 i | 2 t+1,Ωi + ν 4 2 i=1 e n+1 i,h 2 1,Ωi (5.19) 
Estimation of I 3 : Using successively the mean value Theorem, Hölder inequality, Hypothesis 3.1 and relations (2.2) and (5.9), we obtain Estimation of I 4 : Using Hölder inequality, the continuity of the injection from H 1/2 (Γ) into L 3 (Γ) d and the trace operator from H 1 (Ω i ) into H 1/2 (Γ), it holds

I 3 = 2 i=1 Ωi α i (k n,ε i,h ) -α i (k n,ε i ) ∇u n+1 i : ∇e n+1 i,h ≤ c 2 i=1 k n,ε i,h -k n,ε i L ∞ (Ωi) |∇u n+1 i | 1,Ωi e n+1 i,h 1,Ωi ≤ c C ε 2 i=1 |k n i,h -k n i | 1,Ωi |∇u n+1 i | 1,Ωi e n+1 i,h 1,Ωi ≤ c C 2 ε ν 3 2 i=1 |k n i,h -k n i | 2 1,Ωi + ν 4 2 i=1 e n+1 i,h 2 
I 4 = Γ ( u n+1 1,h -u n+1 2,h u n+1 1,h -u n+1 2,h -u n+1 1 -u n+1 2 u n+1 1 -u n+1 2 ) • u n+1 1 -Π 1,h u n+1 1 -u n+1 2 -Π 2,h u n+1 2 ≤ u n+1 1,h -u n+1 2,h 2 
L 3 (Γ) + u n+1 1 -u n+1 2 2 L 3 (Γ) u n+1 1 -Π 1,h u n+1 1 L 3 (Γ) + u n+1 2 -Π 2,h u n+1 2 L 3 (Γ) ≤ c u n+1 1,h -u n+1 2,h 2 
H 1/2 (Γ) + u n+1 1 -u n+1 2 2 H 1/2 (Γ) u n+1 1 -Π 1,h u n+1 1 H 1/2 (Γ) + u n+1 2 -Π 2,h u n+1 2 H 1/2 (Γ) ≤ c |u n+1 1,h | 2 1,Ωi + |u n+1 2,h | 2 1,Ωi + |u n+1 1 | 2 1,Ωi + |u n+1 2 | 2 1,Ωi u n+1 1 -Π 1,h u n+1 1 1,Ωi + u n+1 2 -Π 1,h u n+1 2 1,Ωi .
Thanks to relations (5.7), (5.9) and (5.16), we obtain (5.21)

I 4 ≤ c ν h s 2 i=1 |u n+1 i | s+1,Ωi + c ν h t 2 i=1 |p n+1 i | t+1,Ωi .
Then estimate (5.14) is obtained easily by combining estimates (5.17), (5.18), (5. [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]), (5.20) and (5.21) with the interpolation error estimate (5.7).

Analysis of the TKE sequence.

The purpose of the this section is to prove that the errors in TKE k n i -k n i,h converge to 0 as h tends to 0 and n tends to ∞, for large enough eddy viscosities.

To obtain an estimate for the TKE error, the standard choice for the test function in (5.5) and in (4.22) 

would be n+1 i,h = k n+1 i,h -S i,h (k n+1 i
). However, in general, this function does not vanish on the boundary ∂Ω i . Whence, it is necessary to introduce the lifting R i,h and to use the function test

ϕ i,h = n+1 i,h -R i,h ( n+1 i,h
). This choice requires to estimate the norm of the correction term R i,h ( n+1 i,h ). This is done in the following result: Lemma 5.5. Assume that Hypotheses (3.1) and (4.1) hold, and assume that the solution u n+1 i belongs to H s+1 (Ω i ) for a real number s ≥ 0. Then the following error estimate holds (5.22)

R i,h ( n+1 i,h ) 2 1,Ωi ≤ c C 2 ε ν 3 (ν + 1) h 2s 2 i=1 |u n+1 i | 2 s+1,Ωi + h s 2 i=1 |u n+1 i | s+1,Ωi +h t 2 i=1 |p n+1 i | t+1,Ωi + C 2 ε ν 2 2 i=1 |k n i,h -k n i | 2 1,Ωi .
Proof. Since for all n, the sequences k n i and k n i,h belong to H 1 (Ω i ), their trace on Γ are in H 1/2 (Γ). As both traces on Γ i vanish, i.e. k n i Γi = k n i,h Γi = 0, then, they belong to H 1/2 00 (Γ). Furthermore, (4.12) implies that there exists a positive constant c such that:

(5.23) R i,h ( n+1 i,h ) 1,Ωi ≤ c n+1 i,h H 1/2 00 (Γ) .
On the other hand, owing to Hypothesis 4.1, the trace on Γ of the function n+1 i,h can be rewritten as

n+1 i,h Γ = k n+1 i,h Γ -S i,h (k n+1 i ) Γ = L i,h u n+1,ε 1,h -u n+1,ε 2,h 2 -L i,h u n+1,ε 1 -u n+1,ε 2 2 = L i,h u n+1,ε 1,h -u n+1,ε 2,h 2 -u n+1,ε 1 -u n+1,ε 2 2 
.

Next, using (2.2), yielding

n+1 i,h H 1/2 00 (Γ) ≤ c u n+1,ε 1,h -u n+1,ε 2,h 2 -u n+1,ε 1 -u n+1,ε 2 2 H 1/2 00 (Γ) = c [(u n+1,ε 1,h -u n+1,ε 1 ) -(u n+1,ε 2,h -u n+1,ε 2 )] [(u n+1,ε 1,h + u n+1,ε 1 ) -(u n+1,ε 2,h + u n+1,ε 2 )] H 1/2 00 (Γ) ≤ c 2 i=1 c i u n+1,ε i,h -u n+1,ε i L ∞ (Γ) 2 i=1 u n+1,ε i,h + u n+1,ε i L ∞ (Γ) ≤ c 2 i=1 u n+1,ε i,h -u n+1,ε i L ∞ (Ωi) 2 i=1 u n+1,ε i,h + u n+1,ε i L ∞ (Ωi)
According to (5.9) and Poincaré-Friedrichs inequality, we obtain (5.24)

n+1 i,h H 1/2 00 (Γ) ≤ c C ε ν 2 i=1 u n+1 i,h -u n+1 i 1,Ωi
.

When adding and subtracting the quantity Π i,h u n+1 i,h , and using (5.23), we obtain

R i,h ( n+1 i,h ) 2 1,Ωi ≤ c C 2 ε ν 2 2 i=1 |e n+1 i,h | 2 1,Ωi + 2 i=1 Π i,h u n+1 i -u n+1 i 2 1,Ωi
.

Finally, estimate (5.22) follows thanks to (5.7), (5.14) and (5.16).

We may now estimate the test function n+1 i,h :

Theorem 5.6. Assume that Hypotheses (3.1) and (4.1) hold, and assume that the solution (u n i , k n i ) belongs to H s+1 (Ω i ) × H r+1 (Ω i ) for a real numbers s, r ≥ 0. Then the following error estimate holds

ν 2 i=1 | n+1 i,h | 2 1,Ωi ≤ c C 2 ε ν 6 ν C 2 ε + ν 4 + C 2 ε + C 4 ε ν 2 + C 4 ε ν 3 2 i=1 |k n i,h -k n i | 2 1,Ωi + c h 2r C 2 ε ν 6 ν C 2 ε + ν 4 + C 2 ε + C 4 ε ν 2 2 i=1 |k n i | 2 r+1,Ωi + ν + 1 ν 2 i=1 |k n+1 i | 2 r+1,Ωi + c C 2 ε ν 5 ν + C 2 ε + C 2 ε ν (ν + 1) h 2s 2 i=1 |u n+1 i | 2 s+1,Ωi + h s 2 i=1 |u n+1 i | s+1,Ωi . + c C 2 ε ν 5 ν + C 2 ε + C 2 ε ν (ν + 1) h 2t 2 i=1 |p n+1 i | 2 t+1,Ωi . (5.25) Proof. To estimate n+1 i,h = k n+1 i,h -S i,h (k n+1 i
), we use the difference between equations (5.5) and ( 4

.22) taking as test function ϕ

i,h = n+1 i,h -R i,h ( n+1 i,h ): A := 2 i=1 Ωi γ i (k n,ε i,h ) ∇ k n+1 i,h -γ i (k n,ε i ) ∇ k n+1 i • ∇ ϕ i,h = B := 2 i=1 Ωi α i (k n,ε i,h ) ∇u n+1 i,h : ∇ u n+1,ε i,h -α i (k n,ε i ) ∇u n+1 i : ∇u n+1,ε i ϕ i,h .
Adding and subtracting n+1 i,h in the first factor, then A can be rewritten as

A = 2 i=1 Ωi γ i (k n,ε i,h ) ∇ k n+1 i,h -γ i (k n,ε i ) ∇ k n+1 i • ∇( n+1 i,h -R i,h ( n+1 i,h )) = 2 i=1 Ωi (γ i (k n,ε i,h ) -γ i (k n,ε i ))∇k n+1 i • ∇ n+1 i,h + 2 i=1 Ωi γ i (k n,ε i,h )∇(S i,h (k n+1 i ) -k n+1 i ) • ∇ n+1 i,h + 2 i=1 Ωi γ i (k n,ε i,h )∇| n+1 i,h | 2 - 2 i=1 Ωi (γ i (k n,ε i,h ) -γ i (k n,ε i ))∇ k n+1 i + γ i (k n,ε i,h )∇ n+1 i,h + γ i (k n,ε i,h )∇(S i,h (k n+1 i ) -k n+1 i ) • ∇R i,h ( n+1 i,h ). The relation A = B yields 2 i=1 | n+1 i,h | 2 1,Ωi ≤ |B| (5.26) (A 1 :=) + 2 i=1 Ωi γ i (k n,ε i,h ) -γ i (k n,ε i ) ∇ k n+1 i • ∇ n+1 i,h (A 2 :=) + 2 i=1 Ωi γ i (k n,ε i,h ) ∇ S i,h (k n+1 i ) -k n+1 i • ∇ n+1 i,h (A 3 :=) + 2 i=1 Ωi γ i (k n,ε i,h ) -γ i (k n,ε i ) ∇ k n+1 i • ∇ R i,h n+1 i,h (A 4 :=) + 2 i=1 Ωi γ i (k n,ε i,h ) ∇ n+1 i,h • ∇ R i,h n+1 i,h (A 5 :=) + 2 i=1 Ωi γ i (k n,ε i,h ) ∇ S i,h (k n+1 i ) -k n+1 i • ∇ R i,h n+1 i,h
. The next step is to estimate (A j ) 1≤j≤5 and B.

Estimation of A 1 : Using successively the mean value Theorem, Hölder and Poincaré-Friedrichs inequalities, and relations (2.2), (5.10), there exists positive a constant c depending only on Ω i such that

A 1 ≤ c 2 i=1 Ωi (k n,ε i,h -k n,ε i )∇ k n+1 i • ∇ n+1 i,h ≤ c 2 i=1 k n,ε i,h -k n,ε i L ∞ (Ωi) ∇ k n+1 i L 2 (Ωi) | n+1 i,h | 1,Ωi ≤ c C 3 ε ν 2 2 i=1 |k n i,h -k n i | 1,Ωi | n+1 i,h | 1,Ωi .
According to Young's inequality, this yields for β > 0, which we shall fix later

A 1 ≤ ν β 2 i=1 | n+1 i,h | 2 1,Ωi + β c C 6 ε ν 5 2 i=1 |k n i,h -k n i | 2 1,Ωi . (5.27)
Estimation of A 2 : Using (5.8), (5.10) and Young and Cauchy-Schwarz inequalities,

A 2 = 2 i=1 Ωi γ i (k n,ε i,h ) ∇ S i,h (k n+1 i ) -k n+1 i • ∇ n+1 i,h ≤ ν β 2 i=1 | n+1 i,h | 2 1,Ωi + c β ν 2 i=1 S i,h (k n+1 i ) -k n+1 i 2 1,Ωi ≤ ν β 2 i=1 | n+1 i,h | 2 1,Ωi + β c ν h 2r 2 i=1 |k n+1 i | 2 r+1,Ωi . (5.

28)

Estimation of A 3 : The same arguments used to estimate A 1 and owing to (5.22), the following inequalities hold

A 3 ≤ c 2 i=1 k n,ε i,h -k n,ε i L ∞ (Ωi) |k n+1 i | 1,Ωi |R i,h ( n+1 i,h )| 1,Ωi ≤ c C 2 ε ν 2 2 i=1 |k n i,h -k n i | 1,Ωi |R i,h ( n+1 i,h )| 1,Ωi ≤ c C 2 ε ν 2 2 i=1 |k n i,h -k n i | 2 1,Ωi + |R i,h ( n+1 i,h )| 2 1,Ωi ≤ c C 4 ε ν 5 (ν + 1) h 2s 2 i=1 |u n+1 i | 2 s+1,Ωi + h s 2 i=1 |u n+1 i | s+1,Ωi (5.29) 
+ c C 4 ε ν 5 (ν + 1) h 2t 2 i=1 |p n+1 i | 2 t+1,Ωi + c C 2 ε ν 5 ν 3 + C 2 ε 2 i=1 |k n i,h -k n i | 2 1,Ωi .
Estimation of A 4 : Using the same procedure, we deduce

A 4 ≤ c 2 i=1 | n+1 i,h | 1,Ωi |R i,h ( n+1 i,h )| 1,Ωi ≤ ν β 2 i=1 | n+1 i,h | 2 1,Ωi + c β ν 2 i=1 |R i,h ( n+1 i,h )| 2 1,Ωi ≤ ν β 2 i=1 | n+1 i,h | 2 1,Ωi + c C 2 ε β ν 4 + C 2 ε ν 2 2 i=1 |k n i,h -k n i | 2 1,Ωi (5.30) 
+ (ν + 1) h 2t 2 i=1 |p n+1 i | 2 t+1,Ωi + (ν + 1) h 2s 2 i=1 |u n+1 i | 2 s+1,Ωi + h s 2 i=1 |u n+1 i | s+1,Ωi .
Estimation of A 5 : Using the same techniques as previously and the error estimates (5.8) for operator S i,h , we obtain

A 5 ≤ c 2 i=1 |S i,h (k n+1 i ) -k n+1 i | 1,Ωi |R i,h ( n+1 i,h )| 1,Ωi ≤ ν β 2 i=1 |S i,h (k n+1 i ) -k n+1 i | 2 1,Ωi + cβ ν 2 i=1 |R i,h ( n+1 i,h )| 2 1,Ωi ≤ ν β h 2r 2 i=1 |k n+1 i | 2 r+1,Ωi + c C 2 ε β ν 4 C 2 ε ν 2 2 i=1 |k n i,h -k n i | 2 1,Ωi (5.31) 
+ (ν + 1) h 2t 2 i=1 |p n+1 i | 2 t+1,Ωi + (ν + 1) h 2s 2 i=1 |u n+1 i | 2 s+1,Ωi + h s 2 i=1 |u n+1 i | s+1,Ωi .
Summing up estimates for the (A j ) 1≤j≤5 and choosing β = 3 for instance, we can write (5.32)

ν 2 i=1 | n+1 i,h | 2 1,Ωi ≤ |B| + c ν + 1 ν h 2r 2 i=1 |k n+1 i | 2 r+1,Ωi + c C 2 ε ν 6 ν C 2 ε + ν 4 + C 2 ε 2 i=1 |k n i,h -k n i | 2 1,Ωi + c C 2 ε ν 5 ν + C 2 ε (ν + 1) h 2s 2 i=1 |u n+1 i | 2 s+1,Ωi + h s 2 i=1 |u n+1 i | s+1,Ωi + c C 2 ε ν 5 ν + C 2 ε (ν + 1) h 2t 2 i=1 |p n+1 i | 2 t+1,Ωi .
Estimation of B: Let us write the term B as

B = 2 i=1 Ωi α i (k n,ε i,h ) ∇u n+1 i,h : ∇ u n+1,ε i,h -α i (k n,ε i ) ∇u n+1 i : ∇u n+1,ε i ϕ i,h . = 2 i=1 Ωi α i (k n,ε i,h ) ∇(u n+1 i,h -u n+1 i ) : ∇u n+1,ε i,h ϕ i,h + 2 i=1 Ωi α i (k n,ε i,h ) ∇ u n+1 i : ∇(u n+1,ε i,h -u n+1,ε i ) ϕ i,h + 2 i=1 Ωi α i (k n,ε i,h ) -α i (k n,ε i ) ∇ u n+1 i : ∇u n+1,ε i ϕ i,h = J 1 + J 2 + J 3 .
The terms J 1 , J 2 and J 3 can be bounded by using ϕ i,h = n+1 i,h -R i,h ( n+1 i,h ), Young inequality, (2.2), (5.9) and (5.10), as follows

|J 1 | + |J 2 | ≤ c C 2 ε ν 2 2 i=1 |u n+1 i,h -u n+1 i | 2 1,Ωi + |R i,h ( n+1 i,h )| 2 1,Ωi + ν 4 | n+1 i,h | 2 1,Ωi , |J 3 | ≤ c C 6 ε ν 8 2 i=1 |k n i,h -k n i | 2 1,Ωi + |R i,h ( n+1 i,h )| 2 1,Ωi + ν 4 | n+1 i,h | 2 1,Ωi .
Then, the following inequality holds thanks to (5.22) (5.33)

|B| ≤ ν 2 | n+1 i,h | 2 1,Ωi + c C 6 ε ν 8 + c C 4 ε ν 5 2 i=1 |k n i,h -k n i | 2 1,Ωi + C 4 ε ν 5 2 i=1 |u n+1 i,h -u n+1 i | 2 1,Ωi + c C 2 ε ν 3 (ν + 1) h 2s 2 i=1 |u n+1 i | 2 s+1,Ωi + h s 2 i=1 |u n+1 i | s+1,Ωi + c C 2 ε ν 3 (ν + 1) h 2t 2 i=1 |p n+1 i | 2 t+1,Ωi .
Combining (5.33) with (5.32), leads to

ν 2 i=1 | n+1 i,h | 2 1,Ωi ≤ c C 2 ε ν 6 ν C 2 ε + ν 4 + C 2 ε + C 4 ε ν 2 2 i=1 |k n i,h -k n i | 2 1,Ωi + C 4 ε ν 5 2 i=1 |u n+1 i,h -u n+1 i | 2 1,Ωi + c C 2 ε ν 5 ν + C 2 ε (ν + 1) h 2s 2 i=1 |u n+1 i | 2 s+1,Ωi + h s 2 i=1 |u n+1 i | s+1,Ωi + c C 2 ε ν 5 ν + C 2 ε (ν + 1) h 2t 2 i=1 |p n+1 i | 2 t+1,Ωi + c ν + 1 ν h 2r 2 i=1 |k n+1 i | 2 r+1,Ωi .
Finally, using (5.14), estimate (5.25) follows.

We may now state the Theorem 5.7. Assume that Hypotheses 3.1 and 4.1 hold, and assume that the solution (u n i , k n i ) belongs to H s+1 (Ω i ) × H r+1 (Ω i ) for real numbers s, r ≥ 0. Then there exists a ν 0 > 0 such that id 0 < ν < ν 0 , it holds for all n = 1, 2, • • • (5.34)

2 i=1 k n i -k n i,h 2 
1,Ωi ≤ A n ε,ν 2 i=1 k 0 i -k 0 i,h 2 
1,Ωi + B ε,ν (h s + h 2s + h 2t + h 2r ),
for some constants A ε,ν ∈ (0, 1), B ε,ν > 0.

Proof. By estimates (4.7), (5.25),

2 i=1 k n+1 i -k n+1 i,h 2 
1,Ωi ≤ 2 2 i=1 k n+1 i -S i,h (k n+1 i ) 2 1,Ωi + S i,h (k n+1 i ) -k n+1 i,h 2 
1,Ωi ≤ 2 2 i=1 | n+1 i,h | 2 1,Ωi + c h 2r 2 i=1 |k n+1 i | 2 1,Ωi ≤ A ε,ν 2 i=1 k n i -k n i,h 2 
1,Ωi + D ε,ν (h s + h 2s + h 2t + h 2r ), with A ε,ν = c C 2 ε ν 7 ν C 2 ε + ν 4 + C 2 ε + C 4 ε ν 2 + C 4 ε ν 3 , D ε,ν = c max C 2 ε ν 6 ν C 2 ε + C 2 ε ν , 1 + 1 ν . For large enough ν, A n ε,ν < 1. Let σ n = 2 i=1 |k n+1 i -k n+1 i,h | 2 1,Ωi .
Arguing recursively, we deduce

σ n ≤ A n ε,ν σ 0 +D ε,ν n-1 k=0 A k ε,ν (h s +h 2s +h 2r ) ≤ A n ε,ν σ 0 +D ε,ν A ε,ν 1 -A ε,ν (h s +h 2s +h 2r ).
This yields (5.34).

From this result, it follows Corollary 5.8. Assume that the hypotheses of Theorem 5.7 hold. Then the following error estimates hold, (5.35)

2 i=1 u n i -u n i,h 2 
1,Ωi + p n i -p n i,h 2 1,Ωi ≤ E ε,ν A n ε,ν 2 i=1 k 0 i -k 0 i,h 2 1,Ωi +E ε,ν B ε,ν (h s + h 2s + h 2t + h 2r ),
for some constant E ε,ν > 0, where A ε,ν and B ε,ν are the constants appearing in estimate (5.34).

Proof. The estimate for the error in velocity in (5.35) follows from estimates (5.4) and (5.34). The estimates for the error in pressures follows from the discrete inf-sup condition and a treatment for the no-linear boundary terms similar to that of the term I 4 in the proof of Theorem 5.4, that we omit for brevity.

6. Numerical experiments. The aim of this section is twofold: we intend to test the convergence order (in h) of the algorithm (4.18)-(4.22), and also the ability of the discretization to reproduce overall qualitative features of a realistic flow. Actually, we simulate an upwelling oceanic flow generated by an atmospheric cavity flow.

In both cases, we use the with FreeFEM++ code to perform our tests (Cf. [START_REF] Hecht | Freefem++, finite elements software[END_REF]). The solver uses a Taylor-Hood P 2 -P 1 finite element method (FEM) for the space discretization of velocity-pressure, and P 2 (FEM) for the TKEs equation. This corresponds to the choices s = r = 1 in the finite element spaces stated in (4.14), (4.15) and (4.16). At each step, linear systems are obtained and solved using a preconditioned GMRES iterative routine, see for instance Saad [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF].

6.1. Accuracy test. The first test is used to estimate the space accuracy. In order to evaluate the convergence rates, we have used a time-stepping strategy which consists in looking at the solutions problem (1.1) as steady states of the corresponding evolution problem. To reach the steady states we have used an implicit Euler time discretization.

The computational domains we consider here are Ω 1 =]0, 2[×]0, 1[×]0, 1[ for the "atmosphere"and Ω 2 =]0, 2[×]0, 1[×] -1, 0[ for the "ocean". We have solved adimensional flows, with realistic data, used in [START_REF] Chacón Rebollo | An iterative procedure to solve a coupled two-fluids turbulence model[END_REF]:

γ 1 (k 1 ) = 3 × 10 -3 + 0.277 × 10 -4 k 1 ; γ 1 (k 2 ) = 3 × 10 -2 + 0.185 × 10 -5 k 2 . α i (•) = γ i (•), κ = 10 -3
, and λ = 5 × 10 -2 .

We have imposed rigid lid velocity boundary conditions on the top of the atmosphere Γ1 (that corresponds to z = 1): u 1 = 0 on Γ 1 / Γ1 , u 1 = (1, 0, 0) on Γ1 and u 2 = 0 on Γ 2 . Whereas we consider homogenous Dirichlet boundary conditions for the TKE on all border ∂Ω 1 ∪ ∂Ω 2 , and equal to λ|u 1 -u 2 | 2 on the interface Γ. In this way a cavity flow is induced in the atmosphere, that drives the oceanic flow through the non-linear boundary conditions at the interface.

We estimate the convergence rate using several grid sizes by

O h = log( E h E h 2 ) log(2) ≈ p,
where (6.1)

E h := 2 i=1 |k i,h -k i | 2 1,Ωi + |u i,h -u i | 2 1,Ωi 1 2 
.

The "exact "u i and k i are computed with a very fine grid. Table 1 displays the computed convergence orders. These seem to approximate the value p ≈ 0.25. Note that the Dirichlet boundary condition for the velocity u 1 is a piecewise constant function, which belongs to H 1/2-(Γ 1 ) for all > 0, but not to H 1/2 (Γ 1 ) (see [START_REF] Chen | Sobolev spaces and elliptic equations[END_REF]). We may then expect that the velocities have a reduced regularity. In fact, from the error estimates (5.34), the value p = 0.25 would correspond to u i ∈ H 3/2 (Ω i ) d . This test is designed to determined the ability of our iterative algorithm presented above to simulate genuine 3D effects that arise in geophysical flows. Concretely, we test the formation of the up-welling effect, due to the interaction between surface wind-tension and Coriolis forces. We have considered the following problem, that includes transport and Coriolis terms, instead of system (1.1), (6.2)

       (u i • ∇) u i + τ (-u i,y , u i,x , 0) -∇ • (α i (k i )∇u i ) + ∇p i = f i ∇ • u i = 0 u i ∇k i -∇ • (γ i (k i )∇k i ) = α i (k i )|∇u i | 2 .
where the component of the velocity fields are denoted by u i = (u i,x , u i,y , u i,z ). The term τ (-u i,y , u i,x , 0) models the Coriolis forces, where the parameter τ depends on the angular velocity of the earth and the latitude. Furthermore, to take into account inertial effects we have added the convection term (u i • ∇) u i in the first equation and the transport term u i ∇k i in the TKEs equation. The boundary conditions are the same as for system (1.1).

We have considered the computational domains Ω We use the following set of data: The viscosity ν is scaled by the different sizes of ω in the directions OX, OY and OZ to take into account the anisotropy of the domain. Also, we have again imposed lid-driven cavity boundary conditions, u 1 = 0 on Γ 1 / Γ1 , u 1 = (-1, 0, 0) on Γ1 and u 2 = 0 on Γ 2 , where Γ1 is the upper face z = 500 of Ω 1 . Whereas we consider homogenous Dirichlet boundary conditions for the TKE on all the border ∂Ω 1 ∪ ∂Ω 2 , and equal to λ|u 1 -u 2 | 2 on the interface Γ. These settings are chosen in order to create a driven cavity-like flow in atmosphere domain Ω 1 .

The atmospheric flow generates a wind flow at the top of the pool, i.e the interface air-water, and subsequently the formation of the up-welling flow besides a lateral wall of the pool. The relatively short dimension of the domain in the cross-wind direction also originates a down-welling flow in the vertical face of the pool opposite to the upwelling. On another hand, the relatively short dimension of the domain in the wind direction originates a longitudinal recirculation, that accelerates due to the bottom ramp, in a direction opposite to the wind.

Note that in the representation of the numerical results, the depth and the vertical velocity have been increased by a factor 10 in order to provide a good visualization. Figure 6.2 shows the vertical velocity, where Coriolis acceleration effects are apparent. In the Northern Hemisphere, the Earth rotation deviates the flow to its right. Figure 6.3 represents the velocity profile along a vertical cut of the domain (the plane y = 2500). We observe a global recirculation of the flow, that produces an acceleration along the ramp, in the direction opposite to the wind. The flow presents a quasiparabolic vertical profile in the less depth part of the domain. Figures 6.4 and 6.5 show the projection of the 3D velocity on two planes orthogonal to the wind direction (x = 5000, x = 8000 respectively). We observe the up-welling effect on the left of the domain, but also a down-welling effect on the right of the domain. The overall flow is a recirculation transversal to the wind direction. The trajectory of a flow particle the generation of turbulent kinetic energy due to shear at the interface. Both the viscosity and diffusion depend on the turbulent kinetic energy. We have considered an iterative scheme by linearization besides a full finite element discretization of a regularized problem. We have proved that the iterative scheme converges for large enough eddy viscosities to the solution of the continuous problem. Furthermore, numerical tests for realistic boundary conditions are in good agreement with our theoretical results, and show the ability of the discretization introduced to correctly simulate the 3D features associated to the interaction between wind-stress induced by atmosphere and Coriolis forces.

2 I5= 0 (I 1 + I 2 + I 3 + I 4 +

 201234 I 5 ) . Thanks to the convexity inequality (|b|b -|a|a)•(b -a) ≥ 0, ∀ (a, b) ∈ R d , we deduce that I 5 ≥ 0. Consequently (5.17) |I 1 | ≤ |I 2 | + |I 3 | + |I 4 |. Estimation of I 1 : It comes from Hypothesis (3.1) that (5.18)

4 • 10 3 -x 10 3 if 4 • 3 -100 if 5 •

 4435 1 =]0, 10 4 [×]0, 5•10 3 [×]0, 500[ (m) for atmosphere and a swimming-pool-like domain to model the geometry of the ocean (see Figure 6.1), Ω 2 = ω × {z = D(x, y); (x, y) ∈ ω}, such that • Horizontal dimensions (m): ω = ]0, 10 4 [×]0, 5 • 10 3 [ • Bathimetry (m): 10 3 ≤ x ≤ 5 • 10 10 3 ≤ x ≤ 10 4
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 63 Fig. 6.3. Projection of 3D velocity in the ocean onto plane y = 2500
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 64 Fig. 6.4. Projection of 3D velocity in the ocean onto plane x = 8000
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 65 Fig. 6.5. Projection of 3D velocity in the ocean onto plane x = 5000
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	Estimated convergence order
	Mesh size Order O h
	h	--
	h/2	0.12
	h/4	0.16
	h/8	0.22
	h/16	0.23
	6.2. Up-welling effects near the shores.
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