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Abstract

Neighbor Discovery (ND) controls IPv6 nodes and routers interactions through ICMPv6
messages. It provides address resolution and duplicated address detection. Nonetheless,
it does not offer security protection to the exchanged messages. In order to improve
its security, Secure Neighbor Discovery (SEND) has been specified using the same ND
messages and adding new options providing authentication and replay attacks control.
SEND uses Cryptographically Generated Addresses (CGAs) as IPv6 addresses and RSA
as key and signature generation algorithm.

CGAs are created using RSA public key. In fact, they contain a cryptographic based
identifier. Their interface identifier is generated using SHA-1 hash function over a param-
eters structure which contains the generating node’s public key. Our project consists on
the study of CGAs different usages in wired, multihoming and mobile networks. In addi-
tion, we studied CGA generation and verification algorithms performance and improve it
with the use of Elliptic Curve Cryptography (ECC). We generated and conducted a set of
tests to assess CGA generation performance in different platforms. Moreover, through a
set of experiments, we evaluated the potential brought by ECC in cryptographic address
generation.
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Introduction

Neighbor discovery(ND) controls IPv6 hosts and routers through ICMPv6 messages.

Nodes use it to determine the link layer addresses of neighbors belonging to the same

local link and to purge cached values that become invalid. In addition, hosts use it to

find neighboring routers that are going to forward their packets and that are offering valid

and routable prefixes. This protocol is used when detecting unreachable nodes. In fact, it

mainly serves to keep track of neighbors which are reachable and to detect nodes having

changed their link layer addresses.

ND is the protocol that controls all IPv6 network nodes exchanges. One problem

with this protocol is its security. It has been discovered lately that ND messages are

vulnerable to Denial of Services (DoS) and replay attacks [1]. Therefore, to secure them,

some specifications have added new ICMPv6 messages and options concerning message

authentication to transform the classical ND to a new protocol called Secure Neighbor

Discovery (SEND).

SEND [2] aims to make ND useful in all situations and in different kinds of networks.

Its goal is offering messages and identities authentication for every node. So in order to

make this security concept feasable even in mobile networks which present generally a

lack of ressources and power, SEND introduced a new address generation mechanism. It

consists in creating a cryptographically generated address (CGA) [3]. The word ‘crypto-

graphically’stands for the fact that this kind of IPv6 address is generated using the node

public key and a hash function to construct the address interface identifier. Hence, the

address identifier binds the node’s public key to the address.

CGA offers a strong concept which avoids the use of centralised certification authority

in order to bind a public key to its owner. In fact, when used with a signature option,

CGA becomes equivalent to a degital certificate: the address contains the public key that

will be used to verify the signature sent with it. So the signature verifier has to get

the public key from the address and then uses it to verify the signature. This method

decentralizes the notion of certification authority and becomes more efficient when used

in mobile networks where it is very difficult to get access to a centralized unit due to the

mobility.

CGA generation algorithm uses a RSA public key and a parameters structure in order

to generate the interface identifier using SHA-1 hashing function. This project consisted

1
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in the study of the CGA from two angles: (a) first, we studied its possible uses in different

kinds of situations and networks; (b) second, after implementing the CGA generation and

verification algorithms, we studied its performance in term of time; (c) finally we proposed

an improvement to the CGA generation algorithm and SEND protocol by introducing the

use of elliptic curve cryptography (ECC) instead of RSA.

This report starts with an introductive chapter presenting ND messages, cases of use

and threats and how SEND makes it more secure.

The second chapter discusses the CGA generation algorithm and its verification pro-

cess with some discussions concerning the proposal of using a DHCP server in the address

generation process.

The third chapter presents CGA use cases in multihoming and mobile networks.

The fourth chapter introduces a study to SEND threats and CGA security considera-

tion.

The fifth and last chapter addresses the CGA generation algorithm implementation

and its performance studies. It ends with a comparison between CGA classical generation

algorithm and the new solution that we proposed based on ECC.
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Chapter 1

Securing Neighbor Discovery

Introduction

Neighbor Discovery (ND) is a protocol developed for IPv6 [4], and defined in [5]. It

enables hosts over a link to determine neighboring routers, to make address resolution, to

detect unreachable neighbors and duplicated addresses. It is based on the use of ICMPv6

[6] messages and options to define the interaction between the different hosts.

With the evolution and the spread of IPv6, it has been discovered that ND has many

security problems and that it was vulnerable to attacks such as Denial of Service attack

(DoS) and replay attack. So, to prevent from those attacks, some specifications have been

added to this protocol and a new version has appeared and was named Secure Neighbor

Discovery (SEND), which is defined in [2]. SEND is based on Cryptographically Generated

Addresses [3] which are IPv6 addresses1 including public key information of the owner, in

the interface identifier bits.

In this introductive chapter, we first review the different types of messages and options

defined in ND. Then we present usages of this protocol, and possible attacks targeting

ND messages. In the second part, we describe SEND messages that were introduced to

secure ND and remaining possible attacks.

1.1 Neighbor discovery (ND)

ND defines five ICMPv6 messages to make the dialog between the different nodes belong-

ing to the same local link easier and to replace some other IPv4 [7] protocols functionalities

such as ARP and RARP [8]. In the following, we describe these messages is done along

with some of their usages.

1IPv6 addresses are presented in appendix A
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1.1.1 ND messages

The differents ND ICMPv6 messages are: router solicitation, router advertisement, neigh-

bor solicitation, neighbor advertisement and redirect. They are described in this section.

1.1.1.1 Router solicitation (RS)

RS is sent by a node to ask a router to send a Router Advertisement (RA) immediately.

The node needs a RA when booting or to get information related to the router. It is sent

to the router multicast address ff02::2.

Figure 1.1: Router solicitation message.

This message given in Figure 1.1 is composed of the following fields:

� Checksum contains the checksum of the message.

� Reserved is reserved for future usage and all its bits are set to zero and must be

ignored by the receiver.

� Options contain the ICMPv6 options that could be added to this message.

In all the ICMPv6 messages defined hereinafter, the fields checksum, reserved and options

have the same aforementioned goal.

1.1.1.2 Router advertissement (RA)

RA is sent periodically or in response to RS. It has the following structure (Figure 1.2):

Figure 1.2: Router advertissement message.

This message given in Figure 1.2 is composed of the following fields:
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� Cur hop limit contains the value of the field hop number of the IPv6 header.

� M indicates the way the address must be conFigured. When set to one, the host

must use stateful address configuration.

� O indicates that there are other stateful information to use while configuring the

address.

� Router lifetime gives the lifetime of the default router.

� Reachability time is the period of validity of information existing in the a nodes

cache: it is the time when a node assumes that a neighbor is still reachable after

receiving a reachability confirmation.

� Retransmission timer represents the period between two RS transmissions.

1.1.1.3 Neighbor solicitation (NS)

NS is a message used when attempting to collect information about neighbors in the

same link. It can be multicasted or unicasted. Its structure is presented in Figure 1.3 and

includes:

Figure 1.3: Neighbor solicitation message.

� Target address contains the address of the target of the solicitation.

1.1.1.4 Neighbor advertisement (NA)

It is a message used to respond to a NS message or to propagate new information about

the interface. It is presented in Figure 1.4.

� R represents the router flag. If it is equal to one, the sender is a router.

� S is the solicitation flag. A flag set to one means that the advertisement is sent in

response to a NS.

� O is the override flag. The advertisement overrides an existing cache entry and

uploads the cached link layer address when this bit is set to one.
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Figure 1.4: Neighbor advertissement message.

� Target address is equal to the target address of the NS message if the bit S is set to

one, else it will be equal to the local-link address of the sender.

1.1.1.5 Redirect

Router sends redirect message (Figure 1.5) to inform a host of a better first hop node.

Figure 1.5: Redirect message.

� Target address is the link local address of the best first hop.

� Destination address is the address of the destination to which the packet is redi-

rected.

1.1.2 ND options

Options might complement previous messages. They all have the same TLV format (TLV

for Type-Length-Value) and are defined in [5].

1.1.2.1 Source/Target link layer address

Figure 1.6: Source/Target link-layer option.
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This option given in Figure 1.6 is composed of the following fields:

� Type field is equal to one when the link-layer address used is the source one.

� Type field is equal to two when the link-layer address used is the destination one.

� Length field represents the length of the option in words of 64 bits.

1.1.2.2 Information about the prefix

This option contains the information needed during the configuration of the equipment.

Figure 1.7: Prefix option.

This option given in Figure 1.7 is composed of the following fields:

� Prefix length field contains the number of leading bits that are valid.

� L is the on-link flag. When set to one, it means that this prefix can be used for

on-link determination.

� A is the autonomous address configuration flag. When set to one, it indicates that

it could be used for stateless address autoconfiguration.

� Valid lifetime contains the length of time in seconds that the prefix is valid for the

purpose of on-link determination.

� Preferred lifetime represents the period of time when the addresses generated from

the prefix via stateless address autoconfiguration remain preferred.

� Prefix contains the prefix itself.

1.1.2.3 Redirected header

This option is used with the redirection message and contains all or parts of the packet

that is being redirected. It is defined as presented in Figure 1.8.
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Figure 1.8: Redirected header option.

� IP header and data contain the original packet truncated to ensure that the size

of the redirected message does not exceed the minimum MTU required to support

IPv6 over the link.

1.1.2.4 MTU

The MTU option (Figure 1.9) is used in RA message to ensure that all nodes on a link

use the same MTU value in case when the link MTU is not known.

Figure 1.9: MTU option.

1.1.3 ND applications

ND is a protocol used to organize the communication over a link in an IPv6 environment.

The main functions of ND [5] are reviewed below.

1.1.3.1 Address resolution

This mechanism consists of sending a NS message whose destination is given by the

solicited-node multicast address. The packet’s target address field contains the addresses

of the neighbors to be solicited. The host responds with a NA, indicating its IPv6 address

in the target address field and its physical address in the target link-layer address option.

This process is done in IPv4 by the protocol ARP.

1.1.3.2 Host autoconfiguration

An interface can be conFigured manually by the network administrator, or configuration

can be performed automatically. This latter possibility has become extremely important

in IPv6 because of address length and the need to renumber sites more frequently. In

IPv6, each address is associated with a period of validity so that network topology can be
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changed automatically. To reduce the impact of renumbering on applications, two timers

are used for each address. Initially, an address is classified as preferred, meaning that

it can be used without restrictions as either a source or destination address. Once the

preferred lifetime expires, the address goes to the deprecated state, i.e., the address is

still valid but its use is discouraged for new communications. When the second timer,

called the valid lifetime, expires, the address becomes invalid and can no longer be used.

In this way, it is highly likely that the applications which use an address that has gone to

the deprecated state will end before the address becomes invalid. There are two ways to

address autoconfiguration:

� The stateless autoconfiguration which is based on the creation of an interface iden-

tifier by the host and then its verification by constructing the link-layer address

related to this suffix and verifying it by using the duplication address detection

which is explained after.

� The stateful autoconfiguration uses a DHCP server to assign addresses to the inter-

faces.

1.1.3.3 Duplicated Address Detection (DAD)

After a station gets a unicast address, it must check that it is unique before assigning

it to the interface. To do so, the station sends a NS message in which the IPv6 header

source address field is set to the unspecified address and the destination address field is

set to the solicited-node multicast address. If the same unicast address has already been

assigned to another node, the latter responds with a NA. When the node that initiated

the DAD procedure receives this message, it disables the use of that address.

1.1.3.4 Neighbor Unreachability Detection (NUD)

This process gives a host the ability to test if a neighbor is still reachable or not. In fact,

the host sends a NS to one of its neighbor and waits for NA. If no reply comes, it sends

some other NS and in case of no response, it discards the entry related to that neighbor

from its cache.

1.1.3.5 Router discovery

When a new node joins the link, it seeks for a new default router by sending a RS to

the multicast address specific to routers and waits for an RA. If there is no response, the

neighbor assumes that there is no router on the link.
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1.1.4 ND attacks

In this section we study some of the attacks that have been discovered and have been

identified as possible against ND. Those attacks are detailed in [1].

1.1.4.1 NS/NA spoofing

NS or NA spoofing basically involves the emission of faked NS or NA messages in order

to modify the association between the L2 and L3 addresses of a victim’s peer in its cache.

An attacker sends a NA or a NS with the target IP address as source address and a

fake (or its own) link layer address, in the source link layer option, to a target peer which

represents the victim. The latter updates its neighbor cache with the new information he

gets. So that the attacker succeeds in spoofing the victim identity.

1.1.4.2 NUD failure

NUD is used to monitor the reachability of local destinations. In case node B left the

network, and node A is sending some NUD NS message, an attacker can make a node A

thinking B is still connected by sending to node A a NA using B address. So it spoofs

the identity of B. In the case where B tries to join the network again, it will not be able

to use its previous address and will be denied of service if it can not autoconFigure a new

interface identifier.

1.1.4.3 DAD DoS attack

A new node (or a node that has changed its address) in a stateless address autoconfigu-

ration performs DAD testing, and an attacker responds to all its NS messages. As such

the host will never be able to get an address.

1.1.4.4 RS/RA DoS attacks

Many scenarios could be developed using RS/RA. Some of them are next described:

� An attacker tries to be selected by other nodes over the link as the default router.

In order to be chosen as last hop router, the attacker spoofs the legitimate default

router and sends periodic RA with lifetime set to zero. Once accepted, the attacker

sends Redirect message to hosts and disappears. That will cause a DoS attack.

� An attacker makes all nodes on the link think that they are all local by killing the

default router using a DoS attack or sending a spoofed RA with a lifetime equal to

zero.
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� A malicious node sends RA advertising bad prefixes. The target uses one of those

prefixes to build its own address, and launches successful DAD operation (No re-

sponse to NS). The target will not be able to communicate over the network.

� An attacker designs parameters concerning the way of the autoconfiguration (state-

less or stateful) and sends them to the target which will use them to create its

address but in fact it will be denied of service.

1.1.4.5 Replay attacks

All ND messages could be replayed. For example, an attacker could replay RA or Redirect

messages of a router that retired from the link to make a DoS attack to all nodes connected.

In fact, it can send a RA containing a list of fake prefixes that are no more valid and make

the other nodes use them to create their addresses which will not be of a great usage. He

could also replay NA to spoof the identity of a node.

1.2 Secure Neighbor Discovery (SEND)

SEND uses ND messages but has added new options and two new messages to secure the

exchanges between routers and nodes and between nodes themselves.

We are going now to view the new messages introduced by this protocol and the

options that it added, then we will discuss the ways SEND secures ND and at the end we

will talk about possible attacks on SEND.

SEND messages and options are defined in [2].

1.2.1 SEND messages

SEND offers new functions such as Authorization Delegation Discovery (ADD) which is

a mechanism based on the exchange of two new ICMPv6 messages to authenticate the

router by the node before starting information exchange between the two entities.

ADD has been introduced because it was easy to conFigure rogue routers on an unse-

cured link and it was difficult for a node to distinguish valid source of router information

from invalid one. In fact a node needs this information before starting a communication

with nodes outside the link. The objective is enabling the node to verify if the local router

is true or false.

The two messages that have been introduced are Certification Path Solicitation (CPS)

and Advertisement (CPA). In order to authenticate a router, the node sends a CPS

(Figure 1.10) asking the router for a certification path to its trust anchor (which is an

entity that the node trusts, that helps verifying the routers certificate, and that might be

a certification authority). After receiving the CPS, the router generates a CPA (Figure

08015-LOR



Chapter 1. Securing Neighbor Discovery 12

1.11) containing the certification path from the trust anchor to its own certificate so that

certificate verification is made possible by the node itself.

Trust anchor gives also the router the permission to act as a router depending on its

certificate.

1.2.1.1 Certification Path Solicitation (CPS)

Figure 1.10: CPS message.

� The identifier contains an unsigned integer that helps matching advertisements to

solicitations.

� The component field contains an unsigned integer referring to the component iden-

tifier corresponding to the certificate that the receiver wants to retrieve.

1.2.1.2 Certification Path Advertisement (CPA)

Figure 1.11: CPA message.

� The identifier contains the same value of the identifier field than the CPS message.

� All components field is used to inform the receiver of the number of certificates in

the entire path.

� Component field is used to inform the receiver which certificate is being sent. The

sending of path components should be ordered so that the certificate after the trust

anchor is sent first. Each certificate sent after the first can be verified with the

previously sent certificates. The certificate of the sender comes last. The trust

anchor certificate should not be sent. A value of zero indicates that there are no

more components coming in this advertisement.
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1.2.2 SEND options

SEND has introduced six new options to secure SEND and ND messages exchanged

between the hosts over a link.

1.2.2.1 CGA option

CGA generation process will be studied in chapter 2. Here we only analyse the CGA

option format presented in Figure 1.12.

Figure 1.12: CGA option.

� The length contains the value of the option length in word of eight octets.

� The Pad length contains the number of padding octets.

� CGA parameters are defined as in [3] and will be detailed in chapter 2.

� Padding field contains bits that are set to zero and that must be ignored by the

receiver.

� This option must be present in all SEND messages (we do not consider the case

where unspecified address is used; this case is discussed in [2]).

1.2.2.2 RSA signature option

This option carries the RSA signature of every ND message going to be sent. It has the

following structure (Figure 1.13):

Figure 1.13: RSA signautre option.
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� The key hash field contains the leftmost 128 bits of a SHA-1 hash of the public key

used for constructing the signature. Its purpose is to associate the signature to a

particular key known by the receiver (in our case it is the public key of the sender

that will be verified using CGA verification described in chapter 2)

� The digital signature is realised using RSA signature scheme and covers the following

fields: the CGA type tag value for SEND (it will be explained in chapter 2), the

source address from the IP header, the destination address of the receiver, the type;

code and checksum fields of the ICMPv6 header, the ICMPv6 fields that come

after the checksum and before the options, and the ND options preceding the RSA

signature option.

This option must be present in all SEND messages (we do not consider the case where

unspecified address is used; this case is discussed in [2]).

1.2.2.3 Timestamp option

The purpose of the Timestamp option (Figure 1.14) is to make sure that unsolicited

advertisements and redirects have not been replayed. This option must be present in all

SEND messages.

Figure 1.14: Timestamp option.

� The timestamp field contains the value of the number of seconds since a specific

date (January 1, 1970).

1.2.2.4 Nonce option

The purpose of the nonce option is to make sure that an advertisement is fresh and matches

a solicitation sent by the node earlier. This option must be present in all solicitation

messages. It has the following format (Figure 1.15):

Figure 1.15: Nonce option.
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� Nonce is a field containing a random number selected by the sender of the solicitation

message (at least six bytes).

1.2.2.5 Trust anchor option

This option is used only in CPS and CPA messages. It is presented in Figure 1.16.

Figure 1.16: Trust anchor option.

� The name type contains the type of the name included in the name field. It can be:

DER encoded X.501 name or fully qualified domain name (FQDN).

� The pad length contains the number of padding octets.

� The name field the name identifying the trust anchor.

� The padding field bits that are set to zero.

1.2.2.6 Certificate option

This option is used only in CPA messages and contains only one certificate. It is presented

in Figure 1.17.

Figure 1.17: Certificate option.

� The cert type field contains the type of the certificate included in the certificate

field.

� The certificate field contains the certificate to be sent to the node.
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1.2.3 SEND usage

When a new node joins a network, it starts by sending a RS message to get information

about the possible prefixes that it can use to generate its CGA. When it receives a response

from a router, it can not be sure about its identity and the validity of its prefixes. So

in order to authenticate the router, the node sends him a CPS message (Figure 1.18)

including the name of a trust anchor (known and trusted by the sender) using a trust

anchor option. So the router responds with a CPA message containing a list of certificates

matching its certificate to the trust anchor’ s one.

Figure 1.18: CPS/CPA messages.

After authenticating the router via its certificate, the node uses one of its prefix with

some parameters to compute its CGA and to form the corresponding CGA parameters

structure. The node is now able to communicate with its neighbors using SEND messages.

Two situations are possible:

� When the node sends a solicitation message (NS or RS), it has to include the fol-

lowing options: CGA parameters option, RSA-signature option, timestamp option

and nonce option. The use of nonce is mandatory in this case because the message

sent is a solicitation. The corresponding response (advertisement) has to contain

the same nonce value in order to create a binding with the solicitation (Figure 1.19).

Figure 1.19: SEND options usage.

� When a node or a router sends an advertisement without being solicitated, it does

not need to include a nonce. This may happen when a node changes one of its

addresses (physical or CGA(IPv6 address)) or when a router wants to multicast

new information about its prefixes.
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1.2.4 SEND securing ND

In this section, we study how SEND secures ND against the attacks that have been

detailed in the first section of this report.

1.2.4.1 NS/NA spoofing

The threat here is that a spoofed message may cause a false entry in a node’s Neighbor

Cache. This attack is countered thanks to the use of CGA option and RSA signature

option. NS or NA messages will have to be signed to make an entry in the cache. So a

node receiving a NS or NA message has to verify the identity of the sender thanks to the

signature in order to update its cache. An attacker will have to realize a collision with

the CGA to get a valid private key which makes him able to sign the fake NS or NA that

he creates.

1.2.4.2 NUD failure

Thanks to the use of the CGA and RSA signature options, a proof of authorization to

use the interface identifier of the address being solicitated is given. So only the address

owner is able to responds to the NUD probes.

An attacker will not be able to spoof the identity of the leaving node because it will

have to respond to NS using a message signed by the target private key which it does not

have.

1.2.4.3 DAD DoS attack

In the DAD mechanism, the NA message in response to a NS message mechanism must

include RSA signature option as proof of identity. The attacker will not be able to respond

to a NS message because it does not possess the private key needed to generate the RSA

signature.

1.2.4.4 RS/RA attacks

To counter those attacks, a router will only have to add RSA signature option to the RA

message. So nodes will have to accept only signed messages coming from a router. In this

case, a malicious node which wants to execute those attacks will have to get the router’s

private key to be able to sign its self generated RA messages.

1.2.4.5 Replay attacks

In order to counter the replay attacks, SEND introduced two options which are the times-

tamp for the unsolicited advertisements and nonce for solicited advertisements in order

to create a challenge response protocol (concerning the nonce option).
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Conclusion

In this first chapter, we have introduced the context in which CGA has been developed.

In the sequel, we are going to study in details the CGA generation process, the different

modifications that have been supposed to be added to CGA and its different usages.
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Chapter 2

CGA generation, verification and

structure

Introduction

In order to introduce a new mechanism to decentralize the association between a public

key and its owner, CGAs have been introduced.

The older techniques used were all centralized with a unique entity generating certifi-

cates binding hosts to their public keys. The certificates generation entity is called the

certification authority.

CGAs are IPv6 addresses where the interface identifier contains information about the

public key of the host owning the address.

In this chapter we introduce the algorithms used for CGA generation, verification

and the structure used to create these addresses. Then we describe the possibility of

introducing some modifications in the generation process.

2.1 CGA presentation

CGAs were initially developed to be used with the SEND protocol [2]. They were used

to secure neighbor discovery messages exchange [5].

Before the generation of a CGA, the host must choose a three bits length security

value SEC which is used to make brute force attack against CGA generation algorithm

very difficult.

Every host in a network can generate its own CGA based on two SHA-1 hashes calculus

over a structure called the CGA parameter structure. The 64 leftmost bits of the first

hash (hash1) are used as interface identifier with no regard to the three first bits (if we are

counting from the left to the right), which correspond to the SEC value, and to seventh

and eightieth bits which are the universal and group flags of an IPv6 interface identifier
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(known as the u and g bits in the standard IPv6 address architecture format of interface

identifiers defined in [9]). The 112 leftmost bits of the second hash value (hash2) are used

Figure 2.1: A Cryptographically Generated Address.

with SEC value to increase the complexity of CGA generation. To validate a generated

address, we must verify that 16*SEC leftmost bits of hash2 are equal to zero (for example

if SEC = 2, we will have to verify that 32 leftmost bits of hash2 are equal to 0, else we

will have to recompute the address).

Now, we are going to study the CGA parameters structure.

2.2 CGA parameters structure

CGA parameters structure has the format giving in Figure 2.2:

Figure 2.2: CGA parameters structure.

� Modifier contains a 128 bits random value. It is used during CGA generation to

implement hash extension and to enhance privacy by adding randomness to the

address.

� Subnet prefix contains the subnet value of the CGA.
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� Public key field contains the public key of the host which is DER encoded. It should

have at least a length of 384 bits. Actually the only key used in SEND is generated

using RSA1.

� The extension field is an optional field.

2.3 CGA generation

The CGA generation process takes as input three parameters: the public key of the host

(DER encoded), the prefix of the address and the security parameter SEC. To generate a

CGA, the following steps must be followed (see Figure 2.2):

1. Choose a random modifier.

2. Compute hash2 using as input to the SHA-1 function the following elements concate-

nated respectively from the left to the right: the modifier, nine bytes of zero (prefix

field and collision count are taken equal to zero), the public key (DER encoded),

and extensions. (We take only the 112 leftmost bits to form hash2)

3. Compare the 16*SEC leftmost bits of hash2 to zero: if they are all equal to zero

then go to the next step, else increment the modifier value by one and go back to

step 2.

4. Set the collision count to zero.

5. Compute hash1 using as input to the SHA-1 function the following elements: the

final value of the modifier, the prefix, the collision count, the encoded public key

and all extensions. (We take only the 64 leftmost bits to form hash1)

6. Form an interface identifier using hash1 by replacing the three leftmost bits by SEC

value and by setting the u and g bits to zero (those bits are equal to the seventh

and eightieth bits if we start counting from the left).

7. Form an IPv6 address using the prefix (that was provided as input) and the calcu-

lated interface identifier.

8. Perform duplicate address detection (defined in chapter 1 and [5]), if a collision is

detected, increment the collision count by one and go to step 5.

9. Form the CGA parameter structure as it was defined in section 1.2.

1For more information about RSA key generation please view appendix B
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To make it possible for mobile nodes whose subnet prefixes change frequently to use SEC

values greater than zero, it has been decided not to include the subnet prefix in the input

of Hash2.

The collision count must not have a value greater than two. First, it is unlikely that

three collisions would occur and this precludes any DoS attack. Second, an attacker

searching to match a given CGA interface identifier with its own public key can try

all different values of a collision count without repeating the brute force search for the

modifier value.

Figure 2.3: CGA generation algorithm.
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2.4 CGA verification

When receiving a CGA address with its structure, the host can verify the address by

executing the following process but he will not be able to detect if the packet containing

the address is being replayed and will not also authenticate the sender unless the packet

is signed. The following steps must be performed to check the validity of the address (see

also Figure 2.3):

1. Check that the collision count is equal to 0, 1 or 2.

2. Check that the subnet prefix of the address is equal to the prefix value of the CGA

structure.

3. Compute hash1 by applying SHA-1 to the CGA parameters structure.

4. Compare hash1 to the interface identifier of the address while ignoring the three

first bits corresponding to SEC value and the bits corresponding to u and g.

5. Get the SEC value by taking the three leftmost bits of the interface identifier.

6. Compute hash2 by applying the SHA-1 algorithm to the CGA structure containing:

the modifier, nine bytes of zero, the public key and all extensions.

7. Compare 16*SEC leftmost bits of hash2 with zero.

If the verification fails at any step, the execution of the algorithm must be stopped. Else,

the verifier will have verified the address and the public key of the sender.

2.5 CGA signature

When a host wants to sign a message, he needs his private key (generated using RSA), his

CGA, the corresponding CGA parameter structure and must also have a 128 bits type tag

(which is a randomly chosen value, which prevents accidental type collisions with other

protocols). First, it concatenates the type tag value with the message to sign (respectively

from the left to the right) to form a new message which will be used next as input to the
2 signature algorithm (actually it is the only kind of signature used). Finally, it sends the

message, its signature and also the CGA parameter structure.

The node that receives the previous data will have to verify the signature. So it starts

by verifying the CGA using the algorithm presented in section 1.4. Then, it concatenates

the message received with the type tag to form the new message which is used as input to

the digest computation and finally it executes the RSA signature verification algorithm.

2For more information about RSA signature please view appendix B
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Figure 2.4: CGA verification algorithm.

The verifier must accept the signature as valid if only both the CGA verification and the

signature verification succeed.

When a node transmits a message and its signature, it does not send the type tag

value because it must be known by all the nodes belonging to the same network. The

only type tag used actually is the SEND one.

2.6 Support for multiple hash algorithm in CGA

The hash function used when generating a CGA is SHA-1. RFC 4270 [10] presents

some successful attacks against hash function. For instance, it has been verified that the

property of collision free of some hash algorithms is no more reliable. It means that an

attacker can find two messages that produce the same hash. So the non repudiation of a

signed message is no more trustworthy.

As CGA uses the SHA-1 only to create the interface identifier, the previous kind of

attacks is not feasible. “Essentially, all the current applications of CGA rely on CGA to
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protect a communication between two peers from third party attacks and not to provide

protection from the peer itself”[11] so there is no need to provide non repudiation property.

The need to enable multiple hash function support in CGA is motivated by the un-

known needs of future CGA applications which may become susceptible to attacks against

the collision free property of SHA-1. In addition, present attacks against hash functions

encourage providing the possibility of using new powerful hash function. When speaking

about implementing new hash algorithm with CGA, we must answer the following ques-

tion: where to encode the hash function being used? Here are some proposals of encoding

hash functions:

� The first idea that comes in mind is to include a new Type-Length-Value (TLV)

extension to the CGA parameters structure. This hash algorithm extension contains

the hash algorithm used. This kind of extension makes CGA susceptible to the

downgrading or bidding down attacks. In the bidding down attack, the attacker

generates the same target CGA using a weak hashing algorithm having as input

the CGA parameters structure (belonging to the target) and the corresponding

hash algorithm extension. Even if the target generated its address using a strong

hash algorithm. A way to counter this attack is to encode the CGA hash function

identifier in the address itself.

Figure 2.5: Bidding down attack.

� The second approach consists in using some bits of the interface identifier to encode

the hash algorithm version. This method is rejected because it weakens the CGA

generation as less hash information can be encoded in the interface identifier.

� The most interesting approach consists in using the security parameter SEC [11]

to encode the hash value used. As such, SEC bits carry information about brute
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force attack and hash function identifier. SEC is used to express the need of using

a new hash function and to fix the amount of bits of hash2 that must be equal to

zero (16*SEC leftmost bits of hash2 must be equal to zero). If the number of hash

functions increases, some SEC values will be reused (for example the SEC values

corresponding to the weakest hash functions). In any case, an implementation must

not simultaneously support two different meanings of SEC.

2.7 CGA and DHCP

CGA is created by a node using its public key and some parameters. It is a kind of

stateless address autoconfiguration. Its generation algorithm is complex and includes

some operations which are specially added to increase the cost of brute force attack

against this type of address.

In a CGA parameters structure, the modifier is a 128 bits random integer whose

computing operation consumes many resources. It also depends on the security parameter

SEC which is going to be used during the CGA generation.

The SEC value is chosen by the administrator of the network depending on the infras-

tructure and the level of security needed. Greater is SEC, more efficient is the provided

security, but also greater is the time and power consumption for the generation algorithm.

This generation function is too much consuming for mobile nodes having restricted com-

putational capacities and power. To overcome this problem, one proposed solution is to

delegate the computation of the modifier to a server which could be a DHCP server.

Using a server offers some new features such as asking nodes generating their own

addresses to register. So nodes belonging to the same network are authenticated. In

mobile networks where proxying is needed, a server can be used to notify end hosts about

the proxying of their SEND messages. The server informs the proxy about the different

CGA created and their corresponding parameters structure so it uses its private key to

sign messages coming from those addresses.

In this section, we present a proposal that is based on a DHCP server helping nodes

to generate CGA and providing a centralised administration [12] [13].

DHCP server can be used to:

� Inform nodes about the parameters used to conFigure a CGA (see Figure 2.6).

� Compute the modifier so the node will not have to do the exhaustive calculus. The

server can compute the modifier or redirect the CGA parameters to another host

which will do the computation. Next, the server can generate the CGA and send it

to the requesting node (see Figure 2.6).

� Register the generated address (see Figure 2.7).
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Figure 2.6: DHCP server sending CGA parameters.

Figure 2.7: Modifier computation by the DHCP server.

Figure 2.8: Generated address registration in the DHCP server.

� Forward proxying information.

There are some threats that appear due to the fact of using DHCP with CGA, we can

list for example:

� A malicious node propagates in DHCP message a SEC value providing less security

than it would be desired by the network administrator.
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� A malicious node overloads the server with a number of requests for generating

modifiers with different values of SEC trying to cause denial of service especially

with the SEC greatest values (7 and 6). This attack is very difficult to realise thanks

to the limited number of SEC values (8).

� An attacker (spoofing a DHCP server) requests from a node to generate different

modifiers (when they are generated locally) using different requests containing di-

verse SEC values. The attacker aim is to cause a denial of service.

� A malicious node generates fake messages carrying fake information to exhaust proxy

resources.

� An attacker overloads the DHCP server with address registration requests until

causing denial of service.

Conclusion

In this chapter, we have seen how to generate a CGA and how to verify it. We have

also explained the possible extension that has been proposed to enhance the possibility

of using another hash function than SHA-1 during CGA generation. Concerning the use

of a DHCP server to help nodes acquiring a CGA, it still only a proposal but it could

become a reality especialy in networks using CGA with power and computational limited

devices.
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Chapter 3

CGA usage in multihoming and

mobile networks

Introduction

Initially CGA was introduced to be used with SEND in order to secure ND. Actually

CGAs are being adapted for usage in mobile networks where ND proxying is needed and

in multihomed networks where a node can be connected to many internet service providers

(ISP) at the same time.

In this chapter, we first introduce how CGA was adapted to be used in multihomed

networks with Hash Based Addresses (HBA) [14]. Next we present the different solutions

proposed to enable secure ND proxying.

3.1 CGA and HBA usage in multihoming networks

In this section we describe HBA and how to use them with CGA.

3.1.1 HBA presentation

The concept of HBA has been introduced specially for nodes belonging to multiple net-

works at the same time. In this case, a node has multiple addresses with multiple prefixes.

The threats that affect multihoming networks are basically redirection attacks which

could be divided into two groups: hijacking attacks that consist on stealing ongoing or

future communications from a victim and flooding attacks.

To counter these threats, we use HBA with the protocol SHIM6 [15].

The SHIM6 is a layer 3 approach and protocol for providing locator agility below the

transport protocols so that multihoming can be provided with failover and load sharing

properties. It introduces a new approach to associate locator as upper-layer identifiers. In

fact, the identifiers name space corresponds to the locator selected in the initial contact
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with the remote peer as the upper layer identifier (ULID). Even if it happens that the

locator changes due to a failure, the upper protocol stack elements will continue to use

this upper level identifier without changes.

SHIM6 is used by a host which has multiple IPv6 addresses to setup state with other

hosts. This state can be used later to failover to a different locator pair. This protocol

allows existing communications to continue when a site that has multiple connections to

the internet experiences an outage on a subnet.

HBA binds together multiple IPv6 addresses that belong to the same node. It contains

information about the different prefixes. The technique used consists on including a hash

of the permitted prefixes in the low order bits of the IPv6 address. Its motivation is to

provide a mapping between the ULID and the different locators.

For example, we consider a node having three ISP. It will have three addresses having

three different prefixes: A, B and C. To create the different HBAs the following actions

have to be executed:

1. Create a list of prefixes: L = A, B, C

2. Choose a random value called modifier.

3. Compute the interface identifier for every prefix from a hash value having as input:

the value of the modifier, the prefix and L.

4. Create the IPv6 addresses as presented in Figure 3.1.

Figure 3.1: Example of three HBA.

In next sections, we detail HBA generation algorithm and then expose a solution using

HBA and CGA together.

3.1.2 HBA generation algorithm

When generating a HBA these steps could be followed (this algorithm has been defined

in [16] and it is used to generate only one HBA):

1. Choose a security value SEC.

2. Compute C = SHA-1 (hba ‖ SEC ‖ Subnet Prefix ‖ Modifier ‖ P1 ‖ . . . ‖ PN), hba

is a string and P1 . . . PN are parameters.
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3. Compute G = 64 + 20 * SEC rightmost bits of C, if the 20 * SEC leftmost bits of

G are zero, go to the following step. Else, compute a new modifier and go to step 2.

4. Create the interface identifier by taking the rightmost 64 bits of C and putting the

u and g bits to one and the bits 63 and 64 to SEC value.

5. Create the IPv6 address: @ = Subnet Prefix ‖ interface identifier.

In a multihoming network the parameters (P1 . . . PN) are remplaced by the prefixes of

different ISPs.

3.1.3 HBA/CGA compatibility

The HBA technique uses the interface identifier of an IPv6 address to encode information

about the multiple prefixes used by a multihomed host but it does not contain crypto-

graphic information like CGA.

There are at least two reasons to provide HBA/CGA compatibility:

1. If HBAs are not compatible with CGAs, multihoming node will not be able to do

secure neighbor discovery using SEND. HBA provides only fault tolerance (using

SHIM6) but it does not provide security (using SEND).

2. CGA provides additional features that can not be achieved using HBA only: it is

impossible to add new prefixes to the original set of prefixes after generating the

set. So the new prefix will not be available for established communications and only

new ones benefit from it.

The algorithm of HBA/CGA generation has as input the public key of the generating

node and the list of prefixes belonging to different ISPs. The node using HBA/CGA tells

its peers to use HBA verification when one of the addresses of its HBA/CGA set is used

as locator or to use CGA verification when a new address that does not belong to the

HBA/CGA set is used as locator.

The parameter introduced to bind HBA and CGA is a multi-prefix extension for CGA

parameters structure.

The HBA set will be identified by a CGA parameter data structure that contains a

multi-prefix extension.

Generation of a HBA is like using the CGA parameters structure but with a random

number replacing the public key.

The multi-prefix extension has a TLV format (Type-Length-Value) and has the struc-

ture presented in Figure 3.2.

� The P bit is used in the extension to indicate whether a public key is used or not

in the HBA/CGA parameters structure.
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Figure 3.2: Multi-prefix extension for CGA parameters structure.

3.1.4 HBA/CGA generation algorithm

This algorithm is taken from the CGA generation process but it has been modified to

enhance the possibility of creating many CGAs using the multi-prefix extension. It takes

as input: the nodes public key, a vector of n 64 bits prefixes and a SEC value. It has the

following steps (see Figure 3.3):

1. Generate the multi-prefixes extension and the vector of n 64 bits prefixes. If a public

key is given then the P flag is set to one.

2. Choose a random modifier.

3. Compute hash2 using as input to the SHA-1 function the following elements con-

catenated respectively from the left to the right: the modifier, nine bytes of zero

(prefix field and collision count set to zero), the public key (DER encoded), and

extensions. (We take only the 112 leftmost bits to form hash2)

4. Compare the 16*SEC leftmost bits of hash2 to zero: if they are all equal to zero

then go to the next step, else increment the modifier value by one and go back to

step 3.

5. Set the collision count to zero.

6. For i from 1 to n (number of prefixes) do

(a) Compute hash1[i] using as input to the SHA-1 function the following elements:

the final value of the modifier, the prefix[i], the collision count, the encoded

public key and the extension. (We take only the 64 leftmost bits to form hash1)

(b) Form an interface identifier using hash1[i] by replacing the three leftmost bits

by SEC value and by setting the u and g bits to zero (those bits are equal to

the seventh and eightieth bits if we start counting from the left).

(c) Form an IPv6 address using the prefix[i] (that was provided as input) and the

calculated interface identifier.
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(d) Perform duplicate address detection, if a collision is detected, increment the

collision count by one and go to step 6.

(e) Form the CGA parameter structure using: the final value of the modifier, the

prefix[i], the final value of the collision count, the public key and the multi-

prefixes extension.

Figure 3.3: HBA/CGA generation algorithm.

3.1.5 HBA/CGA verification

To verify a HBA based on CGA, we must start by executing the verification process

presented in section 2.4. This verification aims to prove the binding existing between

the address and the corresponding CGA parameters structure. Such verification is useful

when the goal is creating a binding between the public and the HBA.

Next, we have to verify that the HBA belongs to a HBA set associated to a given CGA

parameters data structure. A HBA set is identified by a CGA parameter data structure

that contains a multi-prefix extension.
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To verify that a HBA(1) belongs to a HBA set associated with another HBA(2), we

verify that the HBA(1) prefix is included in the prefix set defined in the multi-prefix

extension, then we substitute the prefix included in the subnet prefix field (of the CGA

parameters structure associated to HBA(2)) by the prefix of the HBA(1) and we perform

the CGA verification process defined in section 2.4.

The inputs to the HBA verification process are a HBA and a CGA parameters struc-

ture. It is described by the following steps and Figure 3.4:

1. Verify that the HBA prefix is included in the prefix set defined by the multi-prefix

extension.

2. Run the CGA verification process described in section 1.4 after changing the subnet

prefix field with the prefix of the address being approved.

Figure 3.4: HBA/CGA verification algorithm.

3.2 CGA and ND proxying

In IPv6 mobile environment [17], it is necessary to provide ND proxying. The proxy

known as Home Agent performs address defence which consists in protecting the mobile

nodes address when it leaves the home link. This allows other nodes belonging to the

same link to continue sending traffic to the node. It also prevents any new arriving node

from claiming the mobile nodes address [18].

The ND proxy is responsible for answering NS that are addressed to a mobile node

which left the link. The proxy answers using a NA message whose target address field

contains the mobile node’s address. However the IPv6 address and the link layer address

correspond to the proxy’s ones.

In this section, we take a look at neighbor discovery (ND) proxying [19]. We explain

why it is not possible to use SEND to secure ND proxying. At the end, we discuss the

proposed solution for securing ND.

3.2.1 Proxy behaviour

When a proxy receives an IPv6 packet, it updates its interface cache by adding an entry

for the sender. The way it proceeds this packet depends on its type. It focuses on if it
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negotiates link layer address or not, because only packets carrying information about link

layer addresses are going to be proxied such as neighbor solicitation message packets.

When a proxy receives multicast packets on one of its interface, it forwards it un-

changed on all other proxy interfaces on the same link. When it receives ordinary unicast

packet, it forwards it to its interface for which the next hop address appears in the neigh-

bor cache (if it is not locally destined).

The link layer header and the link layer address within the payload for each forwarded

packet will be modified as follows:

� The source address will be the address of the outgoing interface.

� The destination address will be the address in the neighbor entry corresponding to

the destination IPv6 address.

� “The link layer address within the payload is substituted with the address of the

outgoing interface [19]”.

3.2.2 ND proxying

Two scenarios exist for ND proxying as described below.

3.2.2.1 IPv6 mobile nodes and ND proxy

A proxy has to deliver packets to a node whether it is present or not in the home network.

In mobile IPv6 network, the proxy corresponds to the home agent. It answers to NS

destinated to a node which left the link. It responds using a NA message whose target

address field contains the mobile node address but the IPv6 address and the link layer

address correspond to the proxy ones(see the example in the Figure 3.5).

In this case, no solicitations are proxied because the proxy generates the advertisement

itself. The proxy needs to override existing valid nodes cache entries (which could be

protected by SEND) when a host leaves its home network. Next, it uses its link layer

address to redirect the flow of packets in the tunnel connecting the home agent/proxy to

the mobile node.

3.2.2.2 Bridge like ND proxies

In this case, the proxy takes place between two segments, it forwards messages while mod-

ifying their source and destination MAC addresses and rewrites their link layer address

options and override flags.

The bridge like ND proxying (Figures 3.6 and 3.7) has been defined in [20]. It allows

also router discovery operation based on the exchange of a RS and RA messages.
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Figure 3.5: Example of ND proxying in mobile IPv6.

Figure 3.6: Example of bridge like ND: NS/NA messages.

3.2.3 Securing ND proxying

All proxied messages presented previously are not secured because they are based on

the ND protocol which is itself insecure. So all attacks against ND are still feasible

against proxied ND. In addition, some malicious nodes can spoof the proxy identity and

cause denial of service attacks. For instance, an attacker which executes spoofing will

not forward the messages which the proxy is supposed to forward causing unreachability

between the communicating nodes.

One approach consists on using SEND messages to secure proxied ND but this can not

be done without changing SEND or the proxying procedure. In fact, a proxy has not the

public and private key pair used to generate the mobile node address and to sign different

SEND messages. So the fact of rewriting the message (which is going to be forwarded)

breaks the digital signature of the generating node.
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Figure 3.7: Example of bridge like ND: RS/RA messages.

In the next sections, we discuss two proposals to secure neighbor discovery proxying

based on CGA.

3.2.3.1 Multi-key CGA

We have seen previously the two major ways of proxying:

� Proxying of a mobile node s home address by its home agent: in this case the mobile

generates a certificate authorizing the home agent to proxy the address.

� Proxying by a bridge approach: in this case the proxy obtains a certificate from the

router authorizing it to proxy.

The problem with these methods is that a querying node can discover from the cer-

tificate and its parameters whether the message is generated by a proxy or by the node

itself. An attacker could find out whether or not the owner of the address was on its home

link. So it can try to spoof the address while its owner is off link.

The idea proposed to provide anonymity of the signer consists in modifying SEND

signature option. A signer has to use a kind of signature which will not permit the

signature verifier to determinate who signed the message but it will be able only to verify

the validity of the signature. The used signature scheme is called ring signature1 [21].

In a ring signature scheme, the signer uses its own private key and the public keys

of a possible group of signers that it chooses randomly (even without their agreement).

The ring signature is signer-ambiguous which means that the verifier should be unable to

determine the identity of the actual signer in a ring of size r with a probability greater

than 1/r[21].

1Ring signature algorithm is detailed in appendix C
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Using this kind of signature permits a mobile node to use its own private key and a

proxy public key to sign all its proxied messages. An attacker will not be able to determi-

nate who signed the message and consequently the state of the mobile node which he is

targeting. The node uses in that case an RST (Rivest-Shamir-Truman) ring signature[21]

option instead of a standard SEND RSA signature option. In addition, it will add an

RST signature suboption in the CGA parameters option. So the CGA parameters option

will contain the public key of the node and the public key of the proxying router in the

RST signature suboption. It generates a new kind of CGA called Multi-key CGA2 [18].

The multi-key CGA generation algorithm has the same steps than the CGA generation

algorithm but it includes only one change in step 2 concerning the hash2 defined in chapter

2 section 2.3. Hash2 is computed using an SHA-1 hash over the structure formed by: the

modifier, 9 bytes of zeros, a hash value having as input the nodes and routers public keys

instead of the DER-encoded nodes public key and some extensions (if any).

The verification algorithm also includes one modification concerning the step 6 of the

CGA verification algorithm defined in section 2.4 of the previous chapter. This change is

related to hash2 computation and verification.

Before the CGA or signature verification, the verifying node must check that the

routers public key in the CGA parameter option matches a certified public key from a

router on the link. This ensures that the two keys used belong to two legitimate members

of the group.

3.2.3.2 Authority delegation approach

Proxy neighbor discovery requires a delegation of authority on behalf of the absent address

owner to the proxy. Without this authority, other devices on the link have no reason to

trust an advertiser [20].

Authority delegation can be provided using two ways. First, routers that are certified

by the routing authority using SEND can be also authorized and certified to proxy traffic

for absent node on the link. Second, node which has CGA can sign the proxys public

key and address so that it can be trusted. The certificate signed by the proxying node is

passed to the proxy to use it as a proof of trust. It can be sent when sending the binding

update message to the proxy (this message is used to indicate to the home agent that the

node is absent). “In both methods, the original address owner’s advertisements need to

override the proxy if it suddenly returns, and therefore timing and replay protection from

such messages need to be carefully considered [20]”.

2For more information about multikey-CGA options and RST signature please refer to appendix C
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Conclusion

In this chapter we have seen the two other possible usages of CGA in addition to its usage

with SEND. In the following chapters we are going to study the performance of CGA based

on its CPU consumption and robustness. We will also introduce a new improvement to

CGA to make its generation faster.
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Chapter 4

CGA security

Introduction

SEND was introduced to secure ND messages against different attacks but it seems to be

itself vulnerable. In fact some attacks targeting the protocol SEND have been discovered.

In addition, there are some steps in CGA generation and verification algorithms that

could make this kind of address vulnerable to some attacks having as aim to make a DoS

of a host or to realise a collision with the cryptographicly generated interface identifier.

In this chapter we start by discussing SEND robustness to attacks and then we expose

CGA security level.

4.1 Attacks against SEND

In this section, we study some attacks that could be done against SEND.

4.1.1 ND DoS attack targeting routers

Attackers overload the router with packets for non existing addresses on the link, this

kind of attack can be done using zombies like in distributed denial of service (DDoS). So

the router becomes busy by answering NS for non existing addresses and is not available

to legitimate nodes. A DoS is caused.

To counter this attack, clever cache management and limitation of the amount of state

reserved to unresolved solicitations must be implemented in each router.

4.1.2 Replay attacks

While the timestamp delta value (defined in paragraph 5.3.4.2 of [2]) has not expired,

replay attacks are still possible. In order to clarify this idea we present a successful replay

attack against SEND, which is presented in [22].
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The attack consists in listening all NS messages used in the DAD procedure, those

messages are characterized by the use of the unspecified address as source address. They

contain also the following four options: CGA, RSA signature, timestamp and nonce. To

make this attack successful, the attacker only has to replay immediately the packets. In

fact, they have a valid RSA signature, a correct timestamp and nonce is not verified in

this case.

The timestamp is correct if the packet is replayed before the maximum timestamp

delta value. DAD process lasts ”DupAddrDetectTransmits*RetransTimer” milliseconds.

The default values of DupAddrDetectTransmits and RetransTimer are respectively 1 and

1000. So to make the attack successful, the packet must be replayed during the next

second:

Replay time < Sending time + 1 second

In this case, a target receiving a valid NS containing the address that it tried to acquire

during the DAD, won’t use it as address. So if the attacker replays the packets of every

NS coming from the target in a DAD process, he will cause a DoS attack. One solution

to counter this attack is to accept the address after three negative trials because the

probability of three consecutive collisions is of the order of 1/1018 (for more details about

the calculus of the probability see [22]).

4.1.3 Resource overloading targeting nodes

Some attacker tries causing a DoS attack by overloading the nodes. For example, sending

to a host a large number of unnecessary CPA will make him do exhaustive computations,

with exhaustive battery consumption. That will highly likely result in a denial of service.

To counter this attack, we could define a limit of resources to be used when treating

certificates. So when this limit is reached, packets are discarded.

4.2 CGA security

The purpose of CGAs is to prevent spoofing of existing IPv6 addresses by binding cryp-

tographic information (the public key) to the address.

An attacker can create a new CGA using a subnet prefix and a public key (its own

public key or a target one) but he will not have the possibility to use it, because as we

mentioned it, CGA has been developed to be used with SEND which imposes to use CGA

option with RSA signature option. So the attacker will have to sign the message that he

is willing to send. To do a signature he will need a private key but it is very difficult to

get the private key corresponding to a target public key especially when trying to find
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a collision of the hash value hash1. In this section we discuss some CGA threats and

possible vulnerabilities.

4.2.1 CGA parameters and valid addresses

For each valid CGA parameters data structure, there are 4×(SEC+1) different CGAs

that match the value. In fact, the interface identifier, which has a length of 64 bits, has

only 59 bits that have to be verified because we will not verify the 3 bits of SEC and the u

and g bits. The action of decrementing the SEC value does not invalidate the address and

u and g bits will give us four different values of valid CGAs corresponding to the same

CGA structure. For example(Figure 4.1), if SEC = 2, we will verify that 32 leftmost bits

of hash2 are equal to zero so indirectly we will verify also in this case that 16 leftmost

bits of hash2 are equal to zero (this is the case where SEC = 1), and we validate also

the case where SEC = 0. If we add the four possible values of the interface identifier

introduced by u and g for every SEC value, we will have a total of 4×(SEC+1) valid

CGAs corresponding to the same CGA structure.

The number 1 in the formula 4×(SEC+1) represents the case where SEC is equal to

0.

Figure 4.1: SEC, u and g bits influence on valid CGA creation.

4.2.2 CGA and signature option

CGA usage must be accompanied by the use of a signature option. In fact, CGA without a

signature does not offer security. An attacker will be able to spoof other nodes addresses.

It can also use a target’s public key to create a new CGA and executes then the ND

attacks described in section 1.1.4.

4.2.3 CGA and collisions

As computers become faster, an attempt to search a collision against the 64 bits of the

interface identifier could be done by an attacker. But the use of the prefix field in the
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CGA structure will help to prevent in some way this attack because the attacker will have

to create different databases for each subnet prefix while attempting brute force attack.

Before talking about collision attacks we make a remind of the mathematical concept

of©. Let f and g be two functions taking as input a variable n ∈ N, f(n)=©(g(n)) means

that it exists n0 ∈ N and C ∈ R∗
+ such that for every n superior to n0 we have f(n) is

inferior to C multiplied by g(n):

f(n)=©(g(n)) ⇐⇒ ∃ n0 ∈ N and ∃ C > 0 and n > n0 such that 0 ≤ f(n) ≤ C × g(n)

When we want to identify the complexity of an algorithm we try always to compare

it to a mathematical functions using ©.

The cost of the brute force attack against the interface identifier generation algorithm

depends on the identifier’s length which is equal to 64 bits. Due to the fact that the 3 bits

of SEC and the 2 bits u and g are not verified and have well known values the interface

identifier generation cost is depending only on 59 bits. Considering the fact that every

bit can have only two values 1 or 0, the brute force attack cost becomes ©(259).

The input to the second hash function (hash2) is modified (by changing the modifier

value) until the leftmost 16×SEC bits of the hash value are zero. This increases the cost

of brute force attack and the cost of the generation by a factor of 2(16×SEC). So the cost

of creating a CGA parameters data structure that binds the attacker s public key with

somebody else s address is increased from ©(259) to ©(2(59+16×SEC)).

The security parameter SEC decreases also the correlation rate between addresses

created using the same initial CGA parameters structure. In fact the address created

using SEC equal to 1 will have a correlation rate, relatively to the initial address which

has a SEC equal to 0, greater than the one generated with SEC equal to 2. The next

table gives an idea about correlation of addresses having the same parameters and inputs

to CGA generation algorithm and only differs with SEC value.

SEC value 0 1 2
Correlation rate 1 0.508475 0.445763

Table 4.1: Correlation rate of addresses having same initial CGA parameters structure
and different SEC values.

These values have been computed using as input to the CGA generation algorithm an

RSA public key with 1024 bits length. We took 10 samples to make the average of the

correlation rates. We remark that the correlation rate of a CGA having a SEC equal to

2 is inferior to the one relative to address with SEC equal to 1. So for the same initial

CGA parameters structure the fact of trying a collision of two addresses by modifying

only the SEC value is impossible and the collision rate of these addresses decreases in

function when SEC value increases.
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4.3 HBA/CGA security

The goal of HBAs (presented in 3.1) is to create a group of addresses that are securely

bound, so that they can be used interchangeably when communicating with a node. If

there is no secure binding between the different addresses of a node, many attacks can be

executed against HBA such as redirecting the communications of a victim to an address

selected by the attacker.

When using HBAs, a node using address A can redirect the communication to a new

address B if and only if B belongs to the HBA set of A. If an attacker wants to redirect a

communication addressed to HBA1 to an address IP-A, he has to create a CGA parameters

data structure that generates a HBA set containing both HBA1 and IP-A. In order to

generate the required HBA set, the attacker has to find a CGA parameters structure

whose multi-prefix extension contains HBA1 and IP-A. So to realise this, the attacker

needs generating brute force attack which implies the generation of multiple HBA sets

with different parameters (for instance with different modifiers).

Thanks to the use of CGA, the cost of generating HBA has the order of©(259+16×SEC).

HBA can not prevent man in the middle attacks because an attacker may change

addresses used in the communication by adding or removing prefixes. The attacker has

to make sure that CGA parameters structure and the HBA set are changing accordingly.

Conclusion

In this chapter we presented some security aspects of the CGA. The attacks against CGA

such as brute force attacks still theortical and have not been implemented yet which

encourage the use of CGA in some constrained networks such as mobile networks. But

when we speak about constrained networks we speak always about time. So in the next

chapter we are going to study the CGA time performance.
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CGA performance and improvement

Introduction

In this chapter we start by presenting the tools that have been used and programs that

have been developped to evaluate the CGA time performance. Then we introduce the

different tests that were realised and the results that we got. In the end we present the

improvements that we made in the CGA generation algorithm and SEND protocol by

replacing the RSA keys and signature by an elliptic curve cryptographic (ECC) key pair

and elliptic curve digital signature algorithm (ECDSA).

5.1 Algorithms

In this section, we present all the tools that we used and the different algorithms that we

developped.

5.1.1 Tools presentation

While programming the CGA generation algorithm we used some interesting tools as

OpenSSL library which contains all the cryptographic functions that we need as hash

and signature functions. In addition we used Maemo which is an operating system for

the Nokia Internet Tablet line of handheld computers. It was originally named ”Internet

Tablet OS”. Maemo was used when adapting CGA generation algorithm to Tablet PC.

5.1.1.1 OpenSSL

The OpenSSL is an open source toolkit implementing the Secure Sockets Layer (SSL

v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-strength general

purpose cryptography library[23].

The version of OpenSSL that we used is 0.9.8e. We used the functions that:
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� seed the pseudo random generator because it is a necessary step before an RSA key

generation.

� generate and check an RSA or ECC key pair.

� generate and verify an RSA or ECDSA signature.

� generate an error message.

5.1.1.2 Maemo

The development environment for maemo running on the desktop is called maemo SDK

[24]. It is only installed and run on a GNU/Linux operating system. Supported GNU/Linux

distributions for maemo SDK are currently Debian and Ubuntu, but installing maemo

SDK is also possible for other distributions. On other operating systems such as Win-

dows, a VMWare image can be used to provide a working GNU/Linux environment. The

maemo SDK creates a sandboxed maemo development environment on a GNU/Linux

desktop system largely built on a tool called Scratchbox [25]. In most ways, this environ-

ment behaves like the operating system on the device, but with added development tools.

This means that the development process is very similar to a normal desktop GNU/Linux,

and the kinds of embedded development, such as cross-compiling, are handled transpar-

ently by Scratchbox.

Scratchbox is a specially packaged environment, providing the necessary tools and

also isolating the development efforts from the real GNU/Linux system. Scratchbox also

makes it easy to perform cross-compiling, which means building the software into a binary

format that is executable in the target device.

While working inside Scratchbox, programs will be running in a changed root environ-

ment (chroot). In GNU/Linux systems, it is possible to change the part of file paths that

a process will see. Scratchbox uses this mechanism on start to switch its root directory

(/) to something else than the real root. This is part of the isolation technique used.

Because of this, the environment is called a sandbox.

5.1.2 CGA generation and verification algorithms

We have developped the CGA generation algorithm using the C language. The generation

or verification process is done using the same command but different options.

The program is composed of the following files:

� cga.c contains all the steps of the CGA generation algorithm and the main function.

� cgah.c contains all the functions1 used in cga.c such that: RSA or ECC key gener-

ation, final modifier calculus and the CGA verification function.

1The list of functions that have been developped during this project is given in appendix E
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� cgah.h is the headers file which contains all the prototypes of the previous functions

instead of all the defined structures and all imported libraries.

� hash.c contains all the hashing functions (SHA-1, SHA-256, RIPEMD and TIGER).

� hash.h contains the prototypes of the hashing functions.

� tiger.c contains TIGER hash algortihm because it is not included in OpenSSL

library.

� tiger.h contains TIGER algorithm prototypes.

� sboxes.c is used by the tiger.c source code.

� makefile is the installation file because it contains the compilation command gcc

with its different arguments like lssl,Wall . . .

The command name is cga and it has the following options:

� -a or --algorithm is used to indicate which algorithm to employ when creating the

key pair which is going to be used in the CGA generation process.

� -s or --sec is used to enter the choosen SEC value.

� -p or --prefix contains the prefix to be used in the address (we can enter full

address and the program will take only the prefix).

� -k or --key indicates the key length in bits. It is equal to the modulus length when

RSA is being used and to the name of the elliptic curve when ECC is used.

� -h or --hash is used to indicate which hash algorithm to use when computing

hash1 and hash2 values. We have the choice between:RIPEMD, SHA-1, SHA-256

and TIGER [26].

� -r or --rsa public key gives the exponent to be used to compute the RSA public

key.

� -g or --generate does not need an argument. It indicates that we are going to

generate a CGA.

� -v or --verify does not need an argument. It indicates that we are going to verify

a CGA.

� -l or --list curves is used to list the possible elliptic curves that can be used and

their correspondant number (which is their name).
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� -L or --List hash algo lists the possible hash algorithms that could be used to

compute hash 1 and 2.

� -H or --help explains all the options.

When using the generation command the result will be stored in three different files:

� The first file contains the created CGA.

� The second contains the CGA and its parameters structure in binary format.

� The third one contains the key used to create the CGA.

When we want to generate a CGA using an RSA public key having an exponent equal

to 3, a modulus length equal to 1024, a SEC value equal to 1, abcd:: as prefix and SHA-

256 as a hashing algorithm, we use the following command:

./cga -g -a rsa -k 1024 -r 3 -s 1 -h sha256 -p abcd::

To verify it, we use: ./cga -v -h sha256 and the program is asking for the name of the

file where we have stored the CGA and its parameters structure then it is executing the

verification algorithm over this structure using the stored CGA.

5.1.3 Test algorithms

We have changed the general algorithm presented in the previous section specially for the

tests. We added some functions corresponding to RSA or ECDSA signature generation

and verification because we need them in our tests. In addition, we have fixed the value of

some variables such that the public key exponent to 3 or 216-1. We have also programmed

a CGA generation algorithm corresponding to every hash function (SHA-1, SHA256,

TIGER, RIPEMD) able to be used in the generation process. We have also integrated

the CGA verification function in the same algorithm with the generation one. So our test

algorithm is going to perform the following tasks:

� Create an RSA or ECC key.

� Choose a random value for the modifier and computes its final value as defined by

the CGA generation algorithm.

� Create the CGA.

� Generate a RSA or an ECDSA signature.

� Verify the created CGA.

� Verify the signature.

The previous algorithm can be launched for example by the following command:

./cga -a rsa -k 1024 -s 0 -p abcd::
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5.2 Tests and results

In this section we are going to discuss the results that we have found when testing CGA

generation using RSA key. subsectionTesting context To evaluate the CGA generation

and verification time, we have used an assembly code that evaluates the CPU usage time

of a function. Processor time is different from actual wall clock time because it does not

include any time spent waiting for Input/Output or when some other process is running.

Let us suppose that we are going to evaluate a function duration. The assembly code

gets the number of ticks before the function is starting and gets the number of ticks

at the end of the function from the processor internal counter (a tick is a system clock

pulse). The latter is incremented at every clock pulse since the system is booted. Then

we calculate the number of ticks relative to this function by computing the difference of

the two previously returned values. Finally we devide the function’s ticks number by the

processor frequency that we get from the cpuinfo under proc directory. The assembly

mnemonic used to get the ticks counter value is RDTSC: Read Time-Stamp Counter.

To make the CPU usage time evaluation the most accurate as possible, we start the test

in what is called “single mode”. “Single mode”helps avoiding that CPU time consumed

by some other (interrupting) programs is taken into account into the measurement.

All the next presented results are the average of ten thousands samples.

5.2.1 Computer results

Now we are going to present the different results that we found. In all this chapter, when

we speak about RSA key length, we are talking about the modulus key length.

5.2.1.1 CGA generation time when SEC = 0 or 1

In this paragraph, we discuss the different generation results related to CGA generation

when the CGA security value SEC is equal to 0 or 1. The tests have been done in a

Pentium 4 with a 2593 MHz clock frequency.

SEC value 0
RSA key length (bits) 1024 2048 3072 7680
CGA generation time (sec) 0.163964 1.055813 3.457668 92.610627

SEC value 1
RSA key length (bits) 1024 2048 3072 7680
CGA generation time (sec) 0.281018 1.194061 3.601473 92.899951

Table 5.1: CGA generation time using RSA key (in seconds).

The CGA generation time increases in function of the SEC value. It is due to the fact

that for SEC values different from zero, we need to compute the final modifier value. In

08015-LOR



Chapter 5. CGA performance and improvement 50

fact, in chapter two, when we detailed the CGA generation algorithm, we said that the

final modifier value is computed by incrementing the initial modifier, which is a 128 bits

random number, by one and computing hash2 over the CGA parameters structure until

finding that the 16 × SEC leftmosts bits of hash2 are equal to zero. So when SEC is

equal to 1, we computed the final modifier value by incrementing the initial one by one

until verifying that the 16 leftmosts bits of hash2 are equal to zero.

In Table 5.2 we present the CPU consumption time needed to generate an RSA key.

Including the key generation time evaluation helps in studying the possibility of creating

a new key pair every time a new CGA is going to be generated. In fact CGA specification

[3] does not suppose that we create a new key when generating a new address. However

creating a new key when generating a new address helps in protection against brute force

and collision attacks where an attacker aims to get the same target’s interface identifier.

The attacker tries to find a collision on the target key pair using CGA parameters structure

or to find the target private key through brute force attack. Generating a new key pair

increases the complexity of those attacks especially when we suppose also that CGA are

generated periodically.

SEC value 0
RSA key length (bits) 1024 2048 3072 7680
RSA key generation time (sec) 0.163959 1.055806 3.457661 92.610627

SEC value 1
RSA key length (bits) 1024 2048 3072 7680
RSA key generation time (sec) 0.163784 1.034586 3.398753 92.511586

Table 5.2: RSA key generation time (in seconds).

Here we remark only that the key generation time increases with the key length this

is logical referring to RSA key generation algorithm.

We remark also that we presented two RSA key generation time, one for SEC equal

to 0 and one for SEC equal to 1. It is due to the fact that we did the test with SEC equal

to 0 before those with SEC equal to 1. We had the possibility to use the same generated

key to compute a CGA one time with SEC equal to 0 and the other time with SEC equal

to 1. The interest of doing every test separately is to verify that the average value over

the ten thousands samples will be around the same value. It is a way to verify that the

generation times that we got are valid.

To compare the key generation time and the address generation time presented in

Table 5.1 in the case of sec equal to 0, we can use Table 5.3.

We can deduce that CGA generation time is very similar to the RSA key generation

time when SEC is equal to 0. In fact, the global CGA generation time is equal to the

sum of: RSA key generation time, final modifier generation time (which is null in our case

because SEC is equal to 0 and the hash1 computation time). So in this case the difference
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RSA key length (bits) 1024 2048 3072 7680
CGA generation time (sec) 0.163964 1.055813 3.457668 92.610627
RSA key generation time (sec) 0.163959 1.055806 3.457661 92.610616

Table 5.3: Comparison between CGA generation and RSA key generation times when
SEC = 0 (given in seconds).

between the CGA generation time and the RSA key generation time will be the hash1

computation time. The table 5.4 confirms the result when SEC is equal to 1.

RSA key length (bits) 1024 2048 3072 7680
Final modifier generation time (sec)[row 2] 0.117230 0.159470 0.202715 0.388356
RSA key generation time (sec)[row 3] 0.163784 1.034586 3.398753 92.511586
row 2 + row 3 (sec) 0.281014 1.194056 3.601468 92.899942
CGA generation time (sec) 0.281018 1.194061 3.601473 92.899951

Table 5.4: Final modifier generation time influence in CGA generation time when SEC =
1(in seconds).

We deduce also from Table 5.4 that the final modifier generation time increases with

the key length.

As a general conclusion to the previous tables, the CGA generation time is almost

equal to the time of the key generation and the final modifier value generation when SEC

value is less than 2.

5.2.1.2 CGA verification

CGA verification time is very low as depicted in Table 5.5.

SEC value 0
RSA key length (bits) 1024 2048 3072 7680
RSA key generation time (sec) 0.000004 0.000005 0.000005 0.000009

SEC value 1
RSA key length (bits) 1024 2048 3072 7680
RSA key generation time (sec) 0.000007 0.000008 0.000009 0.000016

Table 5.5: CGA verification time (in seconds).

We remark that CGA verification time increases with key length and SEC values.

In fact CGA verification is composed of two hashs (1 and 2) computation over CGA

parameters structure. When the length of parameters structure increases (with key length

or modifier usage), the hash generation time increases too.
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5.2.1.3 CGA generation time when SEC = 2

In Table 5.6 we present 10 samples of a CGA generation time when SEC is equal to 2. The

tests have been done in a pentium 4 computer having a 2992.697 MHz CPU frequency.

CGA generation time (sec) Final modifier generation time (sec)
Key length (bits) 1024 2048 1024 2048
Test 1 9865.558780 22621.214970 9865.460238 22620.832288
Test 2 1320.573976 663.083762 1320.510563 662.108090
Test 3 1677.093357 6733.043070 1677.975211 6732.396501
Test 4 5484.136953 14405.533876 5484.024933 14404.837514
Test 5 1596.026161 7531.830884 1596.891070 7530.149370
Test 6 10603.389679 6035.378657 10603.245553 6034.884386
Test 7 27795.709438 5271.830884 27795.534816 5270.497470
Test 8 365.078389 20920.210429 365.973911 20919.778124
Test 9 7506.891760 23172.781460 7506.88426 23171.981597
Test 10 1785.414634 2302.037400 1785.328066 2301.223732

Key length (bits) 3072 7680 3072 7680
Test 1 8630.801918 8284.639799 8629.184128 8238.988784
Test 2 1760.865971 519.085431 1759.786742 305.810149
Test 3 25472.998112 20702.312855 25472.038909 20609.590118
Test 4 3556.567461 5424.954255 3552.404819 5384.277676
Test 5 14877.220154 3186.761698 14876.418296 3001.611502
Test 6 2573.097311 13630.129774 2570.434226 13527.742317
Test 7 13345.505099 13557.981281 13344.499211 13557.981281
Test 8 4319.385108 6570.039450 4316.371351 6540.853194
Test 9 8943.805630 1598.470785 8945.085357 1496.811630
Test 10 5391.707009 24259.096903 5388.195878 23969.804519

Table 5.6: CGA generation time variation when SEC = 2 (in seconds).

In those tests, we have not used the tick counter to evaluate functions duration because

we could not find a large enough variable to store the counter’s ticks number and the use

of classical variable causes a memory overflow. So we have not evaluated a CPU time but

we evaluated the real generation time using the time function of the time C library. The

real generation time is greater than the CPU time by some seconds (generally 1 or 2).

We remark in this case that the CGA generation time is almost equal to the final

modifier generation time. In cases where the RSA key length becomes greater than 7680,

it becomes almost equal to the modifier generation duration and the key computation

time. The difference between the generation time and the final modifier generation time

is equal to the key generation time and hash1 computation time.

It is clear that CGA generation with SEC equal to 2 takes a great amount of time.

That is why actually we only did 10 tests samples and we are only next studying the

cases where SEC is equal to 0 or 1. The cases where SEC are equal or greater to 2

08015-LOR



Chapter 5. CGA performance and improvement 53

depends on computer performance and could become interesting with the next generation

of processors.

5.2.1.4 RSA signature generation and verification

In this section we present the results concerning the RSA signature generation and veri-

fication. We supposed that we are going to create the RSA signature option relative to

a NS message. So we randomply generated a message of same length than NS messages

provided in section 1.2.2.2 (RSA signature option).

The tests have been done in a pentium 4 computer having a 2593.685 MHz CPU

frequency.

RSA key length (bits) 1024 2048 3072 7680
RSA signature generation time (sec) 0.004585 0.022217 0.053573 0.609111
RSA signature verification time (sec) 0.000070 0.000167 0.000322 0.001425

Table 5.7: RSA signature generation and verification time (in seconds).

RSA signature generation time increases with the key length and its totally logical

due to the fact that the signature calculus depends on the modulus length.

5.2.1.5 Hash function impact on CGA generation time

We have tried in this test to change the hash function SHA-1 used in CGA generation

algorithm with other hash functions like: SHA-256, RIPEMD and TIGER. We evaluated

the final modifier generation CPU time when generating a CGA with a SEC equal to 1.

This time is mostly influenced by hash functions because it depends on hash2 and SEC

values.

The tests have been done in a pentium 4 computer having a 2400.005 MHz CPU

frequency.

hhhhhhhhhhhhhhhhhhhhhRSA key length (bits)

Hash function
SHA-1 SHA-256 RIPEMD TIGER

1024 0.121706 0.495153 0.215673 0.270183
2048 0.167530 0.790370 0.312232 0.429265
3072 0.213916 1.029315 0.417027 0.589410

Table 5.8: Hash function influence on final modifier generation time (sec).

We remark that the most efficient algorithm concerning the modifier generation time

is SHA-1. RIPEMD presents also interesting values. It is also clear that the modifier

generation time depends on the key length as the hash is computed over the key.
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5.2.2 Tablet PC results

The Tablet PC that we used is a Nokia N800 with an ARMv6-compatible processor. The

N800 is not a phone, more a Internet Tablet that allows the user to browse the Internet

and communicate using Wi-Fi networks or with mobile phone via Bluetooth. It was

developed as the successor to the Nokia 770. It includes FM and Internet radio, an RSS

news reader, image viewer and a media player for audio and video files. It has 388.54

MHz as CPU frequency.

We used the function gettimeofday from time library to compute the generation times

because we could not use the assembly code to get the CPU time. It computes the global

generation time (including CPU time consumption of other background proccessus). We

compiled the CGA generation algorithm in the scratchbox using the static argument for

gcc compiler because we have not OpenSSL installed in the Tablet PC.

The Table 5.9 presents the CGA generation time, the final modifier computation time

and the key generation time.

SEC value 0
RSA key length (bits) 384 512 1024 2048
CGA generation time (sec) 0.473715 0.694189 2.902132 18.004494
RSA key generation time (sec) 0.473634 0.694106 2.902089 18.004389
Final modifier generation time (sec) 0 0 0 0

SEC value 1
RSA key length (bits) 384 512 1024 2048
CGA generation time (sec) 1.586903 1.739357 4.379279 19.910244
RSA key generation time (sec) 0.472734 0.688536 2.954937 18.017241
Final modifier generation time (sec) 1.114100 1.050757 1.424263 1.892901

Table 5.9: CGA generation time computed on a Nokia N800.

We remark in this case that the CGA generation time is greater than the generation

time found on a Pentium 4. It is due to the lack of computation ressources on the tablet

PC. We conclude also that actually it is not interesting to use CGA in PDA and Tablets

PC.

We remark also from the previous Figure that the final modifier generation time is

greater when being calculated on an N800. It is 10 times greater than a final modifier

computation on a computer. It is in direct relation with the processor’s capabilities.

5.3 CGA improvement with ECC

In this section we discuss the solution that we proposed to enhance the CGA generation

algorithm performance and which consists in using ECC. First we are giving some intro-

duction to ECC and ECDSA. Then we introduce the modification of the SEND protocol
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Figure 5.1: Processor influence on CGA generation time.

to support our solution. Finally we present the generation time results that we found

using ECC.

5.3.1 ECC and ECDSA

Elliptic curves (EC) are defined over a finite field, generally a prime or a binary field

designed by Fp or F2p where p and 2p represent the number of elements of the field2.

An EC is defined by Weirstrass equation[27] over a finite field F:

E: y2+a1xy+a3y = x3+a2x
2+a4x+a6, where a1,a2,a3,a4,a6 ∈ F

The EC group is an abelian group having an addition operation as binary operation

and ∞ as identity element. The EC points addition is easier to understand graphically

and is defined as follows: let P and Q be two distincts points belonging to an EC named

E defined over a field F. The sum R’ of P and Q is obtained by drawing a line through

P and Q which will intercept E in a third point R. R’ is the reflection of R relatively to

X-axis.

ECC enabled devices require less storage, less power, less memory, and less bandwidth

than other systems. This permits implementation of cryptography in platforms that are

constrained, such as wireless devices, handheld computers, smart cards, and thin-clients.

It also provides a big win in situations where efficiency is important.

2for more information about fields theory please refer to appendix D
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Figure 5.2: Elliptic curve points addition.

For example, the current key-size recommendation for legacy public schemes is 2048

bits. A vastly smaller 224 bits ECC key offers the same level of security. This advantage

only increases with security level. For example, a 3072 bits legacy key and 256 bits ECC

key are equivalent, something that will be important as stronger security systems become

mandated and devices get smaller.

The Table 5.10 presents the equivalence between RSA and ECC key length in terms

of security level.

RSA key length (bits) ECC key length (bits)
1024 163
2048 224
3072 256
7680 384
15360 512

Table 5.10: RSA and ECC key length equivalence in security level.

5.3.1.1 ECC key generation

Let E be an elliptic curve defined over a finite field F. Let P be a point in E, and suppose

that P has prime order n. Then the cyclic subgroup of E generated by P is: 〈 P 〉 = { ∞,

P,2P,3P, . . . ,(n-1)P}.
The equation of the elliptic curve E, and the point P and its order n, are the public

domain parameters. A private key is an integer d that is selected uniformly at random

from the interval [1, n-1], and the corresponding public key is Q = dP.

The problem of determining d given the domain parameters P and Q is the elliptic

curve discrete logarithm problem (ECDLP).
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5.3.1.2 ECDSA generation and verification

ECDSA is the elliptic curve analogue of the Digital Signature Algorithm (DSA). The

signature is done as following:

1. select k ∈ [1,n-1]

2. compute kP=(x1,y1) and convert x1 to an integer x2

3. compute r = x2 mod n. If r = 0 then go to step 1

4. compute e = h(m)

5. compute s = k−1(e+dr) mod n. If s = 0 then go to step 1

6. form the signature (r,s)

The signature verification inputs are: the signed message m, the hash function h, the

public key Q, the signature (r,s), the point P and its order n. Its steps are:

1. verify that r and s are integers in the interval [1, n-1]

2. compute e = h(m)

3. compute w = s−1 mod n

4. compute u1 = ew mod n and u2 = rw mod n

5. compute X = u1P + u2Q

6. if X = ∞ reject the signature

7. convert the x-coordinate x1 of X to an integer x2

8. compute v = x2 mod n

9. if v = r then accept the signature else reject it

The proof that signature verification works is: if a signature (r,s) on a message m was

indeed generated by the legitimate signer, then:

s = k−1(e+dr) mod n. Rearranging gives:

k = s−1(e+dr) = s−1e+s−1rd = we+wrd = u1 +u2d mod n

Thus X = u1P +u2Q = (u1 +u2d)P = kP, and so v = r as required.
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5.3.2 SEND options adaptation to ECDSA

In order to use ECC and ECDSA with the protocol SEND we have proposed:

� to use one of the three bits of SEC to indicate to the remote peer whether RSA or

ECC are used as cryptographic algorithm for key generation and signature genera-

tion and verification. Thanks to the fact that only the three first value (0,1 and 2) of

SEC are actually used because of the complexity of the final modifier computation if

SEC is greater than 2, we can use the leftmost bit of SEC as an algorithm identifier.

For example when it is equal to 0, we use RSA key pair and signature and in the

case it is equal to 1 we use ECC key pair and ECDSA.

SEC value Meaning
000 RSA key pair and RSA signature algorithm are used and SEC=0
001 RSA key pair and RSA signature algorithm are used and SEC=1
010 RSA key pair and RSA signature algorithm are used and SEC=2
100 ECC key pair and ECDSA signature algorithm are used and SEC=0
101 ECC key pair and ECDSA signature algorithm are used and SEC=1
110 ECC key pair and ECDSA signature algorithm are used and SEC=2

Table 5.11: SEC bits usage to indicate cryptographic algorithm choice.

� to replace the RSA DER encoded key by an ECC octets encoded key. This encoding

is done by the OpenSSL library using the i2o ECPublicKey function. It converts

integer to octets string. In OpenSSL library we have not found a DER encoding

function for ECC public keys. So we used the function that was defined as equivalent

to i2d RSAPublicKey in the case where a RSA public key is used.

� to keep the same RSA signature option presented in 1.2.2.2. In fact, the signature

option contains the signature to be verified. This verification depends on the public

key presented in the CGA parameters structure. This public key is verified during

the CGA verification which is always done before the signature verification. During

the CGA verification we can guess which signature algorithm is used if we use the

previous approach consisting in associating the leftmost SEC value to the algorithm

type. In our case we have two algorithms so one bit is enough but if we want to use

a third algorithm, we will have to use a second bit of the interface identifier.

5.3.3 Computer results

In this section, we present the different results that we found when using the ECC while

generating a CGA. We used the following EC key lengths: 163, 224, 256, 384 and 571.

We used 571 instead of 512 bits because we did not find any implementation of ECC on
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the OpenSSL library with a key length equal to 512 bits. So we used a key length of 571

bits which offers better security than 512 bits.

5.3.3.1 CGA generation time when SEC = 0 or 1

All the following tests have been done in a pentium 4 computer having a 2593.685 MHz

CPU frequency. The Table 5.12 presents the different values of ECC CPU generation

time when SEC is equal to 0 or 1.

SEC value 0
ECC key length (bits) 163 224 256 384 571
CGA generation time (sec) 0.006449 0.012602 0.012622 0.020802 0.111246

SEC value 1
ECC key length (bits) 163 224 256 384 571
CGA generation time (sec) 0.096317 0.108551 0.106154 0.135056 0.224526

Table 5.12: CGA generation time using ECC key (in seconds).

We remark that the generation time increases with the key length. It depends on the

key generation CPU time.

In the case where SEC is equal to 1, we find that the average generation time for a 256

bits key is less than to the one relative to a 224 bits. It is due to the fact that the final

modifier is generated using random information. If we make the difference between the 2

generation times we find 0.108551-0.106154=0.002397 secondes. We multiply this results

by 10000 (because we used 10000 samples when computing the average), we find 23,97

secondes. So we need only that the sum of all the 10000 samples generation time concern-

ing the 224 bits key exceeds the sum of all the 10000 samples generation time concerning

the 256 bits key by 23,97 secondes to find the result. It is due to 2 reasons:the first one is

that the final modifier generation time depends on the randomness of the modifier itself

and the second one is that the two key lengths are very close so the generation time will

be close too.

In all the next Figures, we use the notation:

Symbol RSA key length (bits) ECC key length (bits)
1 1024 163
2 2048 224
3 3072 256
4 7680 384
5 15360 571

Table 5.13: RSA and ECC key length equivalence.
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For example a RSA key length of 2048 bits is represented on the x axis by the value

2 which represents too an ECC key length of 224 bits.

Figure 5.3: RSA and ECC CGA generation time comparison.

We remark that at the same level of security, CGA CPU generation time is more

interesting when using ECC. It is 10 to 100 times inferior to the one relative to RSA key.

The maximum generation time of the CGA based ECC (corresponding to a key length of

571 bits) is inferior to the minimum generation time of CGA based RSA (corresponding

to a key length of 1024 bits).

Even for the final modifier generation time and the key generation time, we remark

that the generation times are always lower in the case when ECC keys are used. The

Table 5.14 contains the final modifier and the key generation times when ECC is used for

SEC equal to 1.

ECC key length (bits) 163 224 256 384 571
Final modifier generation
time (sec)

0.089857 0.096027 0.093472 0.114177 0.113482

ECC key generation time
(sec)

0.006458 0.012521 0.012679 0.020876 0.113482

Table 5.14: Final modifier and key generation times when using ECC (in seconds).

We notice that the final modifier computation time is lower when ECC is used. This

makes the ECC more interesting to replace RSA because for the same level of security
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Figure 5.4: RSA and ECC final modifier generation time comparison.

we will generate CGA more quickly. ECC is faster because we use key having smaller

length. In fact CGA generation is based on the use of hash function over the parameters

structure which contains the public key. So longer the public key is, longer will be the

CGA generation time.

5.3.3.2 CGA based ECC verification

The Table 5.15 presents CGA verification time results when being used with ECC.

SEC value 0
ECC key length (bits) 163 224 256 384 571
ECC key generation time (sec) 0.000003 0.000004 0.000003 0.000004 0.000004

SEC value 1
ECC key length (bits) 163 224 256 384 571
ECC key generation time (sec) 0.000004 0.000005 0.000005 0.000005 0.000007

Table 5.15: CGA based ECC verification time (in seconds).

In comparison to Table 5.5, we remark for the same level of security that CGA verifi-

cation time is lower when the address is generated using ECC.
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5.3.3.3 ECDSA signature generation and verification

We realised this experience keeping the hypothesis of section 5.2.2.3. The Table 5.16

resumes the results that we found:

ECC key length (bits) 163 224 256 384 571
ECDSA signature genera-
tion time (sec)

0.002231 0.004396 0.004460 0.007365 0.037403

ECDSA signature verifica-
tion time (sec)

0.004379 0.005249 0.005352 0.008850 0.074777

Table 5.16: ECDSA signature generation and verification time.

ECDSA verification takes always more time than generation.

The Figure 5.5 shows that ECDSA is quicker than RSA when signing but not when

verifying.

Figure 5.5: RSA and ECC signature generation and verification times comparison.

We notice that the ECDSA verification time is always higher than RSA one. But

the difference between signature verification and generation for ECDSA and RSA makes

ECDSA more interesting. Considering that difference we will gain more time than in the

case when RSA is used.
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5.3.4 Tablet PC results

The Table 5.17 contains the results found when testing the CGA generation algorithm on

the N800. We have studied like for RSA the two cases where SEC is equal to 0 or 1.

SEC value 0
ECDSA key length (bits) 163 224 256 384 571
CGA generation time (sec) 0.088265 0.137280 0.151946 0.302067 0.981322
ECDSA key generation
time (sec)

0.088172 0.137182 0.151850 0.301966 0.981217

Final modifier generation
time (sec)

0 0 0 0 0

SEC value 1
ECDSA key length (bits) 162 224 256 384 571
CGA generation time (sec) 1.053433 1.179489 1.208950 1.634632 2.300124
ECDSA key generation
time (sec)

0.087542 0.136879 0.151900 0.297508 0.980466

Final modifier generation
time (sec)

0.965827 1.042549 1.056985 1.337056 1.319589

Table 5.17: CGA generation time computed on a Nokia N800.

We notice that even for CGA based on ECC, the generation time on a Tablet PC is

still important. But at least we still can use ECC keys with SEC=0 to generate these

addresses. In fact for keys having length of 163, 224 and 256 bits the generation time is

inferior to 0.15 seconds which is interesting in comparison with the results found when

using RSA. So for Mobile IPv6 we can propose the use of CGA with ECC keys.

In addition, in order to decrease the risk of collisions, we propose also to create peri-

odically a CGA based on a newly generated key. The period must be well chosen to avoid

that an attacker could find a collision or realize a brute force attack against the actual

address. We propose also in mobile environment that a node should change its address

after changing the access point to which it is connected.

For the values of SEC equal to 1 or 2, the node can use a temporary address having

SEC equal to 0 until it finishes computing its true CGA with a higher SEC value.

We remark from the Figure 5.6 that even in Tablets PC, ECC is still more performant

than RSA. For this reason, ECC cryptography must be taken in consideration in future

SEND and CGA specification.

Conclusion

CGA have been defined to be used with RSA. But actually to offer an interesting level of

security RSA key must have a length equal or greater to 1024 bits. This makes the use

of CGA with RSA with constrained devices more difficult.
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Figure 5.6: RSA and ECC CGA generation time comparison.

Thanks to the improvement we suggested with ECC usage, CGA performances have

been enhanced. The number of experimental measurements we did prove that the usage

of ECC is an important breakthrough for introduction of CGA into constrained devices

like PDA and Tablets PC. In addition it increases CGA algorithms efficiency in wired

networks.
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Conclusions

CGA represents a good solution to address authentication in multi-homing and mobile

networks. Thanks to the use of SEND options, secure proxying become easier. In addition,

the use of Hash Based Addresses (HBA) with SHIM6 protocol become more secure because

CGA solved all authentication problems.

The proposed CGA generation tests showed that in wired networks, it is very interest-

ing to use both RSA and ECC keys when choosing SEC value equal to 0. However, when

SEC equals to 1, we found that ECC key pairs are more performing than RSA keys. We

also concluded that CGA generation depends on the processor performance. New meth-

ods of address computation must be introduced to make the generation process faster and

to enhance the use of higher SEC values because a collision in CGA generation when SEC

is equal to 0 or 1 is not computationally difficult. One way to avoid temporarily collision

threats is to create periodically a new CGA based on a new public key. In this case, the

use of ECC will be more interesting because a CGA with a 512 bits ECC key is generated

at the same time as a CGA with a 1024 bits RSA key but offers a higher level of security.

The experiments conducted on Tablet PC results showed that the use of CGA in

wireless networks is still difficult. This is due to the fact that CGA generation time

exceeded one second which is very constraining in this kind of networks where time is

very expensive. In our tests with Nokia N800, we remarked that the use of CGA is

possible only with SEC equal to 0 with ECC keys having a length less than 256 bits. So,

this makes the use of CGA currently impossible in mobile networks due to the scarcity of

computational resources.

Currently, CGAs are used only with SEND. There is no specification talking about

the use of these addresses with another protocol. SEND is the only protocol that defined

the needed options to secure ND and to use CGA as a decentralized authentication mech-

anism. Even the use of CGA with SHIM6 protocol depends on SEND options. But it will

be interesting to see other protocols using this kind of address based on their own spec-

ifications and options. With the spread of IPv6 usage, it become imperative to provide

security mechanism but a number of questions should first be investigated: (a) will CGA

usage be the best one? (b) are CGA going to be the best crypto-based identifier? (c) will

CGA generation time and usage in mobile networks be improved?
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IPv6

The length of network addresses emphasize a most important change when moving from

IPv4 to IPv6. IPv6 addresses are 128 bits long, whereas IPv4 addresses are 32 bits; where

the IPv4 address space contains roughly 4 billion addresses, IPv6 has enough room for

3.4×1038 unique addresses.

IPv6 addresses are typically composed of two logical parts: a 64-bit network prefix, and

a 64-bit interface identifier, which is either automatically generated from the interface’s

MAC address or assigned sequentially.

Figure A.1: Interface identifier creation using MAC address.

IPv6 addresses are classified into three types [28]:

� IPv6 Unicast addresses: They are similar to the unicast addresses in IPv4: a sin-

gle address identifying a single interface. There are four types of unicast addresses:

– Global unicast addresses, which are conventional, publicly routable address,

just like conventional IPv4 publicly routable addresses.

– Link-local addresses are akin to the private, non-routable addresses in IPv4

(10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16). They are not meant to be routed,

but confined to a single network segment.

– Unique local addresses are also meant for private addressing, with the addition

of being unique, so that joining two subnets does not cause address collisions.
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– Special addresses are loopback addresses, IPv4-address mapped spaces, and

6-to-4 addresses for crossing from an IPv4 network to an IPv6 network.

� Multicast addresses: Multicast in IPv6 is similar to the old IPv4 broadcast ad-

dress: a packet sent to a multicast address is delivered to every interface in a group.

The IPv6 difference is it’s targeted instead of annoying every single host on the seg-

ment with broadcast blather, only hosts who are members of the multicast group

receive the multicast packets. IPv6 multicast addresses are routable.

Address Application Description
FF01::1 all nodes node local hosts group
FF02::1 all nodes link local hosts group
FF01::2 all routers node local routers group
FF02::2 all routers link local routers group
FF02::1:0 DHCP server link local DHCP server group
FF02::1:xxxx:xxxx solicited node address created using a node unicast address

Table A.1: IPv6 multicast addresses.

� Anycast: An anycast address is a single address assigned to multiple nodes. A

packet sent to an anycast address is then delivered to the first available node.
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Appendix B

RSA key generation, encryption and

signature

We present in this appendix RSA cryptography basics. We start by reminding RSA key

generation algorithm then we present RSA encryption and signature algorithms.

B.1 RSA key generation

RSA key generation follows the next steps:

1. Generate two large random (and distinct) primes p and q.

2. Compute n = pq and ϕ(n) = (p-1)(q-1).

3. Select a random integer e, 1 < e < ϕ(n), such that gcd(e, ϕ(n)) = 1.

4. Compute the unique integer d, 1 < d < ϕ(n), such that ed = 1 (mod ϕ(n)).

The public key is (n, e) and d is the private key.

B.2 RSA encryption and decryption

Let suppose that Bob is going to encrypt a message to Alice.

1. Bob represents the message as an integer m in the interval [0, n-1].

2. Computes c = me mod n.

3. Sends the ciphertext c to Alice.

To decrypt the message Alice computes:

cd mod n = med mod n = m(1+k(n−1)) mod n = m mod n. Fermat theorem is used in the

last transition.
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B.3 RSA signature generation and verification

We suppose that the hash function is H and Bob wants to generate an RSA signature of

the message m and send it to Alice.

1. Bob computes h = H(m) and represents it as an integer in the interval [0, n-1].

2. Using its private key d, he computes s = hd mod n.

3. Bob sends s and m to Alice.

The verification process is done as follows:

1. Alice obtains Bob’s public key (e, n).

2. She computes h1 = H(m).

3. She recovers h = se mod n = hed mod n = h mod n.

4. She compares if h = h1 the signature is valid and the message m is accepted else it

is rejected.
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Appendix C

Ring signature and multikey CGA

The ring signature algorithm that we introduce now is defined in section 4.2 of [18]. It uses

the RST signature scheme defined in [21]. This kind of signature is used with multikey

CGA in mobile network when talking about proxying. Its principal advantage is that it

provides anonymity

The inputs of the algorithm are:

� The message to sign.

� The M-CGA type tag.

The hypotheses are:

� The digest is called DIGEST-F(m)

� The SHA1 digest produces a d-bit string.

� Let ⊕ denotes the XOR function.

� Let E() be an encryption scheme that uses d-bit keys and has b-bit input and output.

� The public keys in the RST ring signature scheme are exactly the same as public keys

in RSA. Specifically pki = (Ni, ei), where Ni is a large (e.g., 1024-bits) composite

integer that is the product of two large prime numbers pi and qi and where ei is an

integer that is relatively prime to (pi-1)×(qi-1).

� Let b be an integer such that 2b > 2t × Ni for all i.

� Let pki be the public key of the ”real” signer.

The signature generation algorithm has the following steps:

1. Set symmetric encryption key k to be DIGEST-F(m)

2. Pick a random b-bit string v
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3. For j from 1 to n (except j is not equal to i):

(a) Pick random b-bit string xj

(b) Compute (qj, rj) such that xj = qj × Nj +rj for rj in [0, Nj]

(c) Compute y’j = x
ej

j mod Nj for y’j in [0, Nj]

(d) Set yj = qj × Nj + y’j

(e) Go to Step 3.(a) if yj is greater than or equal to 2b

4. Compute yj such that:

E(k)(yn ⊕ E(k)(yn−1 ⊕ E(k)(. . .⊕ E(k)(y1 ⊕ v). . . ))) = v

5. Compute (qi, ri) such that: yi = qi × Ni + ri for ri in [0, Ni]

6. Compute x’i = y
1/ei

i mod Ni for x’i in [0, Ni]

7. Set xi = qi × Ni + x’i

8. Go to Step 3 if xi is greater than or equal to 2b

9. Output the ring signature (x1, . . . , xn, v)

The verification has the following steps:

1. Set symmetric encryption key k to be DIGEST-F(m)

2. For j from 1 to n:

(a) Compute (qj, rj) such that: xj = qj × Nj + rj for rj in [0, Nj]

(b) Compute y’j = x
ej

j mod Nj for y’j in the interval [0, Nj]

(c) Sets yj = qj × Nj + y’j

3. Confirm that: E(k)(y(n) ⊕ E(k)(y(n-1) ⊕ E(k)(. . .⊕ E(k)(y(1) ⊕ v). . . ))) = v.

C.1 RST ring signature suboption

The RST ring signature suboption is added to CGA parameter option defined by SEND.

It has the following structure:

� Type is TBA1.

� Length contains the length of the suboption.

� Public key length contains the public key length in bytes.

� Router certified public key contains the public key of the router.
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Figure C.1: RST ring signature suboption.

C.2 RST ring signature option

In order to use Multi-key CGA with SEND, a new option has to be added to replace the

RSA signature option. This option has the following format:

Figure C.2: RST signature option.

� Type is TBA2.

� Key hash contains the most significant 128 leftmost bits of SHA-1 hash of the public

keys of the router and the address owner.

� Digital signature contains the signature computed using the senders private key and

the public keys included in the CGA parameter option.

C.3 Secure proxy mobility option

When a mobile node leaves the home link, the home agent is responsible for proxying the

address. If the address is a Multi-key CGA, the home agent can perform the proxying in

a secure manner[18].

When the mobile node wants to ask for proxying from the home agent, it sends him

a binding update message to bind its home address to a new care of address. It includes

a Secure Proxy Mobility option containing information about the public keys used while

creating the Multi-key CGA. If the certified public key of the proxy does not correspond

to the home agents one, the agent responds with binding acknowledgement signalling the

error.

The Secure Proxy Mobility option is presented in Figure C.3.
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Figure C.3: Secure proxy mobility option.

These are the options that must be added in order to make multikey-CGA usage

possible.
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Appendix D

Mathematical concepts and ECC

We are going first to introduce some mathematical concepts [27] that are used in elliptic

curve cryptogrpahy. Then we present other ECC encrypting algorithms.

D.1 Group

An abelian group (G,�) consists of a set G with a binary operation � : G × G −→ G

satisfying the following properties:

� Associativity: a � (b � c) = (a � b) � c for all a, b, c in G.

� Existence of an identity: there exists an element e in G such that a � e =e � a =a

for all a in G.

� Existence of inverses: For each a in G, there exists an element b in G, called the

inverse of a, such that a � b = b � a = e.

� Commutativity: a � b = b � a for all a, b in G.

The group operation is usually called addition (+) or multiplication (×). In the first

instance, the group is called an additive group, the (additive) identity element is usually

denoted by 0, and the (additive) inverse of a is denoted by -a. In the second instance,

the group is called a multiplicative group, the (multiplicative) identity element is usually

denoted by 1, and the (multiplicative) inverse of a is denoted by a−1. The group is finite

if G is a finite set, in which case the number of elements in G is called the order of G.

For example, let p be a prime number, and let Fp = {0,1,2, . . . , p-1} denote the set

of integers modulo p. Then (Fp,+), where the operation + is defined to be addition of

integers modulo p, is a finite additive group of order p with (additive) identity element

0. Also, (F∗
p, ×), where F∗

p denotes the nonzero elements in F∗
p and the operation ×

is defined to be multiplication of integers modulo p, is a finite multiplicative group of
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order p-1 with (multiplicative) identity element 1. The triple (F∗
p, +, ×) is a finite field,

denoted generally as F∗
p.

Now, if G is a finite multiplicative group of order n and g in G, then the smallest

positive integer t such that gt = 1 is called the order of g; such a t always exists and is a

divisor of n. The set 〈g〉 = {gi : 0 ≤ i ≤ t-1} of all powers of g is itself a group under the

same operation as G, and is called the cyclic subgroup of G generated by g. Analogous

statements are true if G is written additively. In that instance, the order of g in G is the

smallest positive divisor t of n such that t.g = 0, and 〈g〉 = {i × g : 0 ≤ i ≤ t-1}. Here,

t.g denotes the element obtained by adding t copies of g. If G has an element g of order

n, then G is said to be a cyclic group and g is called a generator of G.

D.2 Finite fields

Fields are abstractions of familiar number systems (such as the rational numbers Q, the

real numbers R, and the complex numbers C) and their essential properties. They consist

of a set F together with two operations, addition (denoted by +) and multiplication

(denoted by ×), that satisfy the usual arithmetic properties:

� (F,+) is an abelian group with (additive) identity denoted by 0.

� (F∗, ×) is an abelian group with (multiplicative) identity denoted by 1.

� The distributive law holds: (a+b) × c = a × c+b × c for all a, b, c in F.

If the set F is finite, then the field is said to be finite.

D.2.1 Field operations

A field F is equipped with two operations, addition and multiplication. Subtraction of

field elements is defined in terms of addition: for a, b in F, a-b = a +(-b) where (-b) is

the unique element in F such that b + (−b) = 0 (-b is called the negative of b). Similarly,

division of field elements is defined in terms of multiplication: for a,b in F with b= 0,

a÷b = a × b−1 where b−1 is the unique element in F such that b × b−1 = 1 (b−1 is called

the inverse of b).

D.2.2 Existence and uniqueness

The order of a finite field is the number of elements in the field. There exists a finite field

F of order q if and only if q is a prime power, i.e., q = p×m where p is a prime number

called the characteristic of F, and m is a positive integer. If m = 1, then F is called a

prime field. If m ≥ 2, then F is called an extension field. For any prime power q, there is

essentially only one finite field of order q; informally, this means that any two finite fields
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of order q are structurally the same except that the labelling used to represent the field

elements may be different. We say that any two finite fields of order q are isomorphic and

denote such a field by Fq.

D.2.3 Prime fields

Let p be a prime number. The integers modulo p, consisting of the integers {0,1,2, . . . ,

p-1} with addition and multiplication performed modulo p, is a finite field of order p. We

denote this field by Fp and call p the modulus of Fp. For any integer a, a mod p shall

denote the unique integer remainder r, 0 ≤ r ≤ p-1, obtained upon dividing a by p; this

operation is called reduction modulo p.

D.2.4 Binary fields

Finite fields of order 2m are called binary fields or characteristic-two finite fields. One

way to construct F2m is to use a polynomial basis representation. Here, the elements of

F2m are the binary polynomials (polynomials whose coefficients are in the field F2 = {0,

1}) of degree at most m− 1:

F2m = {am−1z
m−1+am−2z

m−2 +. . . +a2z
2+a1z+a0 : ai in {0, 1}} An irreducible binary

polynomial f(z) of degree m is chosen (such a polynomial exists for any m and can be

efficiently found). Irreducibility of f(z) means that f(z) can not be factored as a product

of binary polynomials each of degree less than m. Addition of field elements is the usual

addition of polynomials, with coefficient arithmetic performed modulo 2. Multiplication

of field elements is performed modulo the reduction polynomial f(z). For any binary

polynomial a(z), a(z) mod f(z) shall denote the unique remainder polynomial r(z) of

degree less than m obtained upon long division of a(z) by f(z); this operation is called

reduction modulo f(z).

D.3 Elliptic curve group

An elliptic curve E over a field F is defined, as we said it in section 5.3.1, by the following

equation: E: y2+a1xy+a3y = x3+a2x
2+a4x+a6, where a1,a2,a3,a4,a6 ∈ F and ∆ 6= 0

∆ is the discriminant of E and is defined as follows:

∆ = -d2
2 d8-8d4

3-27d2
6 +9d2d4d6

d2 = a2
1+4a2

d4 = 2a4+a1a3

d6 = a2
3+4a6

d8 = a2
1a6+4a2a6-a1a3a4+a2a

2
3-a

2
4

Here are some remarks concerning E:
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� We say that E is defined over F because the coefficients a1, a2, a3, a4, a6 of its

defining equation are elements of F. F is called the underlying field. Note that if E

is defined over F, then E is also defined over any extension field of F.

� The condition ∆ 6= 0 ensures that the elliptic curve is smooth, that is, there are no

points at which the curve has two or more distinct tangent lines.

� The point ∞ is the only point on the line at infinity that satisfies the projective

form of the Weierstrass equation.

D.4 Elliptic curve cryptography

We present in this section the other EC cryptographic algorithms that have not been

described in chapter 5. We remind that ECC key generation is done as follows:

Let E be an elliptic curve defined over a finite field Fp. Let P be a point in E(Fp), and

suppose that P has prime order n. Then the cyclic subgroup of E(Fp) generated by P is:

〈P〉 = {∞, P,2P,3P, . . . ,(n-1)P}.
The prime p, the equation of the elliptic curve E, and the point P and its order n, are

the public domain parameters. A private key is an integer d that is selected uniformly at

random from the interval [1, n-1], and the corresponding public key is Q = dP.

The problem of determining d given the domain parameters P and Q is the elliptic

curve discrete logarithm problem (ECDLP).

D.4.1 ElGamal elliptic curve algorithm

We present in this subsection the encryption and decryption procedures for the elliptic

curve analogue of the basic ElGamal encryption.

The encryption inputs are: elliptic curve domain parameters (p, E, P, n), public key

Q, plaintext m. It is done following the next steps:

1. Represent the message m as a point M in E(Fp).

2. Select k ∈ [1, n-1].

3. Compute C1 = kP.

4. Compute C2 = M + kQ.

5. Return(C1, C2).

The decryption inputs are: domain parameters (p, E, P, n), private key d, ciphertext

(C1, C2).

It is done by computing M = C2-dC1, and then extracting m from M. In fact M =

C2-dC1 = M + kQ - d kP = M + kQ - kQ = M.

08015-LOR



Appendix D. Mathematical concepts and ECC 78

D.4.2 Elliptic Curve Diffie-Hellman (ECDH)

This well known algorithm is quite important in modern protocols as a key exchange and

can be adopted for ECC:

Consider two parties Alice and Bob willing to exchange a common secret key without

making this one known to a passive eavesdropper. Both have agreed to a common and

publicly known curve E over a finite field eg Fp as well as to a base point P.

� Alice randomly chooses kA, 0 < kA < p and Bob accordingly kB, 0 < kB < p. kA

is considered as Alice’s private key, kB is Bob’s private key.

� Alice computes her public key: QA = kAP, Bob does: QB = kBP.

� Alice sends QA to Bob, Bob sends QB to Alice.

� Alice can now compute the shared secret for her and Bob by secret = kAQB and

Bob also by secret = kBQA.

An eavesdropper knows only QA and QB but is not able to compute the secret from that.

D.4.3 Elliptic Curve Discrete Logarithm Problem (ECDLP)

The problem of determining the private key d given the domain parameters P and Q is

the elliptic curve discrete logarithm problem (ECDLP). It represents the analogue of the

discrete logarithm problem which consists in finding y that verify x = gy mod(n) knowing

x, g and n.
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Algorithm functions

The different functions that have been used in CGA generation and verification algorithms

are:

� int init modifier(parameters *p): chooses an initial random modifier. It takes as

argument the parameters structure which is defined as follows:

typedef struct parameters {

uint8_t modifier[MODIFIER_LENGTH];

uint8_t pref[PREFIX_LENGTH];

uint8_t cc;

unsigned char *derkey;

uint32_t derlong;

uint8_t iid[IID_LENGTH];

uint8_t cga[CGA_LENGTH];

}parameters;

� void init error lists(void): initializes the error messages list of Openssl.

� void check error(char *erreur): stores error message in the string ‘erreur ’.

� int PRNG seed(int i,char *erreur): seeds Openssl pseudo random generator with i

bytes.

� int rsa generation(RSA **rsa,int modulus,int pubk,char *erreur): creates a RSA

key and store it in rsa. The key will have a modulus length equal to modulus bits

and pubk as its public exponent.

� int rsa signature(uint8 t *hash,uint8 t **sign,unsigned int *signlong,RSA **rsa,char

*erreur): generates an RSA signature.
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� int rsa verification(uint8 t *hash,uint8 t **sign,unsigned int signlong,RSA **rsa,char

*erreur): does an RSA signature verification.

� void init param rsa(parameters *p,RSA **rsa,int modulus,int pubkey,int rand,char

*erreur): initializes all RSA key parameters.

� RSA *RSA create key(RSA **rsa,RSA **rsa init,unsigned long e value,void (*call-

back)(int,int,void *), void *cb arg): creates an RSA key using another RSA key

parameters.

� int RSA create key ex(RSA *rsa,RSA *rsa init,BIGNUM *e value, BN GENCB *cb):

is used in the previous function.

� int pub key to der(RSA **rsa,uint8 t **derkey,char *erreur): converts the public

key to a DER encoded key.

� int eckey generation(EC KEY **eckey,int nid,char *erreur): generates an ECC key.

� int ecdsa signature(uint8 t *hash,uint8 t **ecsign,unsigned int *signlong,EC KEY

**eckey,char *erreur): generates an ECDSA signature.

� int ecdsa verification(uint8 t *hash,uint8 t **ecsign,unsigned int signlong,EC KEY

**eckey,char *erreur): verifies an ECDSA signature.

� void init param ec(parameters *p,EC KEY **eckey,int nid,int rand,char *erreur):

initializes ECC key parameters.

� int pub key to oc(EC KEY **eckey,uint8 t **oskey,char *erreur): transforms ECC

public key to octets string format.

� void sha hash(uint8 t *message,unsigned long msg2signlong,uint8 t *hash,char *er-

reur): computes a SHA1 hash.

� void sha hash2(uint8 t *message,unsigned long msg2signlong,uint8 t *hash2,char *er-

reur):computes a SHA1 hash and deduces hash2 value.

� void sha hash1(uint8 t *message,unsigned long msg2signlong,uint8 t *hash1,char *er-

reur): computes a SHA1 hash and deduces hash1 value.

� void ripemd hash(uint8 t *message,unsigned long msg2signlong,uint8 t *hash,char

*erreur): computes a RIPEMD hash.

� void ripemd hash2(uint8 t *message,unsigned long msg2signlong,uint8 t *hash2,char

*erreur): computes a RIPEMD hash and deduces hash2 value.
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� void ripemd hash1(uint8 t *message,unsigned long msg2signlong,uint8 t *hash1,char

*erreur): computes a RIPEMD hash and deduces hash1 value.

� void tiger hash2(uint8 t *message,unsigned long msg2signlong,uint8 t *hash2,char

*erreur): computes a TIGER hash and deduces hash2 value.

� void tiger hash1(uint8 t *message,unsigned long msg2signlong,uint8 t *hash1,char

*erreur): computes a TiGER hash and deduces hash1 value.

� void sha256 hash(uint8 t *message,unsigned long msg2signlong,uint8 t *hash,char

*erreur): computes a SHA256 hash.

� void sha256 hash2(uint8 t *message,unsigned long msg2signlong,uint8 t *hash2,char

*erreur): computes a SHA256 hash and deduces hash2 value.

� void sha256 hash1(uint8 t *message,unsigned long msg2signlong,uint8 t *hash1,char

*erreur): computes a SHA256 hash and deduces hash1 value.

� void print hash list(void): prints the hash algorithms list.

� void print parameters(parameters *p,uint8 t *hash1,uint8 t *hash2,uint8 t sec): prints

CGA parameters and hash values (1 and 2).

� void print cga(parameters *p): prints only CGA parameters.

� void print curves list(void): prints the list of tha available curves.

� void print help(void): prints the help.

� void print verif param(parameters *p): prints the parameters used during the CGA

verification.

� void fprint parameters(FILE *fp,parameters *p,uint8 t *hash1,uint8 t *hash2,uint8 t

sec): stores CGA parameters into a file.

� void init prefix s2h(char *prefixe,parameters *p): transforms the keybord entered

prefix from a string to an hexadecimal table.

� void convert 16 8(parameters *p,uint16 t *tab): converts the keybord from words

of 2 bytes to one bytes word.

� void setbits(parameters *p,uint8 t sec): sets SEC, u and g bits to 0.

� void incr mod(parameters *p): increments the modifier by 1.

� int cga cmp hash2 sec(uint8 t *hash2, uint8 t sec): compares the 16 × SEC bits of

hash2 to 0.

08015-LOR



Appendix E. Algorithm functions 82

� uint8 t * cga param hash2(parameters *p,unsigned long *msg2signlong): forms the

message used to compute hash2.

� uint8 t * cga param hash1(parameters *p,unsigned long *msg2signlong): forms the

message used to compute hash1.

� int pad len cgaopt(parameters *p): determines the padding length to be added to

the message which is going to be signed.

� uint8 t *msg to sign(parameters *p,unsigned long *msg2signlong):forms the message

going to be signed.

� void create iid(parameters *p,uint8 t * hash1,uint8 t sec): creates the interface iden-

tifier.

� void create cga(parameters *p): creates the CGA.

� int verify cga(parameters *p,char *erreur): verifies the CGA when SHA1 is used as

hash algorithm.

� int verify cga sha256(parameters *p,char *erreur): verifies the CGA when SHA256

is used as hash algorithm.

� int verify cga tiger(parameters *p,char *erreur): verifies the CGA when TIGER is

used as hash algorithm.

� int verify cga ripemd(parameters *p,char *erreur): verifies the CGA when RIPEMD

is used as hash algorithm.
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