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Discrete transparent boundary conditions
for the mixed KDV-BBM equation

Christophe Besse∗, Pascal Noble†, David Sanchez‡

September 28, 2016

Abstract

In this paper, we consider artificial boundary conditions for the linearized mixed Korteweg-de
Vries (KDV) Benjamin-Bona-Mahoney (BBM) equation which models water waves in the small
amplitude, large wavelength regime. Continuous (respectively discrete ) artificial boundary condi-
tions involve non local operators in time which in turn requires to compute time convolutions and
invert the Laplace transform of an analytic function (respectively the Z-transform of an holomor-
phic function). In this paper, we propose a new, stable and fairly general strategy to carry out
this crucial step in the design of transparent boundary conditions. For large time simulations, we
also introduce a methodology based on the asymptotic expansion of coefficients involved in exact
direct transparent boundary conditions. We illustrate the accuracy of our methods for Gaussian
and wave packets initial data.

Keywords: artificial boundary conditions, stability analysis, Korteweg-de Vries and Benjamin-Bona-
Mahoney equations, numerical simulation.

1 Introduction

The Korteweg-de Vries (KdV) equation is a classical nonlinear, dispersive equation which models the
unidirectional propagation of weakly nonlinear, long waves in the presence of dispersion. It is written

(1) ∂tu+ ∂xu+
3ε

2
u∂xu+

µ

6
∂xxxu = 0, ∀t > 0, ∀x ∈ R,

where ε > 0 is the non linearity parameter, µ the shallowness/dispersion parameter and ε, µ have the
same order (see [13] for more details on the derivation of this particular equation). An alternative
model which possesses better dispersive properties is obtained by noticing that, as ε, µ → 0, ∂xu =
−∂tu + O(ε + µ). Then, one can substitute a time derivative to a spatial derivative in the dispersive
term and (1) is asymptotically equivalent to

(2) ∂t (u− α∂xxu) + ∂xu+
3ε

2
u∂xu+ (

µ

6
− α)∂xxxu = 0, ∀ 0 < α ≤ µ

6
.

If α = µ/6, the resulting equation is known as the Benjamin-Bona-Mahoney equation (BBM). We
will denote (KdV-BBM) the mixed model (2). Both the (KdV) and the (KdV-BBM) equation possess
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solitary waves and cnoidal (periodic) waves solutions and it is of particular interest to determine the
interaction between these waves and if these particular waves play a role in the description of the
solutions of (1) or (2) for asymptotically large time.

Indeed, in the limit of large scale and large time, the (KdV) equation is seen as a dispersive
regularization of the Burgers equation

∂tu+ ∂xu+
3ε

2
u∂xu = 0.

Dispersive regularization of hyperbolic conservation laws is known to generate so-called dispersive shock
waves (DSW). In contrast to their diffusive counterparts, dispersive shocks have an oscillatory structure
and expand with time so that the Rankine-Hugoniot jump conditions are not satisfied. There is a huge
literature on these particular patterns for the Korteweg-de Vries equation. The numerical simulation of
such patterns is a hard task: usually, such equations are solved by using spectral techniques which are
particularly suitable to describe oscillatory phenomena but suppose that periodic boundary conditions
are imposed to the edges of the computational domain. Moreover, due to the fact that the oscillatory
part of the DSW expands in time, one has to take larger and larger computational domain which, in
turn, imply high computational costs. In addition, one should mention that the dynamic of dispersive
equations is dramatically changed depending they are set on the whole space or in a periodic domain:
in the latter case, small amplitude waves cannot scatter to infinity and stay in the computational
domain forever. Instead, one can imagine a more appropriate strategy based on the transparent
boundary conditions (TBC): this consists in deriving suitable boundary conditions so that the solution
calculated in the computational domain is an approximation of the exact solution restricted to the
computational domain. These artificial boundary conditions are called absorbing boundary conditions
(ABC) if they lead to a well-posed initial boundary value problem where some energy is absorbed at
the boundaries. See [1] for a review on the techniques used to construct such transparent or artificial
boundary conditions for the Schrödinger equation.

In this paper, we focus on the linearized KdV-BBM equation

(3) ∂t(u− α∂xxu) + c∂xu+ ε∂xxxu = 0, ∀t > 0, ∀x ∈ R,

where α, ε are dispersion parameter and c is a velocity. The computation of continuous and dis-
crete transparent boundary conditions for the pure (BBM) case (ε = 0) was recently performed in
[5]. In the pure (KdV) case (α = 0), continuous transparent boundary conditions were derived in
[14, 15]. Recently, exact transparent boundary conditions both continuous and discrete were derived
and implemented in [4]. The discrete boundary conditions were derived for a upwind (first order)
and a centered (second order) spatial discretization. The time discretization is based on the Crank-
Nicolson scheme. The discrete artificial boundary conditions (DTBC) were previously introduced in
[3, 2, 8, 9, 10] mainly for the time dependent Schrödinger equation. These (DTBC) are superior since
they are by construction perfectly adapted to the used interior scheme and thus retain the stability
properties of the underlying discretization method and theoretically do not produce any reflections
when compared to the discrete whole space solution. However, in the case of the linearized (KdV)
equation, the boundary conditions are not explicit and a numerical inverse Z-transformation is needed
which produces a numerical error and create instabilities for large time simulations (see [3, 16]).

The aim of this paper is to propose an alternative procedure to carry out numerically the computa-
tion of the inverse Z-transformation through a stable method and use it to obtain discrete transparent
boundary conditions with no restriction on the simulation time. We shall also explore approximate ex-
plicit boundary conditions by expanding the exact discrete boundary conditions in various asymptotic
regime.

The paper is organized as follows. In section 2, we first recall the derivation of continuous transpar-
ent boundary conditions for the linearized (KdV-BBM) equation and show a stability result. In section
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3, we focus on discrete transparent boundary conditions: we show a consistency result and establish
sufficient stability conditions which in turn guarantees convergence of our numerical procedure. In
section 4, we carry out numerical tests: we consider test cases with Gaussian and wave packet initial
data. For large time simulations, we also derive approximate explicit discrete boundary conditions and
show numerically stability of these conditions.

2 Transparent boundary conditions for the linear KdV-BBM equa-
tion

In this section, we recall the derivation of the exact artificial boundary conditions. To do so, we
consider the initial boundary value problem

∂t(u− α∂xxu) + c∂xu+ ε ∂xxxu = 0, ∀t > 0, ∀x ∈ R,(4)
u(0, x) = u0(x), ∀x ∈ R,(5)

lim
x→∞

u(t, x) = lim
x→−∞

u(t, x) = 0,(6)

where u0 is compactly supported in a finite computational interval [x`, xr] with x` < xr. The constants
c ∈ R and α, ε > 0 are respectively a velocity and two dispersion parameters. The construction of
(continuous) artificial boundary conditions associated to problem (4-6) is established by considering
the problem on the complementary of [x`, xr]

∂t(u− α∂xxu) + c ∂xu+ ε∂xxxu = 0, ∀t > 0, ∀x < x`, ∀x > xr,(7)
u(0, x) = 0, ∀x < x`, ∀x > xr,(8)

lim
x→∞

u(t, x) = lim
x→−∞

u(t, x) = 0.(9)

2.1 Exact boundary conditions

In order to derive transparent boundary conditions, we write (7) as a first order system with respect
to the x variable:

(10) ∂x

uv
w

 =

 0 1 0
0 0 1

−ε−1∂t −ε−1 c αε−1∂t

uv
w

 .

Next, the problem being homogeneous in time, we use Laplace transform so that (10) is transformed
into a classical first order differential system with parameter s ∈ C with <(s) > 0:

(11) ∂x

ûv̂
ŵ

 =

 0 1 0
0 0 1

−ε−1 s −ε−1 c αε−1s

ûv̂
ŵ

 := Aα,ε(s, c)

ûv̂
ŵ

 .

The general solutions of this system of ODE are given explicitly by

(12)

 û
v̂
ŵ

 = eλ1(s)x V1(s) + eλ2(s)x V2(s) + eλ3(s)x V3(s), x < x`, x > xr,

where λk(s), k = 1, 2, 3 are the roots of P (s, c, α, ε, λ) = s+ cλ−αsλ2 + ελ3 = 0 and Vk =
(
1, λk, λ

2
k

)T
are the right eigenvectors of the matrix Aα,ε(s, c) associated to eigenvalue λk. Let j be j = e2iπ/3. The
roots λk are given by

(13) λk(s) =
α s

3ε
+ jk−1ζ(s)1/3 −

(
c

3ε
− α2s2

9ε2

)
1

jk−1ζ(s)1/3
, k = 1, 2, 3,
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with

ζ(s) =
1

2

(
−q −

√
q2 +

4

27
p3

)
, p =

c

ε
− 3(

αs

3ε
)2, q =

s

ε
+
αsc

3ε2
− 2

(αs
3ε

)3
.

Proposition 2.1. For all ε > 0 and for all α ≥ 0, the roots λk(s), k = 1, 2, 3 possess the following
separation property:

<(λ1(s)) < 0, <(λ2(s)) > 0, <(λ3(s)) > 0, ∀<(s) > 0.

Proof. Without loss of generality, one can assume ε = 1. Let us first show that no roots crosses the
imaginary axis when <(s) > 0. We assume that there exists λ = iξ ∈ iR, such that

s+ ciξ − αs(iξ2) + (iξ)3 = 0.

Then, one finds that s ∈ iR. Now let us assume that c and s are fixed and α ∈ [0,M ] for some M > 0.
Then, by applying the Rouché’s theorem, one finds that the number of roots of P (s, c, α, .) with a
positive real part is given by

N+(s, c, α) =
1

2iπ

∮
CR

P ′(s, c, α, λ)

P (s, c, α, λ)
dλ

with CR = {z ∈ C, | <(z) ≥ 0, |z| ≤ R} with R > 0 sufficiently large depending on s, c and M . The
function N+(c, s, .) : [0,M ] → N is continuous so that one can deduce that N+(c, s, α) = N+(c, s, 0)
for all α ∈ [0,M ]. It is proved in [4] that N+(c, s, 0) = 2 which concludes the proof of the proposition.

Now, we search for solutions (û, v̂, ŵ)T such that limx→∞ û(s, x) = 0. It is satisfied provided that we
impose the condition

(14) V1(s) ∧

 û(s, xr)
v̂(s, xr)
ŵ(s, xr)

 = 0,

which in turn provides the following two boundary conditions

(15) ∂xû(s, xr) = λ1(s)û(s, xr), ∂xxû(s, xr) = λ21(s)û(s, xr).

A similar argument to obtain solutions (û, v̂, ŵ)T such that limx→−∞ û(s, x) = 0. We therefore have
to impose the condition

(16) V2(s) ∧ V3(s) ·

 û(s, x`)
v̂(s, x`)
ŵ(x, x`)

 = 0,

which gives the following boundary condition.

∂xxû(s, x`)− (λ2(s) + λ3(s))∂xû(s, x`) + λ2λ3û(s, x`) = 0.

By using relations between roots λi, one finds that this condition is equivalent to

(17) ∂xxû(s, x`) +
(
λ1(s)−

α s

ε

)
∂xû(s, x`) +

(
λ1(s)

2 − α s

ε
λ1(s) +

c

ε

)
û(s, x`) = 0.

Written in time variables, the boundary conditions (15) and (17) read
(18)

∂xu(t, xr) = L−1(λ1(s)) ∗ u(t, xr), ∂xxu(t, xr) = L−1(λ21(s)) ∗ u(t, xr),

∂xxu(t, x`) + L−1(λ1(s)−
α s

ε
) ∗ ∂xu(t, x`) + L−1(λ1(s)2 −

α s

ε
λ1(s)) ∗ u(t, x`) +

c

ε
u(t, x`) = 0.

A natural question is whether such truncation procedure provides absorbing boundary conditions. We
prove the following H1 stability result.
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Proposition 2.2. Assume that

c

2
+ ε

(
<(λ21(iξ))−

|λ1(iξ)|2

2

)
− α<(iξλ1(iξ)) ≥ 0, ∀ξ ∈ R.

Then the problem
(19)

∂t(u− α∂xxu) + c∂xu+ ε ∂xxxu = 0, (t, x) ∈ R+
∗ × (x`, xr),

u(0, x) = u0(x), x ∈ (x`, xr),

∂xu(t, xr) = L−1(λ1(s)) ∗ u(t, xr), ∂xxu(t, xr) = L−1(λ21(s)) ∗ u(t, xr), t ∈ R+
∗ ,

∂xxu(t, x`) + L−1(λ1(s)−
α s

ε
) ∗ ∂xu(t, x`)+ t ∈ R+

∗ ,

L−1(λ1(s)2 −
α s

ε
λ1(s)) ∗ u(t, x`) +

c

ε
u(t, x`) = 0,

is H1-stable. More precisely for any t > 0, the generalized kinetic energy satisfies∫ xr

x`

u2(t, x) + α(∂xu)2(t, x) dx ≤
∫ xr

x`

u20(x) + α(∂xu0)
2 dx.

Remark 2.3. The root λ1(s) is defined for all s ∈ C such that <(s) > 0. We define λ1(iξ) with ξ ∈ R
as

λ1(iξ) = lim
η→0+

λ1(η + iξ).

Proof. Let us first compute the time derivative of ‖u(t, ·)‖2L2(x`,xr)
:

d

dt

∫ xr

x`

u2(t, x) dx=−
∫ xr

x`

∂x
(
cu2 + 2εu∂2xu− ε(∂xu)2 − 2αu∂2txu

)
(t, x) dx,

=
(
cu2 + 2εu∂2xu− ε(∂xu)2 − 2αu∂2x,tu

)
(t, x`)

−
(
cu2 + 2εu∂2xu− ε(∂xu)2 − 2αu∂2xtu

)
(t, xr).

Then the generalized kinetic energy is∫ xr

x`

u2(t, x) + α(∂xu)2(t, x) dx =

∫ xr

x`

u20(x) + α(∂xu0)
2 dx

+I1t
(
cu2 + 2εu∂2xu− ε(∂xu)2 − 2αu∂2xtu

)
(·, x`)

−I1t
(
cu2 + 2εu∂2xu− ε(∂xu)2 − 2αu∂2xtu

)
(·, xr),

:=

∫ xr

x`

u20(x) + α(∂xu0)
2 dx+ J` − Jr.

The problem is H1 stable if J` ≤ 0 and Jr ≥ 0. Let us fix T > 0 and set U = u(t, x`)1[0,T ] and
V = ∂xu(t, x`)1[0,T ]. One has

J` =

∫ ∞
0

cU2 − εV 2 + 2εU
(
Op(

αs

ε
− λ1(s))V +Op(

αs

ε
λ1(s)−

c

ε
− λ1(s)2)U

)
− 2αUV ′dt,

=
1

2π

∫
R
c|Û |2 − ε|V̂ |2 + 2εÛ

(
(
iαξ

ε
− λ1(iξ))V̂ + (

iαξ

ε
λ1(iξ)−

c

ε
− λ21(iξ))Û

)
− 2iαξÛ V̂ dξ,

=
1

2π

∫
R

(2iαξλ1(iξ)− c− 2ελ21(iξ))|Û |2 − ε|V̂ |2 − 2ελ1(iξ)Û V̂ ,

≤ 1

2π

∫
R

(2<(iαξλ1(iξ))− c− 2ε<(λ21(iξ))|Û |2 + ε|λ1(iξ)|2|Û |2dξ ≤ 0,

5



by assumption on the sign of
c

2
+ ε

(
<(λ21(iξ))−

|λ1(iξ)|2

2

)
− α<(iξλ1(iξ)). Now, let us set U =

u(t, xr)1[0,T ]. We have

Jr =

∫ ∞
0

cU2 − ε(Op(λ1)U)2 + 2εU Op(λ21)U − 2αU Op(λ1)U
′,

=
1

2π

∫
R

(
c− ε|λ1(iξ)|2 + 2ε<(λ21(iξ))− 2<(iαξλ1(iξ))

)
|Û |2 ≥ 0.

This completes the proof of the proposition.

Proposition 2.4. The stability condition given in Prop. 2.2 is always fulfilled:

∀ξ ∈ R,
c

2
+ ε

(
<(λ21(iξ))−

|λ1(iξ)|2

2

)
− α<(iξλ1(iξ)) ≥ 0.

Proof. We let λ1(iξ) = a+ ib. The stability condition writes:

I =
c

2
+ ε

(
a2 − b2 − a2 + b2

2

)
+ αξb =

c

2
+ ε

a2 − 3b2

2
+ αξb.

The roots λk(s), k = 1, 2, 3, with <(s) > 0 fulfill

s+ cλ− αsλ2 + ελ3 = 0.

Writing s = η + iξ with ξ ∈ R and η > 0 and taking the limit as η → 0 we get

iξ + cλ(iξ)− αiξλ2(iξ) + ελ3(iξ) = 0.

By taking the real part of this equation we obtain:

0 = ε
(
a3 − 3ab2

)
+ 2αaξb+ ca = 2aI.

Either I = 0 and the stability condition is fulfilled, either <(λ1(iξ)) = 0.

In order to study the latter case, we perform an asymptotic expansion in the expression of λk(η+iξ)
given in (13) as η → 0. The asymptotic expansions of various terms involved in the definition of λk
are given by

p =

(
c

ε
+ 3

(
αξ

3ε

)2
)
− 6iξ

( α
3ε

)2
η +O(η2),

:= p0 + ip1η +O(η2),

q =

(
iξ

ε
+
αciξ

3ε2
+ 2iξ3

( α
3ε

)3)
+ η

(
1

ε
+
αc

3ε2
+ 6ξ2

( α
3ε

)3)
+O(η2),

:= iq0 + q1η +O(η2),

q2 +
4

27
p3 =

(
−q20 +

4

27
p30 + 2iηq0q1 + i

4

27
3p20p1η +O(η2)

)
,

:= A0 + iηA1 +O(η2),

ζ = −1

2

(
iq0 +A

1/2
0 + η

(
q1 + i

A1

2A
1/2
0

)
+O(η2)

)
,

:= ζ0 + ηζ1 +O(η2).
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The terms pj , qj and Aj with j = 0, 1 are real.

Case A0 < 0 : A0 = −a20 and A1/2
0 = ia0. We let E = −

(
q0 + a0

2

)1/3

. Then

λ1(η + iξ) =
αs

3ε
+ ζ1/3 − p

3
ζ−1/3,

=
αiξ

3ε
+ eiπ/6E − p0

3E
e−iπ/6 + η

(
α

3ε
− ζ1

3E2
e2iπ/3 − i p1

3E
e−iπ/6 − p0ζ1

9E4
eiπ/3

)
+O(η2),

and we have

<(λ1(iξ)) =

√
3

2

(
E − p0

3E

)
, =(λ1(iξ)) =

αξ

3ε
+

1

2

(
E +

p0
3E

)
.

We are now in the case where <(λ1(iξ)) =

√
3

2

(
E − p0

3E

)
= 0 which implies that E2 =

p0
3

which also
writes

a0(a0 + q0) = 0.

Since a0 > 0, we have
√
q20 −

4

27
p30 + q0 = 0, which leads to 0 = p0 =

c

ε
+ 3

α2ξ2

9ε2
. If c > 0 there is no

ξ ∈ R such that <(λ1(iξ)) = 0. If c ≤ 0, <(λ1(iξ)) = 0 if and only if ξ = ±
√
−3cε

α2
. In this cases we

have E = 0 and

I =
c

2
− 3ε(=(λ1(iξ)))

2

2
+ αξ=(λ1(iξ),

=
c

2
− 3ε

2

(
αξ

3ε
+ E

)2

+ αξ

(
αξ

3ε
+ E

)
= 0.

Case A0 ≥ 0 : A0 = a20 and A1/2
0 = a0. We let E =

(
a20 + q20

4

)1/6

. Then 1
2

(
A

1/2
0 + iq0

)
= E3e3iθ

with θ ∈ [−π/6, π/6] and

λ1(η + iξ) =
αs

3ε
+ ζ1/3 − p

3
ζ−1/3,

=
αiξ

3ε
− Eeiθ +

p0
3E

e−iθ + η

(
α

3ε
+

ζ1
3E2

e−2iθ + i
p1
3E

e−iθ +
p0ζ1
9E4

e−4iθ
)

+O(η2).

The real and imaginary parts are given by

<(λ1(iξ)) = −E cos θ +
p0
3E

cos θ, =(λ1(iξ)) =
αξ

3ε
−
(
E +

p0
3E

)
sin θ.

We are now in the case where <(λ1(iξ)) = −
(
E − p0

3E

)
cos θ = 0 which implies that E2 =

p0
3
. In this

case we have

I =
c

2
− 3ε(=(λ1(iξ)))

2

2
+ αξ=(λ1(iξ),

=
c

2
− 3ε

2

(
αξ

3ε
− 2E sin θ

)2

+ αξ

(
αξ

3ε
− 2E sin θ

)
,

=
c

2
+

3ε

2

(
α2ξ2

9ε2
− 4

p0
3

sin2 θ

)
,

≥ ε

2

(
c

ε
+ 3

(
αξ

3ε

)2

− p0

)
since θ ∈ [−π/6, π/6] and p0 ≥ 0,

≥ 0.
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3 Discrete transparent boundary conditions

It is not possible to compute explicitly the inverse Laplace transform of λk, k = 1, 2, 3 and thus
we cannot obtain a closed form of the boundary conditions. It is therefore difficult to discretize the
transparent boundary conditions (18) without any other knowledge. In [4] and [5], the construction
of the discrete transparent boundary conditions for the approximation of the linearized Korteweg-de
Vries equation (lKdV) (α = 0) and the linearized Benjamin-Bona-Mahoney equation (lBBM) (ε = 0)
is made on fully discrete numerical schemes. In the case of the (lBBM) case, the space differential
operator is of order two and it is possible to give explicit formulas both for the continuous and discrete
transparent boundary conditions. It is not the case when one deals with (lKdV) where the space
differential operator is of order 3. In the continuous case, the explicit inverse Laplace transform is not
available. This issue is also met at the discrete level where a numerical procedure is used to compute
numerically the inverse Z transform. However, it requires an implementation with quadruple precision
floating number in order to avoid instabilities as time becomes large (see [4] for more details). Here
we propose an alternative approach to invert numerically the Z−transform which allows to construct
“explicit” coefficient of discrete kernels.

3.1 Design and computation of discrete transparent boundary conditions

In this section, we derive discrete transparent boundary conditions associated to the centered-Crank
Nicolson discretization of the linear KdV-BBM equation:

un+1
j − unj − λB

(
un+1
j+1 − 2un+1

j + un+1
j−1 − u

n
j+1 + 2unj − unj−1

)
+
λH
4

(
un+1
j+1 − u

n+1
j−1

)
+
λH
4

(
unj+1 − unj−1

)
+
λD
4

(
un+1
j+2 − 2un+1

j+1 + 2un+1
j−1 − u

n+1
j−2

)
+
λD
4

(
unj+2 − 2unj+1 + 2unj−1 − unj−2

)
= 0, ∀j = 0, . . . , J,(20)

with
λH =

cδt

δx
, λD =

εδt

δx3
, λB =

α

δx2
.

Here, δt > 0 denotes the time step and δx > 0 the space step. We set J = (xr − x`)/δx. The
approximation of the exact solution u(t, x) at points jδx and instants nδt with 0 ≤ j ≤ J and n ∈ N
is unj ≈ u(nδt, x` + jδx).

In order to derive appropriate artificial boundary conditions, we follow the same procedure as in
Section 2, but on a purely discrete level. First we apply the Z-transform with respect to the time index
n, which is the discrete analogue of the Laplace transform in time, to the partial difference equation
(20). The standard definition reads

û(z) = Z{(un)n}(z) =

∞∑
k=0

uk z−k, |z| > R > 0,

where R is the convergence radius of the Laurent series and z ∈ C. Denoting ûj = ûj(z) the
Z−transform of the sequence (u

(n)
j )n∈N, we obtain from (20) the homogeneous fourth order differ-

ence equation

ûj+2 −
(

2− λH
λD

+
4λB
λD

z − 1

z + 1

)
ûj+1 +

(
4

λD
+

8λB
λD

)
z − 1

z + 1
ûj

+

(
2− λH

λD
− 4λB

λD

z − 1

z + 1

)
ûj−1 − ûj−2 = 0.(21)
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The characteristic polynomial associated to this linear recurrence relation is given by

(22) P (r) = r4 − (2− a+ µp(z))r3 +

(
4a

λH
+ 2µ

)
p(z)r2 + (2− a− µp(z))r − 1 = 0.

with

a =
λH
λD

, µ =
4λB
λD

, p(z) =
z − 1

z + 1
=

1− z−1

1 + z−1
.

We prove the following separation properties on the roots rk(z), k = 1, 2, 3, 4:

Proposition 3.1. Assume ε > 0, α ≥ 0, δx, δt > 0 and c ∈ R. Then, the roots of P are well separated
according to

|r1(z)| < 1, |r2(z)| < 1, |r3(z)| > 1, |r4(z)| > 1

which defines the discrete separation properties. As a consequence, there is a smooth parameterization
of the “stable” (respectively “unstable”) subspace Es(z) (resp Eu(z)) of solutions to (21) which decrease
to 0 as j → +∞ (respectively j → −∞) for |z| > R with R large enough.

Proof. First let us note that p : z 7→ z−1
z+1 maps {z ∈ C | |z| > 1} onto {z ∈ C | <(z) > 0}. Now let us

assume that there exists z such that |z| > 1 and there is a root r = eiθ of P . Then, one finds:

4i sin(θ)

(
cos(θ)− 2− a

2

)
=

(
2µ(cos(θ)− 1)− 4a

λH

)
p(z).

This equation holds for some z such that |z| > 1 only if

sin(θ)

(
cos(θ)− 2− a

2

)
=

(
2µ(cos(θ)− 1)− 4a

λH

)
= 0.

If sin(θ) = 0 or cos(θ) = 1 − a/2 then
(

2µ(cos(θ)− 1)− 4a
λH

)
≤ −4a/λH < 0 so there is no roots of

P on the unit circle for all z such that |z| > 1. Let us order the four roots of P as |r1(z)| ≤ |r2(z)| ≤
|r3(z)| ≤ |r4(z)|. Since |r1(z)r2(z)r3(z)r4(z)| = 1, one has |r1(z)| < 1 < |r4(z)|. There remains to
locate r2(z) and r3(z). Let p(z) → ∞: one has r4(z) ∼ µp(z) whereas there are ri(z), i = 1, 2, 3
remains bounded and converge to the solutions of

µr3 − (
4a

λH
+ 2µ)r2 + µr = 0.

One deduce then that r1(z) → 0 as p(z) → +∞ and a straightforward computation shows that
r1(z) ∼ − 1

µp(z) . Finally r2(z), r3(z) converge to the roots of

r2 − (2 +
4a

µλH
)r + 1 = 0

We easily deduce that |r2(z)| < 1 < |r3(z)|. This concludes the proof of the proposition.

According to this proposition, we set

Ss(z) = r1(z) + r2(z), P
s(z) = r1(z)r2(z), Su(z) = r3(z) + r4(z), P

u(z) = r3(z)r4(z)

and the characteristic polynomial P admits the factorization

P (r) =
(
r2 − Su(z)r + P u(z)

) (
r2 − Ss(z)r + P s(z)

)
The discrete transparent boundary conditions are written as follows. On the left boundary, one must
have

(û−2, û−1, û0, û1) ∈ Eu(z)

9



which is also equivalent to the following boundary conditions

(23) û1 − Su(z) û0 + P u(z)u−1 = 0, û0 − Su(z) û−1 + P u(z)u−2 = 0.

On the other hand, one must have on the right boundary

(ûJ−1, ûJ , ûJ+1, ûJ+2) ∈ Es(z)

which is also written as

(24) ûJ+2 − Ss(z) ûJ+1 + P s(z) ûJ = 0, ûJ+1 − Ss(z) ûJ + P s(z) ûJ−1 = 0.

The coefficients of P admits a singularity at z = −1 which in turn implies bad behavior of the
coefficients in the expansion of Su, P u, Ss, P s. In order to remove this singularity, we will consider
alternative boundary conditions by multiplying (24) and (23) by 1 + z−1. Inverting the Z−transform,
one finds that the left and right boundary conditions are written as:

(25) un+1
1 + un1 + s̃u ∗d un+1

0 + p̃u ∗d un+1
−1 = 0, un+1

0 + un0 + s̃u ∗d un+1
−1 + p̃u ∗d un+1

−2 = 0,

(26) un+1
J+2 + unJ+2 + s̃s ∗d un+1

J+1 + p̃s ∗d un+1
J = 0, un+1

J+1 + unJ+1 + s̃u ∗d un+1
J + p̃u ∗d un+1

J−1 = 0,

where the sequences s̃u, p̃u and s̃s, p̃s are defined as

S̃s(z) = (1 + z−1)Ss(z) =

∞∑
n=0

s̃sn
zn
, P̃ s(z) = (1 + z−1)P s(z) =

∞∑
n=0

p̃sn
zn
,

S̃u(z) = (1 + z−1)Su(z) =
∞∑
n=0

s̃un
zn
, P̃ u(z) = (1 + z−1)P u(z) =

∞∑
n=0

p̃un
zn
.

The relations (25) and (26) allow to compute the ghost values u−2, u−1, uJ+1 and uJ+2. Now there
remains to compute the coefficients s̃un, p̃un, s̃sn, p̃sn for all n ∈ N. For the Schrödinger equation [3, 16]
and for the (lKdV) equation (α = 0) [4], the numerical procedure to compute the coefficients is as

follows: if one set U(z) =

∞∑
k=0

uk z
−k for all |z| > R, the coefficients uk are recovered by the formula

un =
rn

2π

∫ 2π

0
U(r eiφ)einφdφ, ∀n ∈ N,

for some r > R and the approximation of these integrals are done by using the Fast Fourier Transform.
In [3, 16, 4], one has R = 1 so that the numerical procedure is unstable as n → ∞ due to truncation
errors. Here, we propose an alternative approach based on the use of the relation between coefficients
and roots. We set x = z−1 and one has to solve the following system

(27)

Ss(x) + Su(x) = 2− a+ µ
1− x
1 + x

,

P u(x) + P s(x) + Su(x)Ss(x) =

(
4a

λH
+ 2µ

)
1− x
1 + x

,

P u(x)Ss(x) + P s(x)Su(x) = −
(

2− a− µ1− x
1 + x

)
,

P u(x)P s(x) = −1.

As mentioned previously, we compute instead an expansion of S̃u, S̃s, P̃ u, P̃ s: the system satisfied by
these quantities is given by

(28)

S̃s(x) + S̃u(x) = (2− a)(1 + x) + µ(1− x),

(1 + x)P̃ u(x) + (1 + x)P̃ s(x) + S̃u(x)S̃s(x) =

(
4a

λH
+ 2µ

)
(1− x2),

P̃ u(x)S̃s(x) + P̃ s(x)S̃u(x) = −
(
(2− a)(1 + x)2 − µ(1− x2)

)
,

P̃ u(x)P̃ s(x) = −(1 + x)2.
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Now, the coefficients satisfy the linear recurrence relations for all n ≥ 1

(29)

s̃sn + s̃un = σn1 ,

p̃un + p̃sn + s̃s0s̃
u
n + s̃sns̃

u
0 = σn2 − p̃un−1 − p̃sn−1 −

n−1∑
k=1

s̃sks̃
u
n−k,

s̃s0p̃
u
n + s̃snp̃

u
0 + p̃s0s̃

u
n + p̃sns̃

u
0 = σn3 −

n−1∑
k=1

s̃skp̃
u
n−k −

n−1∑
k=1

p̃sks̃
u
n−k,

s̃s0p̃
u
n + s̃snp̃

u
0 = σ4n −

n−1∑
k=1

p̃skp̃
u
n−k.

whereas the coefficients for n = 0 satisfy the non linear system:

(30) s̃s0 + s̃u0 = σ01, p̃s0 + p̃u0 + s̃s0s̃
u
0 = σ02, p̃

u
0 s̃
s
0 + p̃s0s̃

u
0 = σ03, p̃s0p̃

u
0 = σ04.

Here the sequences σk, k = 1, 2, 3, 4 are given by

σ1 = (2− a+ µ)δ0 + (2− a− µ)δ1, σ2 =

(
4a

λH
+ 2µ

)
(δ0 − δ2),

σ3 = −(2− a− µ)δ0 − 2(2− a)δ1 − (2− a+ µ)δ2, σ4 = −δ0 − 2δ1 − δ2.

The nonlinear system is solved numerically simply by computing the roots of P for z−1 = x = 0 and
the recurrence relation (29) is implemented directly. Note that a 4× 4 matrix has to be inverted. The
invertibility is ensured by the separation of the roots at x = 0. We plot the coefficients s̃sn on left curves
of Figure 1 and we see that they decrease as n−3/2 just as in the BBM case or for the Schrodinger
equation [8].
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~ss
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Figure 1: Coefficients s̃sn with δx = 2−18, α = δ = 1 and c = 2

Though in the limit δx→ 0, the roots of P are not separated which implies that the linear systems
that are to be solved in our procedure are not well conditioned which increases the impact of numerical
errors: see right curves of figure 1.
Note that this “bad” behavior is observed for spatial steps δx much smaller than those used in [4]. In
order to deal with this particular problem for small spatial steps δx, we will carry out an asymptotic
expansion of the coefficients s̃sn, s̃un and p̃sn, p̃un in the limit δx → 0 and truncate these expansions to a
given order p larger than 2 in order to preserve the accuracy of the scheme.
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In the limit δt→ 0, the divergence of coefficient is indeed stronger since it is easily proved that

r1(z = +∞) ∼δt→0 −
εδt

4αδx
, r4(z = +∞) ∼δt→0

4αδx

εδt
.

3.2 Consistency and stability of discrete transparent boundary conditions

In this section, we check the consistency of the discrete transparent boundary conditions (23) and (24)
with the continuous boundary conditions. As an application, we shall obtain an asymptotic expansion
of the convolution coefficients s̃sn, s̃un and p̃sn, p̃un. First, let us prove the following proposition

Proposition 3.2. Let s ∈ C such that <(s) > 0. Set z = exp(sδt) and µ(z) = 2(z−1)
δt(z+1) and assume

that the roots λi(s) are distinct. Then the roots r1, r2, r3, r4 of the characteristic equation (22) admits
a smooth expansion with respect to δt, δx→ 0 and expands as:

r1 = 1 + δxλ̃1(s, δx) = 1 + δxλ1(s) + δx2λ11 + δxO(δx2 + s2δt2),

r2 = −1 +
αs

ε
δx− α2s2

2ε2
δx2 + δxO(δx2 + s2δt2),

r3 = 1 + δxλ̃2(s, δx) = 1 + δxλ2(s) +O(δx2 + s2δt2),

r4 = 1 + δxλ̃3(s, δx) = 1 + δxλ3(s) +O(δx2 + s2δt2).

with

λ11 =
λ1(s)

(
αsλ1(s)

2 − 2cλ1(s) + 3s
)

3λ21(s)− 2αsλ1(s) + c
.

Proof. As a first step, we compute an expansion of the three roots that bifurcate from 1. Let us rewrite
(22) as

ε(r − 1)3
r + 1

2
− αδxµ(z)r(r − 1)2 + cδx2r(

r + 1

2
)(r − 1) + δx3 µ(z) r2 = 0.

Now, let us set r = 1 + δxλ: one finds

ε(1 +
λδx

2
)λ3 − αp(z)(1 + λδx)λ2 + c(1 + λδx)(1 +

λδx

2
)λ+ (1 + λδx)2p(z) = 0.

Letting δt, δx→ 0, one obtains µ(z) = s(1 +O(s2δt2)) and

(31) ελ3 − αsλ2 + cλ+ s = 0.

Recall that we have chosen λi(s) roots of (31) such that <(λ1(s)) < 0, <(λ2(s)) > 0 and <(λ3(s)) > 0
and assumed that the roots are distinct so that we can apply the implicit function theorem: there are
three roots r1, r2, r4 which bifurcates from 1 and expands as

r1 = 1 + δxλ1(s) +O(δx2 + s2δt2), rk = 1 + δxλk−1(s) +O(δx2 + s2δt2), k = 3, 4.

Next, we compute an expansion of the eigenvalue bifurcating from −1: the implicit function theorem
do apply and we obtain

r2 = −1 +
αs

ε
δx+O(s2δt2 + δx2).

This concludes the proof of the proposition.

Now we can check the consistency of the discrete transparent boundary conditions with the con-
tinuous ones. To simplify the presentation, we assume that [x`, xr] = [0, 1].

12



Proposition 3.3. Let u be a smooth solution of the (KdV-BBM) system (19). For all x ∈ [−2δx, 1 +
2δx], we define the Z-transform of (u(nδt, x))n∈N by

û(z, x) =

∞∑
n=0

u(nδt, x)

zn
.

Then, for all K ⊂ C+ and all s ∈ K, one has for the left boundary conditions:

û(esδt, δx)− Su(esδt)û(esδt, 0) + P u(esδt)û(esδt,−δx) = δx2O(δt+ δx),

û(esδt, 0)− Su(esδt)û(esδt,−δx) + P u(esδt)û(esδt,−2δx) = δx2O(δt+ δx),

whereas on the right hand side

û(esδt, 1 + 2δx)− Ss(esδt)û(esδt, 1 + δx) + P s(esδt)û(esδt, 1) = δxO(δt+ δx),

û(esδt, 1 + δx)− Ss(esδt)û(esδt, 1) + P s(esδt)û(esδt, 1− δx) = δxO(δt+ δx).

Proof. Let us first check left boundary conditions. First, from proposition 3.3, one finds that

Su(esδt) = 2 + δx
(
λ̃2(s, δx) + λ̃3(s, δx)

)
,

P u(esδt) = 1 + δx
(
λ̃2(s, δx) + λ̃3(s, δx)

)
+ δx2λ̃2(s, δx)λ̃3(s, δx).

By inserting these expansions in the discrete transparent boundary conditions, one finds

û(esδt, δx)−Su(esδt)û(esδt, 0) + P u(esδt)û(esδt,−δx) = û(esδt, δx)− 2û(esδt, 0) + û(esδt,−δx)

−δx
(
λ̃2(s, δx) + λ̃3(s, δx)

)(
û(esδt, 0)− û(esδt,−δx)

)
+δx2λ̃2(s, δx)λ̃3(s, δx)û(esδt,−δx),

= δx2
(
∂2

∂x2
û(esδt, 0)− (λ2(s) + λ3(s))

∂

∂x
û(esδt, 0) + λ2(s)λ3(s)û(esδt, 0) +O(δx)

)
,

= δx2
(
δt−1

(
∂2

∂x2
Lu(s, 0)− (λ2(s) + λ3(s))

∂

∂x
Lu(s, 0) + λ2(s)λ3(s)Lu(s, 0)

)
+O(δt+ δx)

)
,

= δx2O (δx+ δt) .

The proof of consistency of the second boundary condition on the left is carried out similarly. Let us
now consider boundary conditions on the right. Note that Ss and P s are written as

û(esδt, 1 + δx)−Ss(esδt)û(esδt, 1) + P s(esδt)û(esδt, 1− δx)

= û(esδt, 1 + δx)− û(esδt, 1− δx)− δxλ1(s)
(
û(esδt, 1) + û(esδt, 1− δx)

)
−αs
ε

(
û(esδt, 1)− û(esδt, 1− δx)

)
+O(δx2),

= 2δx
(
∂xû(esδt, 1)− λ1(s)û(esδt, 1) +O(δx)

)
= δxO(δt+ δx).

The proof of consistency of the second boundary condition is similar. This completes the proof of the
proposition.

Remark 3.4. Note that the order of accuracy is one order lower on the right hand side. This is due to
the additional mode that bifurcates from −1 which is a pure numerical artifact.
Let us now write a stability result for discrete transparent boundary conditions. For that purpose, we
introduce As(z) and Au(z) the Hermitian matrices

As =

(
αs(z) γs(z)

γs(z) βs(z)

)
, Au =

(
αu(z) γu(z)

γu(z) βu(z)

)
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with

αs(z) =
|z + 1|2

2
<(−ps(z)),

βs(z) =
|z + 1|2

2

(
<(ss(z)2 − ps(z) + (a− 2)ss(z)

)
− µz − z̄

2 i
=(ss(z)),

γs(z) =
|z + 1|2

4

(
ss(z)− ss(z)ps(z)− (a− 2)ps(z)

)
− µz − z̄

2i

ps(z)

2 i

and

αu(z) =
|z + 1|2

2
<(pu(z)),

βu(z) =
|z + 1|2

2

(
<(pu(z)− su(z)2 − (a− 2)su(z)

)
− µz − z̄

2 i
=(su(z))

γu(z) =
|z + 1|2

4

(
pu(z)su(z)− su(z) + (a− 2)pu(z)

)
+ µ

z − z̄
2 i

pu(z)

2 i
.

Proposition 3.5. Let unj with j ∈ [−1, J + 1] and n ∈ N solution of (20) with the discrete transparent
boundary conditions (25) and (26). Denote En

(32) En =
J∑
j=1

(unj )2

2
+ α

J∑
j=0

(unj+1 − unj )2

2δx2
.

Assume that for all θ ∈ [−π, π] the Hermitian matrices As(eiθ) and Au(eiθ) are positive semi-definite.
Then the boundary conditions (25) and (26) are dissipative:

∀N ∈ N, EN − E0 = −R` −Rr ≤ 0

with

Rr =
λD
8π

∫ π

−π
〈
(
ûJ−1(e

iθ)
ûJ(eiθ)

)
;As(eiθ)

(
ûJ−1(e

iθ)
ûJ(eiθ)

)
〉 dθ ≥ 0,

R` =
λD
8π

∫ π

−π
〈
(
û−1(e

iθ)
û0(e

iθ)

)
;Au(eiθ)

(
û−1(e

iθ)
û0(e

iθ)

)
〉 dθ ≥ 0.

Remark 3.6. In the pure BBM case, the discrete transparent boundary conditions are proved to be
dissipative and for all n ≥ 0, one has En ≤ E0: see [5] for a proof. Note that in this later case, the
discrete transparent boundary conditions, only one ghost point is added at the end of each boundary
and dissipativity is proved only by checking the sign of a function defined on the unit circle at each
end of the domain. Here, we see that we have to check that two Hermitian matrices are positive semi
definite. The size of the matrices is determined by the number of ghost points added at each boundary.
These conditions are hardly verified in the general case and we will show later that the boundary
conditions are indeed dissipative through direct numerical simulations. A generak framework to study
the dissipativity of the transparent numerical boundary conditions for evolution equations can be found
in [6].

Proof. Multiply equation (20) by vnj =
unj + un+1

j

2
and sum over all j = 0, · · · , J : one finds

En+1−En − λBvnJ+1

(
(un+1
J+1 − u

n+1
J )− (unJ+1 − unJ)

)
+ λB v

n
−1
(
(un+1

0 − un+1
−1 )− (un0 − un−1)

)
+
λH
2

(vnJ+1v
n
J − vn0 vn−1) +

λD
2

(
vnJ+2 v

n
J + vnJ+1v

n
J−1 − vn1 vn−1 − vn0 vn−2

)
− λD

(
vnJ+1v

n
J − vn0 vn−1

)
= 0.(33)
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Denote rn` the contribution of boundary terms at the left end of the domain and rnr at the right end.
Then, one has

rn` = −λD
4

(
2(vn1 v

n
−1 + vn0 v

n
−2) + 2(a− 2)vn0 v

n
−2 − µvn−1

(
(un+1

0 − un+1
−1 )− (un0 − un−1)

))
,

rnr =
λD
4

(
2(vnJ+2 v

n
J + vnJ+1v

n
J−1) + 2(a− 2)vnJ+1v

n
J − µvnJ+1

(
(un+1
J+1 − u

n+1
J )− (unJ+1 − unJ)

))
.

We sum the equations for all n = 0, . . . , N − 1: one finds

EN − E0 +RNr +RN` = 0, RNr =
N−1∑
n=0

rnr , RN` =
N−1∑
n=0

rn` .

Let us deal with the right hand side. By applying Plancherel’s theorem for Z-transform, one finds
(34)

RNr =
λD
8π

∫ π

−π

|z + 1|2

2

(
ûJ+2ûJ + ûJ+1ûJ−1 + (a− 2)ûJ+1ûJ

)
(eiθ)− µz − z̄

2
ûJ+1(ûJ+1 − ûJ)(eiθ)dθ.

Recall that the discrete transparent boundary conditions are given by

ûJ+2(z) = ss(z)ûJ+1(z)− ps(z)ûJ(z), ûJ+1(z) = ss(z)ûJ(z)− ps(z)ûJ−1(z).
By substituting these relations into (34), one finds RNr = Rr. Similarly, one finds RN` = R`. This
concludes the proof of the proposition.

4 Numerical Results

We propose in this section to illustrate the behaviour of the numerical solutions to (3) when we use
the numerical scheme (20) complemented with the boundary conditions (25) and (26).

4.1 Computation of reference solutions

In order to plot convergence curves, we need to compare to reference solutions. We use two techniques
to compute reference solutions to (3). The first technique is dedicated to the linear Korteweg-de Vries
equation

(35) ∂tu+ ε∂xxxu = 0.

The fundamental solution to (35) is

E(t, x) =
1

3
√

3εt
Ai

(
x

3
√

3εt

)
,

where Ai(·) is the Airy function. Then the exact solution to (35) is given by

uref(t, x) = E(t, x) ∗ u0(x),

where ∗ denotes the convolution product on the whole real axis.
Such a fundamental solution is not known for the general equation (3). In this case, we apply a

Fourier transform to (3) and obtain

(1 + αξ2)∂tû(t, ξ) + i(cξ − εξ3)û(t, ξ) = 0,

where ξ stands for the Fourier variable. The reference solution is therefore obtained by

uref(t, x) = F−1
(

exp

(
i
εξ3 − cξ
1 + αξ2

t

)
û0(ξ)

)
.

The computation is made with fast Fourier transforms and periodic boundary conditions. The extent
of the computational domain is chosen large enough to avoid any spurious effects of the boundary
conditions.
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4.2 Case 1: exact transparent boundary conditions

The numerical scheme is given by (20) coupled with the boundary conditions (25) and (26). Then, the
linear system we have to solve is given by

(36) Aun+1 = Bun + sn

where A,B ∈MJ+5,J+5(R) and un,un+1, sn ∈ RJ+5 with unj = unj ,

A =



p̃u0 −s̃u0 1 0
0 p̃u0 −s̃u0 1 0
−1 c− c0 c+ 1 0
0 −1 c− c0 c+ 1 0

. . . . . . . . . . . . . . . . . .
0 −1 c− c0 c+ 1

0 p̃s0 −s̃s0 1 0
0 p̃s0 −s̃s0 1


, B =



0 0 −1 0
0 0 0 −1 0
1 c+ c0 c− −1 0
0 1 c+ c0 c− −1 0

. . . . . . . . . . . . . . . . . .
0 1 c+ c0 c− −1

0 0 0 −1 0
0 0 0 −1


and

sn =



∑n
k=0 s̃

u
n+1−ku

k
0 − p̃un+1−ku

k
−1∑n

k=0 s̃
u
n+1−ku

k
1 − p̃un+1−ku

k
0

0
...
0∑n

k=0 s̃
s
n+1−ku

k
J − p̃sn+1−ku

k
J−1∑n

k=0 s̃
s
n+1−ku

k
J+1 − p̃sn+1−ku

k
J


.

The constants c−, c0 and c+ take the values

c− = 2− a− µ, c0 =
4a

λH
+ 2µ, c+ = a− 2− µ.

The computational domain is (t, x) ∈ [0, 4]× [0, 1]. The evolution of the solution depends on α, ε and
c. In order to check the order of the numerical scheme, we define e(n) the relative `2-error at time
t = nδt given by:

e(n) = ‖uref(tn, ·)− un(·)‖2 / ‖uref(tn, ·)‖2 ,

where un is the solution to the numerical scheme and where we use trapezoidal rule to compute the
`2-norm. Thanks to the definition of e(n), we consider the error function given by the maximum of e(n)

with respect to 0 < n ≤ N
EP = max

0<n≤N

(
e(n)

)
which corresponds to the discrete version of L∞t L2

x error function. Since we consider the Crank-Nicolson
scheme (20), we should have the bound

(37) EP ≤ Ctδt2 + Cxδx
2.

We consider two kinds of initial conditions respectively of Gaussian type and modulated Gaussian (or
wave packet). The two initial conditions we consider are

u0,G = exp

(
−400

(
x− 1

2

)2
)
, u0,WP = u0,G sin(20πx).
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Figure 2: Evolution of the reference solution for (α = c = 0, ε = 10−3) and u0 = u0,G
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Figure 4: Evolution of the reference solution for (c = 2, α = ε = 10−3) and u0 = u0,WP

The evolutions of the solutions for this two initial data and for conditions (α = c = 0, ε = 10−3),
(c = 0, α = ε = 10−3) and (α = ε = 10−3, c = 2) are plotted respectively on Figures 2, 3 and 4. We
plot on Figure 5 the behavior of EP with respect to δx for various δt for the three test cases. In all cases
and for δx > 5 · 10−5, we recover the second order behaviour of the numerical scheme. There exists a
saturation process linked to Ct. When δx is small enough, the dominating term in (37) is Ctδt2. When
δx < 5 · 10−5, the behaviour of EP is deteriorated and the relation (37) is not valid anymore. This
process is linked with a (δx, δt)-singularity of the convolution coefficients s̃u, p̃u, s̃s and p̃s. Indeed, as
already mentioned in the previous section, our strategy to compute these coefficients is based on the

inversion of a 4 × 4 matrix: as δx → 0, one shows that its determinant is of order O
(
cδx2

ε
+
δx3

εδt

)
which increases the numerical errors in the computation of convolution coefficients. This bad behaviour
is however limited when δt > 5 · 10−5. A way to correct the δx-singularity is proposed in the following
subsection. The upper-left subfigure in Figure 5 has to be compared to Figure 5 in [4] which was
limited to δx ≈ 10−3 due to the unstable procedure of inverse Z-transform. Moreover, the study of
the error EP for very small δx and δt seems to have never been produced before in the literature (for
example, the smallest δx is approximately 10−3 with δt = 10−4 in [1]) and may be present for other
transparent boundary conditions and other equations. We also plot the evolution of EP with respect
to δt with δx = 2−14 ≈ 6 · 10−5 for (c = 0, α = ε = 10−3) and u0 = u0,G on Figure 6 (the results for
other test cases are similar). The second-order with respect to δt is well recovered.

4.3 Case 2: approximate discrete transparent boundary conditions

In this section, we explore the limit δx→ 0. In order to simplify the discussion, we focus on the (lKdV)
equation (α = 0). The general case is presented in Appendix. We first derive an asymptotic expansion
of the coefficients involved in the formulation of the discrete transparent boundary conditions (25) and
(26). Then, we present some numerical results. In particular, we present convergence results to verify
that the truncation procedure does not introduce numerical instabilities and does not destroy the order
of consistency of the numerical scheme.

Recall that the problem of inverting the Z-transform in transparent boundary conditions (23)
and (24) amounts to expand into Laurent series the functions ss(z), su(z), ps(z), pu(z) defined by the
relation

P (r) = r4 − 2r3 + 4δx3

εδt p(z)r
2 + 2r − 1

=
(
r2 − ss(z)r + ps(z)

) (
r2 − su(z)r + pu(z)

)
.
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The roots of r2 − ssr + ps belongs to {r ∈ C, |r| < 1} whereas the ones of r2 − sur + pu belongs to
{r ∈ C, |r| > 1}. Let us calculate (ss, ps, su, pu). These functions satisfy

(38)


ss + su = 2,

sssu + ps + pu = 4δx3

εδt p(z),
sspu + sups = −2,
pspu = −1.

We look for an asymptotic expansion of these quantities as δx→ 0 in the form:

ss =
∑
k≥0

skδx
k, ps =

∑
k≥0

pkδx
k, su =

∑
k≥0

tkδx
k, pu =

∑
k≥0

qkδx
k.

By inserting this expansion into (42) and identifying O(δxn) terms with (n ∈ N), we obtain a non
linear system and a series of linear systems to be solved. First, by identifying 0th order terms, one
finds the nonlinear system of equations:

s0 + t0 = 2,
s0t0 + p0 + q0 = 0,
s0q0 + t0p0 = −2,
p0q0 = −1.

The solution writes (s0, p0, t0, q0) = (0,−1, 2, 1). Next, we identify O(δxn) terms with n ≥ 1. One
finds the family of linear systems:

A


sn
pn
tn
qn

 = Fn = Σn −Gn where A =


1 0 1 0
t0 1 s0 1
q0 t0 p0 s0
0 q0 0 p0

 =


1 0 1 0
2 1 0 1
1 2 −1 0
0 1 0 −1

 ,

Σn =


0
0
0
0

 if n 6= 3, Σ3 =


0

4
εδtp(z)

0
0

 , Gn =


0∑n−1

k=1 sktn−k∑n−1
k=1 skqn−k +

∑n−1
k=1 tkpn−k∑n−1

k=1 pkqn−k

 .

The matrix A is not invertible, the eigenvalue 0 is simple and associated to v =


1
−1
−1
−1

. If the condition

det

Fn,


0
1
2
1

 ,


1
0
−1
0

 ,


0
1
0
−1


 = 0

is fulfilled, then Un = (sn, pn, tn, qn)T is given by

Un = λnv+
(Fn)2 + (Fn)4

2
e2+((Fn)2 − (Fn)3 + (Fn)4) e3+

F2 − F4

2
e4 =


λn

−λn +
(Fn)2 + (Fn)4

2
−λn + (Fn)2 − (Fn)3 + (Fn)4

−λn +
F2 − F4

2

 ,

20



where (e1, e2, e3, e4) is the canonical basis of R4. Let λ1 the root of λ31 + 2
εδtp(z) = 0 whose real part

is negative. We get:

ss = λ1δx+
λ21
2
δx2 +

p

3εδt
δx3 +O(δx4),

su = 2− λ1δx−
λ21
2
δx2 − p

3εδt
δx3 +O(δx4),

ps = −1− λ1δx−
λ21
2
δx2 +

2p

3εδt
δx3 +O(δx4),

pu = 1− λ1δx+
λ21
2
δx2 +

2p

3εδt
δx3 +O(δx4).

We now need to invert the Z transform of z 7→ λ1(s(z)) = −
(

2
εδt

)1/3
p(z)1/3. Note that

p(z)k/3 =
(1− z−1)k/3

(1 + z−1)k/3
, ∀|z| > 1, ∀k ∈ Z.

As a consequence, p(z)k/3 can be expanded into Laurent series explicitly: indeed, (1 − z−1)γ and
(1 + z−1)γ expand as

(1− z−1)γ =
∞∑
p=0

α
(γ)
p

zp
, α

(γ)
p+1 = −γ − (p− 1)

p
α(γ)
p , α0 = 1,

(1 + z−1)γ =
∞∑
p=0

β
(γ)
p

zp
, β

(k)
p+1 =

γ − (p− 1)

p
β(γ)p , β0 = 1.

This, in turn, provides an explicit expansion of λ1(s(z)) and (λ21(s(z)))
2 into Laurent series

(39) λ1(s(z)) =

∞∑
p=0

σ
(1)
p

zp
, (λ1(s(z)))

2 =

∞∑
p=0

σ
(2)
p

zp
.

where

σ(1)p = −
(

2

εδt

)1/3 n∑
l=0

α
(1/3)
l β

(−1/3)
n−l , σ(2)p =

(
2

εδt

)2/3 n∑
l=0

α
(2/3)
l β

(−2/3)
n−l

We are now in a position to formulate approximate discrete transparent boundary conditions. The
transparent boundary conditions are written in term of asymptotic coefficients ãsu, ãpus, ãss, ãps,as

(40)
un+1
J+1 + unJ+1 −

n+1∑
k=0

ukJ ãs
s
n+1−k +

n+1∑
k=0

ukJ−1ãp
s
n+1−k = 0,

un+1
J+2 + unJ+2 −

n+1∑
k=0

ukJ+1ãs
s
n+1−k +

n+1∑
k=0

ukJ ãp
s
n+1−k = 0,

and

(41)
un+1
0 + un0 −

n+1∑
k=0

uk−1ãs
u
n+1−k +

n+1∑
k=0

uk−2ãp
u
n+1−k = 0,

un+1
1 + un1 −

n+1∑
k=0

uk0 ãs
u
n+1−k +

n+1∑
k=0

uk−1ãp
u
n+1−k = 0,

21



where

ãss0 = σ
(1)
0 δx+

σ
(2)
0

2
δx2 +

δx3

3εδt
+O(δx4),

ãss1 = (σ
(1)
0 + σ

(1)
1 )δx+

σ
(2)
0 + σ

(2)
1

2
δx2 − δx3

3εδt
+O(δx4),

ãssp+1 = (σ(1)p + σ
(1)
p+1)δx+

σ
(2)
p + σ

(2)
p+1

2
δx2 +O(δx4), p ≥ 1,

ãps0 = −1− σ(1)0 δx− σ
(2)
0

2
δx2 +

2δx3

3εδt
+O(δx4),

ãps1 = −1− (σ
(1)
0 + σ

(1)
1 )δx− σ

(2)
0 + σ

(2)
1

2
δx2 − 2δx3

3εδt
+O(δx4),

ãpsp+1 = −(σ(1)p + σ
(1)
p+1)δx−

σ
(2)
p + σ

(2)
p+1

2
δx2 +O(δx4), p ≥ 1,

ãsu0 = 2− σ(1)0 δx− σ
(2)
0

2
δx2 − δx3

3εδt
+O(δx4),

ãsu1 = 2− (σ
(1)
0 + σ

(1)
1 )δx− σ

(2)
0 + σ

(2)
1

2
δx2 +

δx3

3εδt
+O(δx4),

ãsup+1 = −(σ(1)p + σ
(1)
p+1)δx−

σ
(2)
p + σ

(2)
p+1

2
δx2 +O(δx4), p ≥ 1,

ãpu0 = 1− σ(1)0 δx+
σ
(2)
0

2
δx2 +

2δx3

3εδt
+O(δx4),

ãpu1 = 1− (σ
(1)
0 + σ

(1)
1 )δx+

σ
(2)
0 + σ

(2)
1

2
δx2 − 2δx3

3εδt
+O(δx4),

ãpup+1 = −(σ(1)p + σ
(1)
p+1)δx+

σ
(2)
p + σ

(2)
p+1

2
δx2 +O(δx4), p ≥ 1.

To illustrate numerically the efficiency of these new coefficients of convolution, we reproduce the test
case (α = c = 0, ε = 10−3) with u0 = u0,G and compared the evolution of EP on Figure 7. We make
use of these asymptotic coefficients only for small δx. The bad behaviour of EP is clearly limited when
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Figure 7: Evolution of EP with respect to δx for various δt.

δx, δx3/δt are very small. These asymptotic coefficients are also useful for long time simulations. We
consider here T = 1000, δt = 10−1, δx = 2−18 and u0 = u0,G. We see on Figure 8 that the standard
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coefficients do not have the good decay n−3/2. This rate is clearly well preserved by the asymptotic
coefficient. For this test case, we cannot compare the numerical solution to a reference solution. The
two procedures described in subsection 4.1 are not valid for such long time simulations. We therefore
present here the evolution of the solution with standard and asymptotic coefficients but also of the
discrete energy (32) respectively on Figure 9 and 10. It is clear that the behavior of the solution with
standard coefficient is not good since the solution does not decay with t > 0 and the discrete energy is
growing. We obtain a good behavior with the asymptotic coefficients.
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Figure 8: Evolution of the convolution coefficients.
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Figure 9: Evolution of the solution with standard and asymptotic convolution coefficients.

5 Conclusion

In this paper, we derived continuous and discrete transparent boundary conditions for the linearized
mixed (KdV)-(BBM) equation. We chose finite difference centered scheme for spatial derivatives and
a Crank Nicolson scheme in time to achieve second order in time and space and to preserve some
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Figure 10: Evolution of the discrete energy En of the solution with standard and asymptotic convolution
coefficients.

invariants in the equation (spatial mean, energy). Continuous transparent boundary conditions are
proved to be stable whereas we provide sufficient conditions in the discrete case. Moreover the discrete
transparent boundary conditions are proved to be consistent with the continuous ones.

From a numerical view point, the key step is to compute the inverse Z-transform of convolution
kernels. We propose a new strategy based on the fact that convolution kernels are products and sums of
roots of some characteristic polynomial: we simply compute an asymptotic expansion of these roots as
x = z−1 → 0 where z is the parameter in Z-transform. This method is proved to be very efficient and
stable except for small δx. Here, we propose an alternative strategy based on an asymptotic expansion
of convolution kernel with respect to δx. We show that the resulting coefficients have a good behavior
for large time simulation which is not the case for the first strategy.

In practice, we will have to deal with non-linear equations. In order to derive transparent boundary
conditions in the nonlinear case, we will adapt our strategy to linear equations with variable coefficients
and then adopt a fixed point strategy: see [1] for more details in the case of nonlinear Schrodinger
equations. We shall use this strategy to study accurately the interaction of solitons in BBM equations
like [11], [7] (where non physical boundary conditions were used).

Other interesting questions concerns the design of discrete transparent boundary conditions for
more general models of water waves. On the one hand, it would be of interest to adapt this strategy
to two dimensional models for large wavelength weakly nonlinear water waves like the Kadomtsev-
Petviashvili (KP) equation: the main issue there is to deal with non local terms in the equation. A
close model is also the Zakharov-Kuznetsov equation [12]. On the other hand, it would be of interest
to derive discrete transparent boundary conditions in the case of the Serre-Green-Naghdi equations
[13] which are physically more relevant for the water wave problem: the main issue there is to design
discrete transparent boundary conditions in the context of systems of partial differential equations
instead of scalar partial differential equations.
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6 Appendix

We present the limit δx→ 0 for the general case KdV-BBM of the convolution coefficients. It extends
the case of the (lKdV) equation performed in subsection 4.3. The roots leading to the convolution
coefficients are solution to

P (r) = r4 − (2− a+ µp(z)) r3 +

(
4a

λH
+ 2µ

)
p(z)r2 + (2− a− µp(z)) r − 1,

= r4 −
(

2− cδx2

ε
+

4αδx

εδt
p(z)

)
r3 +

(
4δx3

εδt
+

8αδx

εδt

)
p(z)r2 +

(
2− cδx2

ε
− 4αδx

εδt
p(z)

)
r − 1,

=
(
r2 − ss(z)r + ps(z)

) (
r2 − su(z)r + pu(z)

)
.

The roots of r2 − ssr + ps belongs to {r ∈ C, |r| < 1} whereas the ones of r2 − sur + pu belongs to
{r ∈ C, |r| > 1}. Let us calculate (ss, ps, su, pu). These functions satisfy

(42)



ss + su = 2 +
4αp(z)

εδt
δx− c

ε
δx2,

sssu + ps + pu =
8αp(z)

εδt
δx+

4p(z)

εδt
δx3,

sspu + sups = −2 +
4αp(z)

εδt
δx+

c

ε
δx2,

pspu = −1.

We look for an asymptotic expansion of these quantities as δx→ 0 in the form:

ss =
∑
k≥0

skδx
k, ps =

∑
k≥0

pkδx
k, su =

∑
k≥0

tkδx
k, pu =

∑
k≥0

qkδx
k.

By inserting this expansion into (42) and identifying O(δxp) terms with (p ∈ N), we obtain a non
linear system and a serie of linear systems to be solved. First, by identifying 0th order terms, one
finds the nonlinear system of equations:

s0 + t0 = 2,
s0t0 + p0 + q0 = 0,
s0q0 + t0p0 = −2,
p0q0 = −1.

The solution writes (s0, p0, t0, q0) = (0,−1, 2, 1). Next, we identify O(δxp) terms with p ≥ 1. One finds
the family of linear systems:

A


sn
pn
tn
qn

 = Fn = Σn −Gn where A =


1 0 1 0
t0 1 s0 1
q0 t0 p0 s0
0 q0 0 p0

 =


1 0 1 0
2 1 0 1
1 2 −1 0
0 1 0 −1

 ,

Σ1 =



4αp

εδt
8αp

εδt
4αp

εδt
0

 , Σ2 =


−c
ε

0
c

ε
0

 , Σ3 =


0

4

εδt
p(z)

0
0

 , Σn =


0
0
0
0

 if n ≥ 4,

Gn =


0∑n−1

k=1 sktn−k∑n−1
k=1 skqn−k +

∑n−1
k=1 tkpn−k∑n−1

k=1 pkqn−k

 .
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The matrix A is not invertible, the eigenvalue 0 is simple and associated to v =


1
−1
−1
−1

. If the condition

det

Fn,


0
1
2
1

 ,


1
0
−1
0

 ,


0
1
0
−1


 = 0

is fulfilled, then Un = (sn, pn, tn, qn)T is given by

Un = λnv+
(Fn)2 + (Fn)4

2
e2+((Fn)2 − (Fn)3 + (Fn)4) e3+

F2 − F4

2
e4 =


λn

−λn +
(Fn)2 + (Fn)4

2
−λn + (Fn)2 − (Fn)3 + (Fn)4

−λn +
F2 − F4

2

 ,

where (e1, e2, e3, e4) is the canonic basis of R4. Let λ1 the root of

λ31 −
8αp

εδt
λ21 +

(
c

ε
+

20α2p2

ε2δt2

)
λ1 +

(
2p

εδt
− 2αcp

ε2δt
− 16α3p3

ε3δt3

)
= 0.

whose real part is negative. We get:

ss = λ1δx+ a2δx
2 +O(δx3),

su = 2 +

(
4αp

εδt
− λ1

)
δx−

(
a2 +

c

ε

)
δx2 +O(δx3),

ps = −1 +

(
4αp

εδt
− λ1

)
δx−

(
a2 −

2αλ1p

εδt
+

8α2p2

ε2δt2

)
δx2 +O(δx3),

pu = 1 +

(
4αp

εδt
− λ1

)
δx+

(
λ21 −

6αλ1p

εδt
+

8α2p2

ε2δt2
− a2

)
δx2 +O(δx3),

where

a2 = −1

2

α4εu4 − 3λ1α
3εu3 + 2λ21α

2εu2 + 2α2cu2 − 6λ1αcu− 2αεu2 + 8cλ21 + 6λ1εu

4c+ 12ελ21 − 16αεuλ1 + 5α2εu2

and u = 4p
εδt .
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The asymptotic expansions of various terms are

P =
c

ε
− α2u2

12
,

=

(
c

ε
− 4α2

3ε2δt2

)
− 4α2

3ε2δt2

(
β
(−2)
1 − 2β

(−2)
0

) 1

z
− 4α2

3ε2δt2

∑
l≥2

1

zl

(
β
(−2)
l − 2β

(−2)
l−1 + β

(−2)
l−2

)
,

=
∑
l≥0

Pl
zl
,

A =
2αc

3ε2δt
+

2

εδt
,

B =
16× 19× 5α3

27ε3δt3
,

Q =
(
Aβ

(−1)
0 +Bβ

(−3)
0

)
+

1

z

(
Aβ

(−1)
1 −Aβ(−1)0 +Bβ

(−3)
1 − 3Bβ

(−3)
0

)
+

1

z2

(
A(β

(−1)
2 − β(−1)1 ) +B(β

(−3)
2 − 3β

(−3)
1 + 3β

(−3)
0

)
+
∑
l≥3

1

zl

[
A
(
β
(−1)
l − β(−1)l−1

)
+B

(
β
(−3)
l − 3β

(−3)
l−1 + 3β

(−3)
l−2 − β

(−3)
l−3

)]
,

=
∑
l≥0

Ql
zl
,

∆ = Q2 +
4

27
P 3,

=
∑
l≥0

1

zl

 l∑
k=0

QkQl−k +
4

27

l∑
k1=0

l−k1∑
k2=0

Pk1Pk2Pl−k1−k2

 ,

=
∑
l≥0

∆l

zl
,

δ = ∆1/2,

= β
(1/2)
0 ∆

1/2
0 +

∑
l≥1

1

zl
1

∆
l−1/2
0

l∑
j=1

β
(1/2)
j

 ∑
(k1,...,kj)∈{1,...,l}j ,

∑j
i=1 kj=l

j∏
i=1

∆ki

 ,

=
∑
l≥0

δl
zl
,

ζ =
1

2
(−Q+ δ) =

∑
l≥0

1

zl

(
−1

2
ql +

1

2
δl

)
=
∑
l≥0

ζl
zl
,

ζ1/3 = ζ
1/3
0 +

∑
l≥1

1

zl
1

ζ
l−1/3
0

l∑
j=1

β
(1/3)
j

 ∑
(k1,...,kj)∈{1,...,l}j ,

∑j
i=1 ki=l

j∏
i=1

ζki

 =
∑
l≥0

µ
(1/3)
l

zl
,

ζ−1/3 = ζ
−1/3
0 +

∑
l≥1

1

zl
1

ζ
l+1/3
0

l∑
j=1

β
(−1/3)
j

 ∑
(k1,...,kj)∈{1,...,l}j ,

∑j
i=1 ki=l

j∏
i=1

ζki

 =
∑
l≥0

µ
(−1/3)
l

zl
,

λk =
8α

3εδt
β
(−1)
0 + jk−1µ

(1/3)
0 − 1

3jk−1
P0µ

(−1/3)
0 ,

+
∑
l≥1

1

zl

 8α

3εδt

(
β
(−1)
l − β(−1)l−1

)
+ jk−1µ

(1/3)
l − 1

3jk−1

l∑
j=0

Pjµ
(−1/3)
l−j

 ,

=
∑
l≥0

λk,l
zl
.
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Finally, it leads to the asymptotic coefficients

ãss = λ1

(
1 +

1

z

)
δx+O(δx2),

=
(
λ1,0δx+O(δx2)

)
+
∑
l≥1

1

zl
(
(λ1,l + λ1,l−1)δx+O(δx2)

)
,

ãsu = 2

(
1 +

1

z

)
+

(
1 +

1

z

)(
4αp

εδt
− λ1

)
δx+O(δx2),

=

(
2 +

(
4α

εδt
− λ1,0

)
δx+O(δx2)

)
+

1

z

(
2−

(
4α

εδt
+ λ1,1 + λ1,0

)
δx+O(δx2)

)
+
∑
l≥2

1

zl
(
(−λ1,l − λ1,l−1) δx+O(δx2)

)
,

ãps = −
(

1 +
1

z

)
+

(
1 +

1

z

)(
4αp

εδt
− λ1

)
δx+O(δx2),

=

(
−1 +

(
4α

εδt
− λ1,0

)
δx+O(δx2)

)
+

1

z

(
−1−

(
4α

εδt
+ λ1,1 + λ1,0

)
δx+O(δx2)

)
+
∑
l≥2

1

zl
(
(−λ1,l − λ1,l−1) δx+O(δx2)

)
,

ãpu =

(
1 +

1

z

)
+

(
1 +

1

z

)(
4αp

εδt
− λ1

)
δx+O(δx2),

=

(
1 +

(
4α

εδt
− λ1,0

)
δx+O(δx2)

)
+

1

z

(
1−

(
4α

εδt
+ λ1,1 + λ1,0

)
δx+O(δx2)

)
+
∑
l≥2

1

zl
(
(−λ1,l − λ1,l−1) δx+O(δx2)

)
.
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