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IMPROVED ERROR ESTIMATES FOR SPLITTING

METHODS APPLIED TO HIGHLY-OSCILLATORY

NONLINEAR SCHRÖDINGER EQUATIONS

PHILIPPE CHARTIER, FLORIAN MÉHATS, MECHTHILD THALHAMMER,
AND YONG ZHANG

Abstract. In this work, the error behavior of operator splitting meth-
ods is analyzed for highly-oscillatory differential equations. The scope of
applications includes time-dependent nonlinear Schrödinger equations,
where the evolution operator associated with the principal linear part is
highly-oscillatory and periodic in time. In a first step, a known conver-
gence result for the second-order Strang splitting method applied to the
cubic Schrödinger equation is adapted to a wider class of nonlinearities.
In a second step, the dependence of the global error on the decisive pa-
rameter 0 < ε << 1, defining the length of the period, is examined. The
main result states that, compared to established error estimates, the
Strang splitting method is more accurate by a factor ε, provided that
the time stepsize is chosen as an integer fraction of the period. This
improved error behavior over a time interval of fixed length, which is in-
dependent of the period, is due to an averaging effect. The extension of
the convergence result to higher-order splitting methods and numerical
illustrations complement the investigations.
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1. Introduction

Highly-oscillatory nonlinear Schrödinger equations. In this work, we
study time-dependent nonlinear Schrödinger equations of the form

(1.1)

{
i∂tu

ε(x, t) = −1
ε∆uε(x, t) + f(|uε(x, t)|2)uε(x, t),

uε(x, 0) = u0(x), (x, t) ∈ Td × [0, T ].

Here, i denotes the imaginary unit, 0 < ε << 1 the decisive small pa-
rameter, and ∆ the Laplace operator with respect to the spatial variables.
The function defining the nonlinearity is supposed to fulfill the conditions
f ∈ C∞(R,R) and f(0) = 0. As underlying Hilbert space, we consider
the Lebesgue-space of square integrable complex-valued functions on a d-
dimensional torus of the form Td = [0, a]d with a > 0. More generally,
our considerations apply to situations where the spectrum of ∆ remains a
subset of ωN for some ω > 0. A fundamental assumption is that the exact
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solution to (1.1) is sufficiently regular, that is, we choose the initial value in
the Sobolev space Hσ(Td), requiring the exponent σ > 0 to be sufficiently
large (see below).

Under the stated requirements, Stone’s theorem asserts that the self-
adjoint operator ∆ : H2(Td) → L2(Td) generates a unitary strongly con-
tinuous one-parameter group (eit∆/ε)t∈R on L2(Td). Moreover, the operator

eit∆/ε : L2(Td) → L2(Td) is periodic with respect to the time variable t ∈ R.
The (minimal) period is of the form εT0, where T0 > 0 depends on a. For
the theoretical analysis, we may assume T0 = 1, since this can be achieved
by a simple rescaling of time.

On any finite time interval, the number of oscillations tends to infinity as
the decisive parameter tends to zero, which renders the differential equation
highly-oscillatory.

Equivalent formulation as long-term problem. For the ease of analy-
sis, it is customary to reparametrize the time variable t as t/ε, which leads
to the long-term problem

(1.2)

{
i∂tu

ε(x, t) = −∆uε(x, t) + εf(|uε(x, t)|2)uε(x, t),
uε(x, 0) = u0(x), (x, t) ∈ Td × [0, T/ε].

Employing this equivalent formulation, the evolution operator associated
with the principal linear part, eit∆ : L2(Td) → L2(Td), is periodic with peri-
ode T0 = 1. We point out that the length of the time interval is proportional
to 1/ε and thus (1.2) cannot be considered as a small perturbation of the
free linear Schrödinger equation. Indeed, closeness of the solutions to (1.2)
and the free linear Schrödinger equation is ensured over a single period (see
Lemma 5.2), but not on the whole time interval [0, T/ε].

Throughout, we rely on the following regularity result, see [2] and ref-
erences given therein. For the practically relevant case d ∈ {1, 2, 3} and in
view of a detailed error analysis of the second-order Strang splitting method,
i.e. p = 2, we shall employ the regularity requirement u0 ∈ Hσ(Td) with
σ ≥ 2p = 4.

Theorem 1.1 (See [2]). Assume σ > d/2+2 and K > 1. There exists a con-
stant T > 0 such that, for any ε > 0 and u0 ∈ Hσ(Td), the time-dependent
nonlinear Schrödinger equation (1.2) has a unique solution satisfying

uε ∈ C0([0, T/ε];Hσ(Td)) ∩ C1([0, T/ε];Hσ−2(Td)),

∀ t ∈ [0, T/ε] : ‖uε(·, t)‖Hσ ≤ K‖u0‖Hσ .

Splitting methods. In this work, we analyze the error behavior of (multi-
plicative) operator splitting methods for the time integration of (1.2), based
on the solution of the subproblems

{
i∂tv(x, t) = −∆v(x, t),

v(x, 0) = v0(x), (x, t) ∈ Td × R,
{
i∂tw(x, t) = εf(|w(x, t)|2)w(x, t),
w(x, 0) = w0(x), (x, t) ∈ Td × R.

(1.3)
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The associated evolution operators are given by

v(·, t) = ϕt
T (v0) = eit∆v0, t ∈ R,

w(x, t) =
(
ϕt
V (w0)

)
(x) = e−iεtf(|w0(x)|2)w0(x), (x, t) ∈ Td × R,

and satisfy the isometry relations

‖ϕt
T (v0)‖Hs = ‖v0‖Hs , t ∈ R, s ≥ 0,

‖ϕt
V (w0)‖L2 = ‖w0‖L2 , t ∈ R.

We consider splitting methods that can be cast into the format

(1.4) Φh(u0) = ϕα1h
T ◦ ϕβ1h

V ◦ · · · ◦ ϕαrh
T ◦ ϕβrh

V (u0) ≈ uε1 = uε(h)

for a time stepsize h > 0 and certain real coefficients (αj , βj)
r
j=1. In accor-

dance with the preservation of the L2-norm of the exact solution to (1.2),
the identity

‖(Φh)n(u0)‖L2 = ‖u0‖L2 , tn = nh ≤ T/ε,

follows at once from the stated isometry relations. Henceforth, we focus on
the widely used second-order Strang splitting method, yielding an approxi-
mation to the solution through

(1.5) p = 2 : Φh(u0) = ϕ
h/2
T ◦ ϕh

V ◦ ϕh/2
T (u0) ≈ uε1 = uε(h).

Global error estimate (Strang splitting). In agreement with the anal-
ysis given in [4] for the three-dimensional cubic Schrödinger equations, i.e.
f(x) = x, we shall prove that the sequence of approximations satisfies a
second-order error estimate for sufficiently small time stepsizes h > 0

p = 2 : ‖(Φh)n(u0)− uε(tn)‖Hσ−2p ≤ Chp, tn = nh ≤ T/ε.

We note that here the convergence is uniform in ε > 0.
Our main objective is to show that under the additional condition that

the time stepsize h > 0 is chosen in such a way that T0/h is an integer
number, this error estimate can be refined to obtain

p = 2 : ‖(Φh)n(u0)− uε(tn)‖Hσ−2m ≤ C(εhp + hm), tn = nh ≤ T/ε,

where m = ⌊σ/2⌋ depends on the Sobolev regularity of the initial value u0.
The precise formulation of this result, which is somehow unexpectedly at first
glance, is given in Theorem 5.5, see also Theorem 6.1 for the generalization
to higher-order splitting methods.

Time stepsizes h > 0 such that T0/h ∈ N are said to be resonant and can
lead to exponential error growth, see [6]. However, this possible instability
over very long times does not contradict the convergence results given, since
in this scaling instabilities are indeed observed, typically on intervals of
length T/ε2.

Our convergence analysis of splitting methods applies to highly-oscillatory
nonlinear Schrödinger equations of arbitrary space dimension, with the con-
striction that the evolution operator associated with the principal linear part
is periodic in time. However, as the practical realisation of the time-splitting
approach requires the numerical solution of the subproblems in (1.3), we
consider low-dimensional nonlinear Schrödinger equations to be relevant ap-
plications. For instance, for the cubic Schrödinger equation on a torus,
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the solutions to the linear and nonlinear subproblems are given by a spec-
tral decomposition into Fourier basis functions, realized numerically by Fast
Fourier techniques, and pointwise multiplications. Moreover, a fundamental
presumption is that the solution to (1.2) is sufficiently regular. Otherwise,
due to the encountered order reduction and the fact that a high number
of basis functions is required for an adequate spatial resolution, the use of
time-splitting spectral methods is less favourable.

We expect that our error analysis for splitting methods extends to other
situations, where the principal linear part defines a selfadjoint operator and a
decomposition with respect to the associated countable complete orthonor-
mal system can be utilised, see for instance [3] for the study of a time-
splitting Hermite spectral method.

Notations and outline. In the sequel, it is convenient to employ the ab-
breviations

R = 2K‖u0‖Hσ , Bs
ρ = {u ∈ Hs(Td), ‖u‖Hs ≤ ρ}.

The stated regularity result thus ensures

∀ t ∈ [0, T/ε] : uε(t, ·) ∈ Bσ
R/2.

Furthermore, we do not distinguish in notation the solution uε : Td ×
[0, T/ε] → C : (x, t) 7→ uε(x, t) and the corresponding abstract function
uε : [0, T/ε] → L2(Td) : t 7→ uε(·, t).

Our work basically follows the inclusions

Bσ
R/2︸ ︷︷ ︸

exact solution

⊂ Bσ
R ⊂ Bσ−2

R︸ ︷︷ ︸
functional bounds

⊂ Bσ−2
3R/4︸ ︷︷ ︸

stability in Hs(Td)

Global error = O(h)

⊂ Hσ−4
︸ ︷︷ ︸

global error = O(h2)

⊂ Hσ−2m
︸ ︷︷ ︸

global error = O(εh2)

.

In Section 2, we deduce auxiliary results for the functions

(1.6)
F = F0 : H

s(Td) −→ Hs(Td) : u 7−→ −if(|u|2)u,
Fτ : Hs(Td) −→ Hs(Td) : u 7−→ e−iτ∆F (eiτ∆u), τ ∈ (0, 1],

where s ∈ {σ − 2, σ}, needed as essential ingredients in our convergence
analysis. A Lipschitz estimate for Fτ lies at the core of a stability bound
for the Strang splitting method, stated in Section 3. In the spirit of [4],
stability in ensured with respect to the Hs-norm for s ∈ [0, σ − 2], provided
that the time-discrete solution remains bounded in Hσ−2(Td). For further
use, we also deduce a stability estimate for the difference between the Strang
splitting solution and the solution to the free Schrödinger equation

(1.7) Ah
n(u0) = (Φh)n(u0)− einh∆u0.
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Auxiliary estimates for derivatives of Fτ are utilised in Section 4 to analyze
the local truncation error of the Strang splitting method

(1.8) δn−1(ε, h) = Φh(uεn−1)− uεn, uεn = uε(tn).

In Section 5, we first sketch the proof of a second-order convergence estimate
that is uniform in the small parameter ε > 0, see [4]. Afterwards, we study
in detail the accumulation of errors in the special case T0/h ∈ N. Our
main result, proving the occurrence of an additional factor ε > 0 under this
assumption, is obtained in two steps: Theorem 5.4 provides an estimate for
the error over a single period, showing that the principal error term is not
present, due to an averaging effect. Theorem 5.5 then extends the error
estimate to the whole interval. The extension of our analysis to higher-
order splitting methods is indicated in Section 6. In Section 7, we present
numerical experiments for the second-order Strang splitting method and a
fourth-order splitting by Yoshida that confirm the improved error behavior.
On account of the computation of a highly accurate reference solution, a
one-dimensional model problem is considered. Additional technical results
are exposed in an appendix.

2. Auxiliary estimates

In the following proposition, we collect basic auxiliary estimates for the
functions in (1.6). The remainder of this section is devoted to their deriva-
tion.

Proposition 2.1. (i) Let s ∈ {σ, σ − 2}. For any τ ∈ [0, 1], the func-
tion Fτ : Hs(Td) → Hs(Td) is C∞. There exists a constant M > 0
such that for all τ ∈ [0, 1] and (u, v, w) ∈ Bs

R ×Hs(Td) ×Hs(Td) the
estimates

‖Fτ (u)‖Hs ≤ M,

‖F ′
τ (u)(v)‖Hs ≤ M‖v1‖Hs ,

‖F ′′
τ (u)(v,w)‖Hs ≤ M‖v‖Hs‖w‖Hs ,

(2.1)

hold. Moreover, for τ ∈ [0, 1], integer j ∈ [0, σ/2], and (u, v) ∈ Bσ
R ×

Bσ
R, the derivatives with respect to τ satisfy the bounds

‖∂j
τFτ (u)‖Hσ−2j ≤ M,

‖∂τF ′
τ (u)(v)‖Hσ−2 ≤ M.

(2.2)

(ii) Let s ∈ [0, σ − 2]. There exists a constant L > 0 such that for all
τ ∈ [0, 1] and (u, v) ∈ Bσ−2

R ×Bσ−2
R the Lipschitz estimate

(2.3) ‖Fτ (u)− Fτ (v)‖Hs ≤ L‖u− v‖Hs

is valid. Furthermore, there exists a constant L2 > 0 such that for all
τ ∈ [0, 1], integer j ∈ [0, σ/2], and (u, v) ∈ Bσ

R ×Bσ
R the relation

(2.4) ‖∂j
τFτ (u)− ∂j

τFτ (v)‖Hσ−2j ≤ L2‖u− v‖Hσ

holds.
The arising constants depend on f , R and σ.
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Tame estimates. Let s ∈ {σ − 2, σ}. The continuous embedding of the
Sobolev space Hs(Td) into L∞(Td) implies that Hs(Td) forms an algebra.
Thus, there exists a constant A > 1 such that

∀ (u, v) ∈ Hs(Td)×Hs(Td) : ‖uv‖Hs ≤ A‖u‖Hs‖v‖Hs .

In this context, any function G ∈ C∞(C,C) with G(0) = 0 satisfies a so-
called tame estimate, see [1]. That is, there exists a non-decreasing function
χG : R+ → R+ such that

∀u ∈ Hs(Td) : ‖G(u)‖Hs ≤ χG(‖u‖L∞)‖u‖Hs

≤ χG(c‖u‖Hs)‖u‖Hs .
(2.5)

Here, the relation ‖·‖L∞ ≤ c‖·‖Hσ−2 ≤ c‖·‖Hσ , valid for some constant c > 0,

is used. More generally, whenever G(0) 6= 0, considering G̃(u) = G(u)−G(0)
yields

(2.6) ∀u ∈ Hs(Td) : ‖G(u)‖Hs ≤ (2π)d/2|G(0)| + χG(‖u‖L∞)‖u‖Hs .

Lipschitz estimate. A straightforward calculation shows that the function
F : Hσ−2(Td) → Hσ−2(T d) is Lipschitz continuous. Moreover, owing to
Lemma A.3, a Lipschitz estimate is obtained with respect to the Hs-norm
for any exponent s ∈ [0, σ − 2]. Indeed, for all elements u, v ∈ Bσ−2

R , we
have

‖F (u)− F (v)‖Hs ≤ ‖f(|u|2)(u− v)‖Hs + ‖(f(|u|2)− f(|v|2))v‖Hs

≤ κ‖f(|u|2)‖Hσ−2‖u− v‖Hs

+ κ‖v‖Hσ−2‖f(|u|2)− f(|v|2)‖Hs

≤ κAχf (c
2‖u‖2Hσ−2)‖u‖2Hσ−2‖u− v‖Hs

+ α‖v‖Hσ−2α(f,AR2)‖|u|2 − |v|2‖Hs

≤ κAχf (c
2R2)R2‖u− v‖Hs

+ κRα(f,AR2)‖uū− uv̄ + uv̄ − vv̄‖Hs

≤ κAχf (c
2R2)R2‖u− v‖Hs

+ 2κ2R2α(f,AR2)‖u− v‖Hs

≤ L ‖u− v‖Hs

with positive constants κ, α(f,AR2) defined in Lemma A.3 and Lipschitz
constant

L = κR2(Aχf (c
2R2) + 2κα(f,AR2)).

Due to the fact that the evolution operator eit∆, t ∈ R, defines an isometry,
the function Fτ : Hs(Td) → Hs(T d), τ ∈ (0, 1], satisfies a Lipschitz estimate
with the same constant L.

Derivatives. Let s ∈ {σ−2, σ} and τ ∈ [0, 1]. We note that Fτ : Hs(Td) →
Hs(Td) is arbitrarily often differentiable. For instance, we have

F ′(u)(v) = −if(|u|2)v − if ′(|u|2)(ūv + v̄u)u,

F ′
τ (u)(v) = e−iτ∆F ′(eiτ∆u)(eiτ∆v).
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Applying the tame estimate (2.6) with f as well as f ′ and the identity
‖eiτ∆u‖Hs = ‖u‖Hs , for all u ∈ Bs

R and v ∈ Hs(Td), we get

‖Fτ (u)‖Hs ≤ A2χf (c
2‖u‖2Hs)‖u‖3Hs

≤ M0,

‖F ′
τ (u)(v)‖Hs ≤ A3‖f ′(|eiτ∆u|2)‖Hs‖u‖2Hs‖v‖Hs

+A‖f(|eiτ∆u|2)‖Hs‖v‖Hs

≤ M1‖v‖Hs ,

with some constants M0,M1 that depend on f and R. The second derivative
of F takes the form

F ′′(u)(v,w) = −if ′′(|u|2)u(ūv+v̄u)(ūw+w̄u)−2if ′(|u|2)(ūvw+v̄uw+w̄uv),

and, as a consequence, for all u ∈ Bs
R and (v,w) ∈ Hs(Td) × Hs(Td), we

have

‖F ′′
τ (u)(v,w)‖Hs ≤ M2‖v‖Hs‖w‖Hs .

Estimates for higher derivatives are obtained in a similar manner.
The first derivative of Fτ with respect to τ is given by

∂τFτ (u) = −ie−iτ∆∆F (eiτ∆u) + e−iτ∆F ′(eiτ∆u)(ieiτ∆∆u)

= −i∆Fτ (u) + F ′
τ (u)(i∆u).

We note that, in general, the highest derivatives do not cancel, and thus we
have to consider ∂τFτ (u) : H

σ(Td) → Hσ−2(Td), which yields

‖∂τFτ (u)‖Hσ−2 ≤ ‖∆Fτ (u)‖Hσ−2 + ‖F ′
τ (u)(i∆u)‖Hσ−2 ≤ M0 +M1R.

As for the second derivative, ∂2
τFτ (u) : H

σ(Td) → Hσ−4(Td), it comes

∂2
τFτ (u) = (−i∆)2e−iτ∆F (eiτ∆u) + 2(−i∆)e−iτ∆F ′(eiτ∆u)((i∆)eiτ∆u)

+ e−iτ∆F ′′(eiτ∆u)((i∆)eiτ∆u)2 + e−iτ∆F ′(eiτ∆u)((i∆)2eiτ∆u)

= (−i∆)2Fτ (u) + 2(−i∆)F ′
τ (u)(i∆u) + F ′

τ (u)((i∆)2u)

+ F ′′
τ (u)(i∆u, i∆u).

More generally, the j-th derivative with respect to τ , ∂j
τFτ (u) : H

σ(Td) →
Hσ−2j(Td), reads

∂j
τFτ (u)

= (−i∆)jFτ (u)

+
∑

1 ≤ k, ℓ ≤ j,

1 ≤ m1 ≤ . . . ≤ mk,

m1 + . . . + mk = ℓ

αkℓm (−i∆)j−ℓF (k)
τ (u)

(
(i∆)m1u, . . . , (i∆)mku

)

with some nonnegative coefficients αkℓm, and satisfies the bound

‖∂j
τFτ (u)‖Hσ−2j

≤ ‖Fτ (u)‖Hσ

+
∑

1 ≤ k, ℓ ≤ j,

1 ≤ m1 ≤ . . . ≤ mk,

m1 + . . . + mk = ℓ

αkℓm ‖F (k)
τ (u)

(
(i∆)m1u, . . . , (i∆)mku

)
‖Hσ−2ℓ ,
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provided that σ ≥ 2j.
In regard to the estimation of the local truncation error of the Strang

splittig method, we consider

∂τF
′
τ (u)(v) = −i∆F ′

τ (u)(v) + F ′
τ (u)(i∆v) + F ′′

τ (u)(v, i∆u).

Provided that u, v ∈ Bσ
R, the previous bounds imply

‖∂τF ′
τ (u)(v)‖Hσ−2 ≤ 2M1R+M2R

2.

Lipschitz estimates for derivatives. Proceeding as for Fτ , it is straight-
forward to show that derivatives of Fτ satisfy a Lipschitz estimate on Bσ

R.
That is, there exists a constant L > 0 such that, for any integer j ∈ [0, σ/2]
and all elements (u, v, w) ∈ Bσ

R ×Bσ
R ×Bσ−2

R the relation

‖F (j)(u)(wj)− F (j)(v)(wj)‖Hσ−2 ≤ L‖u− v‖Hσ−2

holds. Here, we use the short notation F (j)(u)(wj) = F (j)(u)(w, . . . , w).
Consequently, for (u, v) ∈ Bσ

R ×Bσ
R we obtain the Lipschitz estimate

‖∂j
τFτ (u)− ∂j

τFτ (v)‖Hσ−2j ≤ L2‖u− v‖Hσ ,

valid for some constant L2 > 0. �

3. Stability estimate

The purpose of the following stability result is a twofold: On the one hand,
in view of Section 4, where we provide a local error estimate for the Strang
splitting method, we have to ensure that the time-discrete solution remains
in Bσ−2

R . On the other hand, stability estimates in various norms are needed
in the study of the error accumulation. We recall the abbreviations (1.5)
and (1.7).

Lemma 3.1. Assume s ∈ [0, σ − 2] as well as v,w ∈ Bσ−2
3R/4, and set h0 =

log(4/3)/(ε0L). Then, for any 0 < ε < ε0 and 0 < h < h0, the time-discrete
solutions associated with the Strang splitting method satisfy Φh(v),Φh(w) ∈
Bσ−2

R . In addition, the stability estimates

‖Φh(v)− Φh(w)‖Hs ≤ eεLh‖v − w‖Hs ,

‖Ah
1(v)−Ah

1(w)‖Hs ≤ εheεLh‖v − w‖Hs ,

hold.

Proof. Due to the fact that the operator eit∆ : Hs(Td) → Hs(Td), t ∈ R,
is an isometry, it suffices to study the evolution operator associated with
the nonlinear subproblem. Denoting v(t) = ϕt

V (v0) and w(t) = ϕt
V (w0), we

have

w′(t) = εF (w(t)), v′(t) = εF (v(t)).

Employing (2.3), we obtain

‖v(t) − w(t)‖Hs ≤ ‖v0 − w0‖Hs + ε

∫ t

0
‖F (v(ζ)) − F (w(ζ))‖Hsdζ

≤ ‖v0 − w0‖Hs + εL

∫ t

0
‖v(ζ)− w(ζ)‖Hsdζ,
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as long as v(ζ), w(ζ) ∈ Bσ−2
R for ζ ∈ [0, t], so that, by Gronwall’s lemma

‖v(t) − w(t)‖Hs ≤ eεLt‖v0 − w0‖Hs .

Setting in particular t = h and w0 = 0 implies ‖v(h)‖Hσ−2 ≤ 3R
4 eεLh ≤ R.

A straightforward estimation further yields

‖ϕh
V (v0)− ϕh

V (w0)− (v0 − w0)‖Hs ≤ εLh eεLh‖v0 − w0‖Hs .

Altogether, the stated result follows. �

4. Local error estimate

Employing suitable expansions of the exact and time-discrete solutions,
an estimate for the local truncation error is obtained by means of Proposi-
tion 2.1, see also (1.8). In addition to the basic requirement σ > d/2+2, see
Theorem 1.1, we henceforth assume σ ≥ 2p = 4 so that the nonstiff order of
convergence is retained for the second-order Strang splitting method.

Expansion of exact solution. An application of the Duhamel formula
leads to the following representation of the exact solution value at time t+h

uε(t+ h) = eih∆uε(t) + εeih∆
∫ h

0
Fτ (e

−iτ∆uε(t+ τ))dτ.

Equivalently, for vε(t) = e−it∆uε(t), we have

vε(t+ h) = vε(t) + ε

∫ h

0
Ft+τ (v

ε(t+ τ))dτ.

We use the expansion

Fτ (w1 + w2) = Fτ (w1) + F ′
τ (w1)(w2) +

∫ 1

0
(1− ζ)F ′′

τ (w1 + ζw2)(w
2
2)dζ

to arrive at

vε(t+ h) = vε(t) + ε

∫ h

0
Ft+τ

(
vε(t) + ε

∫ τ

0
Ft+τ1(v

ε(t+ τ1))dτ1
)
dτ

= vε(t) + ε

∫ h

0
Ft+τ (v

ε(t))dτ

+ ε2
∫ h

0

∫ τ

0
F ′
t+τ (v

ε(t))Ft+τ1(v
ε(t+ τ1))dτ1dτ

+ ε3
∫ h

0

∫ 1

0
(1− ξ)F ′′

t+τ

(
(1− ξ)vε(t) + ξvε(t+ τ)

)

(∫ τ

0
Ft+τ1(v

ε(t+ τ1))dτ1

)2

dξdτ.
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A further expansion of the second-order term with respect to ε yields
∫ h

0

∫ τ

0
F ′
t+τ (v

ε(t))Ft+τ1(v
ε(t))dτ1dτ

+ ε

∫ h

0

∫ τ

0

∫ 1

0
F ′
t+τ (v

ε(t))F ′
t+τ1

(
(1− ξ)vε(t) + ξvε(t+ τ1)

)

(∫ τ1

0
Ft+τ2(v

ε(t+ τ2))dτ2

)
dξdτ1dτ.

Finally, we obtain

uε(t+ h) = eih∆uε(t)

+ εeih∆
∫ h

0
Fτ (u

ε(t))dτ

+ ε2eih∆
∫ h

0

∫ τ

0
F ′
τ (u

ε(t))Fτ1(u
ε(t))dτ1dτ

+ ε3eih∆E3(u
ε(t), ε, h),

involving

E3(u
ε(t), ε, h) = E3,a(u

ε(t), ε, h) + E3,b(u
ε(t), ε, h),

E3,a(u
ε(t), ε, h) =

∫ h

0

∫ 1

0
(1− ξ)F ′′

τ

(
(1− ξ)uε(t) + ξe−iτ∆uε(t+ τ)

)

(∫ τ

0
Fτ1(e

−iτ1∆uε(t+ τ1))dτ1

)2

dξdτ,

E3,b(u
ε(t), ε, h) =

∫ h

0

∫ τ

0

∫ 1

0
F ′
τ (u

ε(t))

F ′
τ1

(
(1− ξ)uε(t) + ξe−iτ1∆uε(t+ τ1)

)
(∫ τ1

0
Fτ2(e

−iτ2∆uε(t+ τ2))dτ2

)
dξdτ1dτ.

As uε(t) remains in Bσ
R/2 ⊂ Bσ

R ⊂ Bσ−2
R , by Proposition 2.1, the estimate

(4.1) ‖E3(u
ε(t), ε, h)‖Hσ−2 ≤ 1

3M
3h3

follows.

Expansion of time-discrete solution. In the sequel, in regard to
Lemma 3.1, we suppose 0 < h < h0 = log(4/3)/(ε0L) and u ∈ Bσ−2

3R/4.

Using that v(t) = ϕt
V (u) satisfies v

′(t) = εF (v(t)), we get

ϕh
V (u) = u+ εhF (u) + 1

2ε
2h2F ′(u)F (u)

+ 1
2ε

3

∫ h

0
(h− τ)2

(
F ′′(ϕτ

V (u))(F (ϕτ
V (u)))

2

+ F ′(ϕτ
V (u))F

′(ϕτ
V (u))F (ϕτ

V (u))
)
dτ.

We rewrite this relation as

(4.2) ϕh
V (u) = u+ εhF (u) + 1

2ε
2h2F ′(u)F (u) + ε3E3,V (u, ε, h),
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where

E3,V (u, ε, h) =
1
2

∫ h

0
(h− τ)2

(
F ′′(ϕτ

V (u))(F (ϕτ
V (u)))

2

+ F ′(ϕτ
V (u))F

′(ϕτ
V (u))F (ϕτ

V (u))
)
dτ.

Expanding the time-discrete solution associated with the Strang splitting
solution, we obtain

Φh(u) = eih∆/2
(
eih∆/2u+ εhF (eih∆/2u)

+ 1
2ε

2h2F ′(eih∆/2u)F (eih∆/2u)

+ ε3E3,V (e
ih∆/2u, ε, h)

)

= eih∆
(
u+ εhFh/2(u) +

1
2ε

2h2F ′
h/2(u)Fh/2(u)

)

+ ε3eih∆/2E3,V (e
ih∆/2u, ε, h).

(4.3)

Owing to Lemma 3.1, ϕt
V (u) remains in Bσ−2

R for 0 ≤ t ≤ h. By Proposi-
tion 2.1, we thus get

(4.4) ‖E3,V (u, ε, h)‖Hσ−2 ≤ 1
3M

3h3.

Local error estimate. Applying the previous expansions, the local trun-
cation error reads

δn(ε, h) = εeih∆
(
hFh/2(u

ε
n)−

∫ h

0
Fτ (u

ε
n)dτ

)

+ ε2eih∆
(

1
2h

2F ′
h/2(u

ε
n)Fh/2(u

ε
n)

−
∫ h

0

∫ τ

0
F ′
τ (u

ε
n)Fτ1(u

ε
n)dτ1dτ

)

+ ε3
(
eih∆/2E3,V (e

ih∆/2uεn, ε, h) − eih∆E3(u
ε
n, ε, h)

)
.

(4.5)

Under the assumption 0 < h < h0 we next estimate each term individually.
(i) We use the representation based on the second-order Peano kernel κ2

of the midpoint rule

Q1 = hFh/2(u)−
∫ h

0
Fτ (u)dτ = h3

∫ 1

0
κ2(τ)∂

2
θFθ(u)

∣∣∣
θ=τh

dτ.

Owing to (2.2), we obtain

(4.6) ‖Q1‖Hσ−4 ≤ Mh3
(∫ 1

0
|κ2(τ)|dτ

)
.

(ii) Inserting the identities

Fτ1(u) = Fh/2(u) +

∫ τ1

h/2
∂θFθ(u)dθ,

F ′
τ (u) = F ′

h/2(u) +

∫ τ

h/2
∂θF

′
θ(u)dθ.
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into the double integral term, we get
∫ h

0

∫ τ

0
F ′
τ (u)Fτ1(u)dτ1dτ = 1

2h
2F ′

h/2(u)Fh/2(u) + r1,

where

r1 =

∫ h

0

∫ τ

0
F ′
h/2(u)

(∫ τ1

h/2
∂θFθ(u)dθ

)
dτ1dτ

+

∫ h

0

∫ τ

0

∫ τ

h/2
∂θF

′
θ(u)Fh/2(u)dθdτ1dτ

+

∫ h

0

∫ τ

0

(∫ τ

h/2
∂θFθ(u)dθ

∫ τ1

h/2
∂θ1Fθ1(u)dθ1

)
dτ1dτ.

This implies the estimate

‖r1‖Hσ−2 ≤ 1
4M

2h3 + 1
32M

2h4 ≤ 1
4(1 + h0/8)M

2h3.

(iii) The third-order term in ε is estimated by means of the bounds (4.1)
and (4.4).

Altogether, this shows that there exists a constant C > 0 such that the
local error estimate

(4.7) ‖δn(ε, h)‖Hσ−4 ≤ Cεh3

holds.

Remark. For later use, we note that the bound

(4.8) ‖δn(ε, h)‖Hσ−2 ≤ C̃εh2

follows, employing instead a representation based on the first-order Peano
kernel. Moreover, we observe that the following expansion holds

(4.9) δn(ε, h) = εeih∆Λh(u
ε
n) + ε2Rh(u

ε
n),

involving the difference

(4.10) Λh(u
ε
n) = hFh/2(u

ε
n)−

∫ h

0
Fτ (u

ε
n)dτ.

In accordance with (4.7), we have

‖Λh(u
ε
n)‖Hσ−4 ≤ Ch3, ‖Rh(u

ε
n)‖Hσ−2 ≤ Ch3.

5. Global error estimate

In this section, we deduce a convergence result for the Strang splitting
method (1.5) applied to nonlinear Schrödinger equations of the form (1.2).
A basic tool for the error analyis is the telescopic identity

(Φh)n(u0)− uεn =

n∑

ℓ=1

(
(Φh)n−ℓ ◦Φh(uεℓ−1)− (Φh)n−ℓ(uεℓ)

)
,

which permits to obtain a global error estimate by means of stability bounds
and local error estimates, see Sections 3 and 4. We proceed as follows: In
agreement with [4], we start with proving an ε-independent global error
estimate. Then, we utilise this result in a more refined analysis, first for a
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time integration over a single period T0 = 1 and subsequently for the whole
time interval [0, T/ε].

Global error estimate. The following result generalizes the global error
estimate provided in [4] for a cubic nonlinearity.

Theorem 5.1. Let h0 = log(4/3)/(ε0L) and h1 = min{h0, RL/(4C̃(eLT −
1))}. Then, for any 0 < h < h1, the Strang splitting method satisfies the
second-order error estimate

(5.1) ‖(Φh)n(u0)− uε(tn)‖Hσ−4 ≤ C
eLT − 1

L
h2, tn = nh ≤ T/ε,

where the positive constants C and L depend on σ, R and f , but are inde-
pendent of ε.

Proof. We note that the stability estimates provided by Lemma 3.1 may be
employed as long as (Φh)j(uε(tk)) remains in Bσ−2

3R/4. The stated telescopic

identity implies

‖(Φh)n(u0)− uεn‖Hσ−2 ≤
n∑

ℓ=1

eεL(n−ℓ)h‖δℓ−1(ε, h)‖Hσ−2 .

Furthermore, by means of the local error estimate ‖δl−1(ε, h)‖Hσ−2 ≤ C̃εh2,
see (4.8), the geometric series, the relation ex − 1 ≥ x for x ≥ 0, and due to
nh ≤ T/ε, we get

‖(Φh)n(u0)− uε(tn)‖Hσ−2 ≤ C̃
eLT − 1

L
h.

Combining an induction argument and this error estimate thus ensures
boundedness of the time-discrete solution in Hσ−2(Td), as required by

Lemma 3.1, for time stepsizes satisfying the condition C̃(eLT − 1)h/L ≤ R
4 .

Using a stability estimate with respect to the Hσ−4-norm, again by applying
Lemma 3.1, owing to estimate (4.7), the stated second-order error estimate
results. �

Refined error estimate over one period. We now examine more closely
the approximation error over a single period T0 = 1. A first auxiliary result
relates the solutions to (1.2) and the free Schrödinger equation.

Lemma 5.2. The following estimate holds for all times t ∈ [0, T0]

(5.2) ‖uε(t)− eit∆u0‖Hσ ≤ εMT0.

Proof. For notational simplicity, we set u(t) = uε(t) and v(t) = eit∆u0.
Evidently, we have

{
u′(t) = i∆u(t) + εF (u(t)), t ∈ [0, T0],

u(0) = u0,
{

v′(t) = i∆v(t), t ∈ [0, T0],

v(0) = u0.
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The Duhamel formula and Proposition 2.1 imply

‖u(t)− v(t)‖Hσ = ε

∥∥∥∥
∫ t

0
ei(t−τ)∆F (uε(τ))dτ

∥∥∥∥
Hσ

≤ εMT0,

which is the stated result. �

The following auxiliary result provides a Lipschitz estimate for the dif-
ference between the Strang splitting solution and the solution to the free
Schrödinger equation, see (1.7). We note that, according to Theorem 5.1,
(Φh)ℓ ∈ Bσ−2

3R/4 for all integers 0 ≤ ℓ ≤ n, where nh ≤ T/ε, and hence

(Φh)ℓ ∈ Bs
3R/4 for any exponent s ∈ [0, σ − 2]. The maximum time step-

size h1 is defined in Theorem 5.1.

Lemma 5.3. Let u, v ∈ Hσ−2(Td) be given, and assume that the associated
sequences satisfy ((Φh)ℓ(u))ℓ, ((Φ

h)ℓ(v))ℓ ∈ Bσ−2
3R/4 for all integers 0 ≤ ℓ ≤ n

with nh ≤ T0 = 1 and time stepsizes 0 < h < h1. Then, for any exponent
s ∈ [0, σ − 2] and 0 < h < h1 the Lipschitz estimate

‖Ah
ℓ (u)−Ah

ℓ (v)‖Hs ≤ εLT0e
εLT0‖u− v‖Hs , 0 ≤ ℓ ≤ n, nh ≤ T0,

holds.

Proof. The telescopic identity implies

(Φh)ℓ(u)− eiℓh∆u =

ℓ∑

k=1

(
eih(ℓ−k)∆

(
Φh − eih∆

)
◦ (Φh)(k−1)

)
(u)

implies the estimate

‖Ah
ℓ (u)−Ah

ℓ (v)‖Hs ≤
ℓ∑

k=1

∥∥Ah
1((Φ

h)(k−1)(u))−Ah
1((Φ

h)(k−1)(v))
∥∥
Hs .

Hence, by Lemma 3.1, we obtain

‖Ah
ℓ (u)−Ah

ℓ (v)‖Hs ≤ εLheLεh
ℓ∑

k=1

∥∥(Φh)(k−1)(u)− (Φh)(k−1)(v)
∥∥
Hs

≤ εLh

ℓ∑

k=1

eεLkh‖u− v‖Hs

≤ εLT0e
εLT0‖u− v‖Hs ,

which is the stated result. �

By means of the above auxiliary results, the following error estimate is ob-
tained, see Theorem 5.1 for the definition of the maximum time stepsize h1.

Theorem 5.4. Let m = ⌊σ/2⌋. For any time stepsize 0 < h < h1, the
Strang splitting method applied to a nonlinear Schrödinger equation of the
form (1.2) satisfies the second-order error bound

(5.3) ‖(Φh)n(u0)− uε(T0)‖Hσ−2m ≤ Ĉ(ε2h2 + εhm), nh = T0.

The arising constant Ĉ depends on σ, R and f , but is independent of ε.
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Proof. The proof proceeds in two steps.
(i) Identification of the ε-error term. Replacing (Φh)(n−ℓ) by ei(n−ℓ)h∆ in

the telescopic identity we get

(Φh)n(u0)− uε(T0) =
n∑

ℓ=1

ei(n−ℓ)h∆δℓ−1(ε, h) + r,

r =
n∑

ℓ=1

(
Ah

n−ℓ

(
Φh(uεℓ−1)

)
−Ah

n−ℓ

(
uεℓ
))

.

By means of Lemma 5.3 and (4.7), we have

‖r‖Hσ−4 ≤ εLT0e
εLT0

n∑

ℓ=1

‖δℓ−1(ε, h)‖Hσ−4

≤ Cε2LT 2
0 e

εLT0h2 .

In addition, according to (4.9), we have

n∑

ℓ=1

ei(n−ℓ)h∆δℓ−1(ε, h) = ε

n∑

ℓ=1

ei(n−ℓ+1)h∆Λh(u
ε
ℓ−1) + r̃,

r̃ = ε2
n∑

ℓ=1

ei(n−ℓ)h∆Rh(u
ε
ℓ−1), ‖r̃‖Hσ−2 ≤ Cε2h2.

Finally, taking into account that

‖uεℓ−1 − ei(ℓ−1)h∆u0‖Hσ ≤ εMT0,

see Lemma 5.2, and that Λh satisfies a Lipschitz estimate with a constant

of the form L̃2h
3, see (4.10)-(4.6) and Proposition 2.1, we have

∥∥∥∥(Φh)n(u0)−uε(T0)−ε

n∑

ℓ=1

ei(n−ℓ+1)h∆Λh(e
i(ℓ−1)h∆u0)

∥∥∥∥
Hσ−4

≤ Const ε2h2.

(ii) Estimate of the ε-error term. From previous analysis, the main error
is concentrated in the term

n∑

ℓ=1

ei(n−ℓ+1)h∆Λh(e
i(ℓ−1)h∆u0)

which is of order εh2. For a refined estimation, we proceed as follows:

n∑

ℓ=1

ei(n−ℓ+1)h∆Λh(e
i(ℓ−1)h∆u0) = h

n−1∑

ℓ=0

F(ℓh+h/2)(u0)−
∫ 1

0
Fτ (u0)dτ

= h

n−1∑

ℓ=0

F(ℓh+h/2)(u0)−
∫ 1

0
F(τ+h/2)(u0)dτ

= e−ih∆/2ERie(e
ih∆/2u0, h),

where ERie denotes the error in the approximation by Riemann sums, ac-
cording to Lemma A.1. Here, we take into account that eihn∆ is the identity
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operator and that the function Fτ (u0) is periodic with respect to τ with
period T0 = 1. From Lemma A.1, we thus have

∥∥∥∥
n∑

ℓ=1

ei(n−ℓ+1)h∆Λh(e
i(ℓ−1)h∆u0)

∥∥∥∥
Hσ−2m

≤ CRie
m ‖∂j

τFτ (u0)‖Hσ−2mhm

with constant CRie
m = 21−mπ−mζ(m). Together with the auxiliary esti-

mate (2.2) of Proposition 2.1, the stated result follows. �

Refined global error estimate. In order to deduce a refined global error

estimate, we consider the integrator Φ̂(u) = (Φh)n(u) for nh = T0 = 1.

Evidently, Φ̂ is Lipschitz continuous. The previous result ensures that the

approximation error at time T0 = 1 is of the size Ĉε(εh2 + hm). Using a

telescopic identity for the representation of Φ̂N , where N = ⌊T/ε⌋, thus

implies the desired global error estimate ĈT (εh2 + hm). We note that the
time-discrete solution at any intermediate point within an interval of the

form [kT0, (k + 1)T0] or [N,T/ε] is obtained by a suitable composition of Φ̂
and Φh.

Theorem 5.5. Let m = ⌊σ/2⌋. For any time stepsize h > 0 such that
T0/h ∈ N, the Strang splitting method applied to a nonlinear Schrödinger
equation of the form (1.2) satisfies the global error estimate

(5.4) ‖(Φh)n(u0)− uε(tn)‖Hσ−2m ≤ ĈT (εh2 + hm), tn = nh ≤ T/ε.

The arising constant Ĉ depends on σ, R and f , but is independent of ε.

6. Extension to higher-order splitting methods

In the sequel, we extend our error analyis to higher-order splitting meth-
ods given by a composition of the form (1.4). Basic consistency conditions
are

γr = 1, γj =

j∑

k=1

αk,

r∑

j=1

βj = 1.

For a splitting method of order p, we make use of the fact that the local
error (1.8) can be written as in (4.9)

δn(ε, h) = Φh(uεn)− uεn+1 = εeih∆Λh(u
ε
n) + ε2Rh(u

ε
n),

with Λh and Rh satisfying the estimates

‖Λh(u
ε
n)‖Hσ−2p ≤ Chp+1, ‖Rh(u

ε
n)‖Hσ−2p+2 ≤ Chp+1.

Next, we identify Λh through an ε-expansion

Λh(u) =
r∑

j=1

βjhe
i(γj−1)h∆F

(
ei(1−γj )h∆u

)
−

∫ h

0
Fτ (u)dτ

=

r∑

j=1

βj

(
hF(γj−1)h(u)−

∫ h

0
Fτ (u)dτ

)
,
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so that we get

n∑

ℓ=1

ei(n−ℓ+1)h∆Λh(e
i(ℓ−1)h∆u0)

=
r∑

j=1

βj

(
h

n−1∑

ℓ=0

F(ℓh+γjh)(u0)−
∫ 1

0
Fτ (u0)dτ

)

=

r∑

j=1

βje
−iγjh∆ERie(e

iγjh∆u0, h).

Due to the validity of the order conditions, the relation

Λh(u) = hp+1

∫ 1

0
κp(τ)∂

p
θFθ

∣∣∣
θ=τh

(u)dτ

is obtained, which implies a Lipschitz estimate with a constant of the form

L̃2h
p+1. Under the assumption σ ≥ 2p, the adaptation of the error analysis

for the Strang splitting method shows the following result.

Theorem 6.1. Consider a pth-order splitting method applied to a nonlinear
Schrödinger equation of the form (1.2), and assume σ > d/2 + 2 as well
as σ ≥ 2p. Then, for any time stepsize h > 0 such that T0/h ∈ N and
m = ⌊σ/2⌋, the global error estimate

(6.1) ‖(Φh)n(u0)− uε(tn)‖Hσ−2m ≤ CT (εhp + hm), tn = nh ≤ T/ε,

holds with constant C that depends on σ, R and f , but is independent of ε.

7. Numerical experiments

In this section, we present numerical experiments for the one-dimensional
nonlinear Schrödinger equation

(7.1)

{
i∂tu

ε(x, t) = −∂xxu
ε(x, t) + 2 ε cos(2x)|uε(x, t)|2uε(x, t),

uε(x, 0) = u0(x) = cos(x) + sin(x), (x, t) ∈ [0, 2π] × [0, T/ε],

allowing a space-dependent coefficient in the cubic nonlinearity. In the
present situation, the time-period is T0 = 2π. As final time, we choose
T = π/4.

Time discretization. For the time discretization, we apply the second-
order Strang splitting method (p = 2) and a fourth-order splitting method
by Yoshida [7], defined by the composition (1.4) with coefficients

p = r = 4 : β4 = 0, β3 =
1

2− 3√2
= β1, β2 = − 3

√
2 β3,

α4 =
1
2β3 = α1, α3 =

1
2(β3 + β2) = α2.

The time stepsize is taken under the form T0/N for N ∈ N∗.
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Figure 1. Time integration of (7.1) by Strang splitting
method for ε = 2−6, 2−7, . . . , 2−12 (lines from top to bot-
tom). Global errors with respect to discrete L2-norm (left)
and discrete H1-norm (right) versus time stepsizes. Bench
line reflects slope p = 2.

Space discretization. For the space discretization, we apply the Fourier
spectral method, that is, we employ the approximation

uε(x, t) ≈
Nx/2∑

−Nx/2+1

ûεk(t)e
ikx.
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Figure 2. Time integration of (7.1) by fourth-order split-
ting method for 2−3, 2−4, . . . , 2−9 (lines from top to bottom).
Global errors with respect to discrete L2-norm (left) and dis-
crete H1-norm (right) versus time stepsizes. Bench line re-
flects slope p = 4.
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The spectral coefficients are computed numerically by the trapezoidal rule.
Setting Nx = 256, the error originating from the spatial discretization may
be considered as negligible.

Global error. In view of our convergence result for the Strang splitting
method and the extension to high-order splitting methods, see Theorem 6.1,
we expect the global errors of the second- and fourth-order splitting methods
to depend on the decisive parameter and the time stepsize in the following
way

global error = O(εhp).

As the prescribed initial value is highly regular, the exponent σ related to the
Sobolev-regularity of the solution is large and the additional contribution
O(hm) insignificant. In order to confirm this error behavior, we determine
the global error of the discrete solution unum with respect to the discrete
Hs-norm

global error = ‖unum(T/ε) − uref(T/ε)‖Hs

=

√√√√√
Nx/2∑

k=−Nx/2+1

(1 + |k|2)s|ûnumk (T/ε) − ûrefk (T/ε)|2.

We in particular consider the discrete L2-norm and the H1-norm, respec-
tively. The reference solution uref is computed by the fourth-order splitting
method, applied with time stepsize ∆t = T0/10

4.

Numerical results (Strang). In Figure 1, we display the results obtained
for the Strang splitting method. Each line corresponds to a fixed value of ε
and shows the global errors with respect to the discrete L2-norm and the
discrete H1-norm, respectively, versus the time stepsizes. The bench line
of slope p = 2 reflects the second-order dependence on the time stepsize.
Moreover, for a fixed value of the time stepsize, dividing ε by a factor two
scales the error by this factor. Compared to the stronger discrete H1-norm,
the error measured with respect to the discrete L2-norm is smaller, in accor-
dance with the relation ‖ · ‖L2 ≤ ‖ · ‖H1 . For better visibility, the obtained
results illustrating the dependence of the global error on the parameter and
the time stepsize are also included in Table 1.

Numerical results (Yoshida). The corresponding results for ε =
2−3, 2−4, . . . , 2−9 and the fourth-order splitting method by Yoshida are given
in Figure 2 and Table 2. The numerical results confirm the expected global
error behavior O(εh4).
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h T0/2
4 T0/2

5 T0/2
6 T0/2

7 T0/2
8

ε = 2−6 9.037E-3 3.279E-3 6.121E-4 1.489E-4 3.700E-5
ε = 2−7 4.519E-3 1.639E-3 3.060E-4 7.444E-5 1.850E-5
ε = 2−8 2.259E-3 8.196E-4 1.530E-4 3.722E-5 9.249E-6
ε = 2−9 1.130E-3 4.098E-4 7.648E-5 1.861E-5 4.624E-6
ε = 2−10 5.648E-4 2.049E-4 3.824E-5 9.304E-6 2.312E-6
ε = 2−6 1.415E-2 9.691E-3 1.230E-3 2.930E-4 7.244E-5
ε = 2−7 7.077E-3 4.845E-3 6.142E-4 1.464E-4 3.621E-5
ε = 2−8 3.538E-3 2.423E-3 3.071E-4 7.319E-5 1.810E-5
ε = 2−9 1.769E-3 1.211E-3 1.535E-4 3.660E-5 9.052E-6
ε = 2−10 8.846E-4 6.056E-4 7.676E-5 1.830E-5 4.526E-6

Table 1. Time integration of (7.1) by Strang splitting
method for ε = 2−6, 2−7, . . . , 2−12. Global errors with re-
spect to discrete L2-norm (up) and discrete H1-norm (down)
versus time stepsizes.

h T0/2
4 T0/2

5 T0/2
6 T0/2

7 T0/2
8 T0/2

9 T0/2
10

ε = 2−3 4.77E-2 2.46E-2 2.19E-3 2.45E-4 1.71E-5 1.14E-6 7.25E-8
ε = 2−4 2.37E-2 1.23E-2 1.04E-3 1.10E-4 7.85E-6 5.11E-7 3.23E-8
ε = 2−5 1.18E-2 6.15E-3 5.18E-4 5.39E-5 3.83E-6 2.48E-7 1.56E-8
ε = 2−6 5.92E-3 3.07E-3 2.58E-4 2.67E-5 1.90E-6 1.23E-7 7.75E-9
ε = 2−7 2.96E-3 1.53E-3 1.29E-4 1.33E-5 9.51E-7 6.14E-8 3.87E-9
ε = 2−8 1.48E-3 7.69E-4 6.44E-5 6.67E-6 4.75E-7 3.07E-8 1.93E-9
ε = 2−9 7.40E-4 3.84E-4 3.22E-5 3.33E-6 2.37E-7 1.53E-8 9.67E-10
ε = 2−3 2.14E-1 1.19E-1 6.80E-3 1.02E-3 2.98E-5 2.13E-6 1.40E-7
ε = 2−4 1.06E-1 5.92E-2 2.28E-3 2.83E-4 1.23E-5 8.23E-7 5.27E-8
ε = 2−5 5.30E-2 2.96E-2 9.49E-4 9.92E-5 5.79E-6 3.77E-7 2.39E-8
ε = 2−6 2.65E-2 1.48E-2 4.47E-4 4.29E-5 2.85E-6 1.84E-7 1.16E-8
ε = 2−7 1.32E-2 7.38E-3 2.20E-4 2.05E-5 1.42E-6 9.15E-8 5.76E-9
ε = 2−8 6.62E-3 3.69E-3 1.10E-4 1.02E-5 7.09E-7 4.57E-8 2.87E-9
ε = 2−9 3.31E-3 1.85E-3 5.48E-5 5.06E-6 3.55E-7 2.28E-8 1.44E-9

Table 2. Time integration of (7.1) by fourth-order splitting
method for 2−3, 2−4, . . . , 2−9. Global errors with respect to
discrete L2-norm (up) and discrete H1-norm (down) versus
time stepsizes.

The presented numerical results have been achieved by using the Vienna
Scientific Cluster.
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Appendix A. Auxiliary results

Elementary result for periodic functions. In the sequel, we state an
elementary result on the approximation by Riemann sums for periodic func-
tions, see (1.6) for the definition of Fτ .

Lemma A.1. For given h > 0 and n ∈ N such that nh = T0 = 1, let

(A.1) ERie(u, h) =
1

n

n−1∑

ℓ=0

Fℓh(u)−
∫ 1

0
Fτ (u)dτ

denote the error in the approximation of the integral by its Riemann sum.
Then, the following estimate holds with m = ⌊σ/2⌋
(A.2) ‖ERie(u, h)‖Hσ−2m ≤ 21−mπ−mζ(m)hm sup

τ∈[0,1]
‖∂m

τ Fτ (u)‖Hσ−2m .

Proof. Our starting point is the Fourier expansion of Fτ
∑

k∈Z
ei2πkτ F̂k(u).

By the definition of the Fourier coefficients, we have
∫ 1

0
Fτ (u)dθ = F̂0(u).

The numerical counterpart is

1

n

n−1∑

ℓ=0

Fℓh(u) =
1

n

n−1∑

ℓ=0

∑

k∈Z
ei2πℓkhF̂k(u)

=
∑

k∈Z

1

n

n−1∑

ℓ=0

ei2πkℓhF̂k(u)

=
∑

q∈Z
F̂nq(u).

Hence, we obtain

‖ERie(u, h)‖Hσ−2m ≤
∑

q∈Z∗

‖F̂nq(u)‖Hσ−2m .

Owing to the regularity of Fτ

∀ k ∈ Z∗ : ‖F̂k(u)‖Hσ−2m ≤ sup
τ∈[0,1]

(2π|k|)−m‖∂m
τ Fτ (u)‖Hσ−2m ,
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we have

‖ERie(u, h)‖Hσ−2m ≤ 2 sup
τ∈[0,1]

‖∂m
τ Fτ (u)‖Hσ−2m

∑

q∈N∗

(2πnq)−m

= 2(2πn)−mζ(m) sup
τ∈[0,1]

‖∂m
τ Fτ (u)‖Hσ−2m .

This is the stated result. �

Products and functions in Sobolev spaces. The fractional Leibniz rule
for functions defined on a d-dimensional torus follows from the standard
fractional Leibniz rule for functions defined on Rd.

Lemma A.2 (See [5]). Assume s > 0, and let p, q1, q2, p1, p2 ∈ (1,∞) be
such that 1

p = 1
p1

+ 1
q1

= 1
p2

+ 1
q2
. Then, for all elements u ∈ Lp1(Td) ∩

W s,q2(Td) and v ∈ Lp2(Td) ∩ W s,q1(Td), the following estimate holds with
constant α > 0

(A.3) ‖uv‖W s,p ≤ α‖u‖Lp1‖v‖W s,q1 + α‖u‖W s,q2 ‖v‖Lp2 .

The relation remains valid for exponents p ∈ [1,∞) and p1, p2, q1, q2 ∈
(1,∞].

The following auxiliary result is used in Section 2.

Lemma A.3. Assume σ > d
2 and s ∈ [0, σ]. Then, for all elements u ∈

Hs(Td) and v ∈ Hσ(Td), the relation

(A.4) ‖uv‖Hs ≤ κ‖u‖Hs‖v‖Hσ

holds. Moreover, for any function f ∈ C1(R,R) and for all elements u, v ∈
Bσ

R the estimate

(A.5) ‖f(u)− f(v)‖Hs ≤ α(f,R)‖u− v‖Hs

is valid.

Proof. We recall that, for any σ > d
2 , the continuous Sobolev embedding

Hσ(Td) →֒ L∞(Td) holds, that is ‖v‖L∞ ≤ c ‖v‖Hσ . Hence, in the case
s = 0, the result is obvious, since we have

‖uv‖L2 ≤ ‖u‖L2‖v‖L∞ ≤ c‖u‖L2‖v‖Hσ

and

‖f(u)− f(v)‖L2 ≤ max
|w|≤cR

|f ′(w)|‖u − v‖L2 .

Consider now the case s > 0 and let us prove (A.4). If s > d
2 , the result is

well-known, since Hs(Td) is an algebra. If 0 < s < d
2 , we apply (A.3) with

the admissible set of exponents p = 2, p1 = 2d
d−2s , q1 = d

s , p2 = ∞, q2 = 2,

and use the Sobolev embeddings Hσ(Td) →֒ L∞(Td), Hs(Td) →֒ Lp1(Td),
and Hσ(Td) →֒ W s,q1(Td). We then have

‖uv‖Hs ≤ α‖u‖Lp1 ‖v‖W s,q1 + α‖u‖Hs‖v‖L∞ ≤ α‖u‖Hs ‖v‖Hσ

which proves (A.4). If s = d
2 , we obtain the same estimate by applying (A.3)

with p = 2, p1 = 1
µ , q1 = 2

1−2µ , p2 = ∞, q2 = 2, for µ > 0 small enough,
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such that we also have the embeddings Hs(Td) →֒ Lp1(Td) and Hσ(Td) →֒
W s,q1(Td). Next, to prove (A.5), we employ the identity

f(u)− f(v) =

∫ 1

0
f ′(tu+ (1− t)v)(u − v)dt

and apply a tame estimate in Hσ(Td), see (2.5). Hence, employing the first
estimate, this yields

‖f(u)− f(v)‖Hs ≤
∫ 1

0
‖f ′(tu+ (1− t)v)(u − v)‖Hsdt

≤
∫ 1

0
‖f ′(tu+ (1− t)v)‖Hσ‖u− v‖Hsdt

≤ (‖f ′(0)‖Hσ + χf ′(cR)R)‖u − v‖Hs

and completes the proof. �
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