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Abstract

The precise control of geometric models plays an important role in many domains such as Computer Aided geometric Design and
numerical simulation. For shape optimisation in Computational Fluid Dynamics, the choice of control parameters and the way to
deform a shape are critical. In this paper, we describe a skeleton-based representation of shapes adapted for CFD simulation and
automatic shape optimisation. Instead of using the control points of a classical B-spline representation, we control the geometry in
terms of architectural parameters. We assure valid shapes with a strong shape consistency control. Deformations of the geometry
are performed by solving optimisation problems on the skeleton. Finally, a surface reconstruction method is proposed to evaluate
the shape’s performances with CFD solvers. We illustrate the approach on two problems: the foil of an AC45 racing sail boat and
the bulbous bow of a fishing trawler. For each case, we obtained a set of shape deformations and then we evaluated and analysed
the performances of the different shapes with CFD computations.

Keywords: computers in design, hydrodynamics (hull form), design (vessels)

1. Introduction

Automatic shape optimisation is a growing field of study,
with applications in various industrial sectors. As the perfor-
mance of a flow-exposed object can be obtained accurately with
CFD (Computational Fluid Dynamics), small changes in de-
sign can be captured and analysed. Based on these performance
analysis capabilities, optimisation strategies can then be applied
to deform the geometric model in order to improve the physical
behaviour and the performances of the model.

Fig.1 shows the core of an optimisation loop, which will
repeatedly run numerical simulations and deform the geometry
for an automatic search of an optimal shape.

Figure 1: Automatic shape optimisation loop

Different types of tools need to be linked together to per-
form such automatic shape optimisation with aerodynamic or
hydrodynamic criteria: a parametric modeller, a meshing tool,
a flow solver and an optimisation algorithm [1, 2, 3], see Fig.1.
Recent technological progresses allow to quasi-automatically
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run the meshing tool, the CFD solver and the post-processing
of the relevant results of the computation. Then optimisation
algorithms such as EGO (Efficient Global optimisation) [4, 5,
6] demonstrate their efficiency to solve problems with a large
number of degrees of freedom and where the objective function
values are difficult and costly to evaluate.

However, less efforts have been dedicated to the develop-
ment of efficient parametric modellers. These components de-
form the object according to the optimisation algorithm output.
Their role is critical in the way the space of possible shapes is
explored. To be compatible with the current capabilities of the
optimisation tools, the parametric modeller has to modify the
shape of the object using a reduced number of parameters. It
should provide a precise control of the shape, while allowing to
generate a wide range of admissible shapes.

In this paper, we propose a new approach to shape defor-
mation for parametric modellers with the purpose of being in-
tegrated into an automatic shape optimisation loop with a CFD
solver.

The methodology presented here has the ability to gener-
ate valid shapes from an architectural point of view thanks to a
novel shape consistency control based on architectural parame-
ters. We focus on reducing the number of degrees of freedom
of the deformation problem. We also focus on being indepen-
dent from the CAD (Computer Aided-Design) software used by
representing objects with a skeleton generated from the CAD
model. Finally, we propose a methodology to link shape repre-
sentation, shape deformation and numerical simulation.
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The motivation of working with architectural parameters is
lead by the intuitiveness for an architect to control a shape by
such expert parameters instead of control points.

Controlling shapes by architectural parameters allows re-
ducing the number of degrees of freedom of the problem. They
also introduce a physical and a design meaning into the optimi-
sation process, allowing also to generate a majority of shapes
that are valid. In comparison to fixing limits of variation for
coordinates of control points, fixing the bounds to the archi-
tectural parameter variation is intuitive. Finally, architectural
parameters are independent of each other, making the search of
an optimal solution easier.

We propose a way to control shapes efficiently in terms of
these architectural parameters, by controlling and deforming
the skeleton curves in terms of these parameters.

The skeleton deformation is completed by a surface recon-
struction step, to produce a smooth geometric model that can be
used by the meshing and simulation tools. The approach allows
us to be independent of the initial CAD representation and is
not limited to a specific CAD software.

The generalizable concept of skeleton-based representation
is well adapted to extend our tool to a large set a shapes e.g.
hulls, appendages, propellers, wind turbine blades, airships.

In this paper, we illustrate application of the modeller on
two applications: the AC45 foil used by racing yachts, and the
bulbous bow of a trawler ship. For each case, we present the
chosen hydrodynamic criteria to measure the performances, the
shape parameter that we will modify and then we propose an
analysis of the results.

2. Related work

In CAD software, the standard description used to describe
shapes are B-Spline curves and surfaces [7]. A B-Spline curve
of degree p is defined as :

C(t) =

n∑
i=0

Bi,p(t)ci, t ∈ [0, 1] (1)

where ci = (xi, yi, zi) are the 3D control points, and Bi,p(t) are
the B-Spline basis functions.

For CFD computation, the object geometry is represented
by a mesh. We present in the following paragraph existing
methods based on both surface or mesh representations of shapes.

Deforming the control points of the NURBS representations
used in CAD software to automatically generate new shapes
is not appropriate. The number of control points to represent
adequately the shape may be too large (3 degrees of freedom
per control point) to be used in shape optimisation. Another
obstacle is the complexity of the geometric models that can
be trimmed, or subdivided into numerous patches that cannot
be deformed in a structured way or that are simply not clean

enough for CFD computations.

Shape deformation of ships forms for automatic shape op-
timisation is a relatively recent approach. However, deforma-
tion techniques have been highly developed in other application
fields, such as 3D animation and movies.

Free Form Deformation FFD and morphing are classical
methods created for 3D animation purposes, and they have been
applied to shape optimisation for ships. Closely related to the
FFD method, deformation techniques that enclose a shape in a
mesh cage linked with barycentric coordinates have been pro-
posed [8]. Naval applications with morphing can be found in
[9, 10] and applications with FFD can be found in [11, 12, 13].

FFD and morphing are usually applied to meshes and not
to a continuous geometry, thus limiting deformation because
the meshes can be subject to degeneration. FFD methods can
be very efficient with a small number of degrees of freedom to
control the whole shape of the object. However, in order to per-
form local deformation, the only way is to increase the number
of control points by refining the areas of interest. Moreover,
FFD does not take into account any architectural parameters
when deforming an object, leading to non-realistic results.

Morphing is limited to known bounds of shape variations.
The exploration of the space of possible optimal shapes is ex-
tremely reduced.

For 3D animation, another common technique for control-
ling shape are skeleton-based mesh deformation techniques [14].
We can also find deformation techniques with subdivision sur-
faces [15], for example by using energy minimization tech-
niques to find the best position of mesh elements to match the
user’s manipulations.

For applications with a direct interaction with the physi-
cal characteristics of the object, physically driven deformation
methods exist. In this type of methods, the shape represents the
domain where Partial Differential Equations (PDE) are solved.
The domain can be either a mesh or a level set function. The re-
sults of the PDE are used in a cost function to determine parts of
the domain needing to be deformed to optimise its value. Ap-
plications can be found for meshes [16], subdivision surfaces
[17] and on level set function [18]. Generally in such applica-
tions, solving the PDE is not excessively costly. In shipbuild-
ing, methods based on shape gradients focuses on minimizing
an energy function obtained by solving the Navier-Stokes equa-
tions [19, 20].

Engineering dedicated CAD software can also provide para-
metric design features, allowing the user to build parametrized
models such as CatiaTM or Grasshopper for Rhinoceros 3DTM

or CAESES from Friendship SystemTM. These method allows
to generate shapes easily, but all of the parameters defined on
the design are lost when saving the model in a standard file
exchange format such as IGES or STEP. This represents a limi-
tation for automatic linking with solvers (CFD, structural anal-
ysis, etc.) or optimisation algorithms.
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These type of parametrized models have been combined
with isogeometric flow solvers for ship hull optimisation, for
instance in [21, 22].

Specific software have been developed during the last decades
for ship applications. One of the most widespread is CAE-
SES, allowing the user to modify imported geometries using
advanced geometrical parameters that can be modified by hand
or automatically with a CFD optimisation loop [23]. The
shape can be controlled with curves or surfaces around the ob-
ject called Lackenby shift transformations. Points of the object
are linked to the curves or surfaces, and follow its deformations.

Similarly, a ship dedicated tool Bataos [24] allows to mod-
ify the shape of sections of the hull by multiplying or adding
predefined functions to the control points of the B-Spline curve
describing the section.

These tools are based on geometrical control of shapes. Ar-
chitectural parameters are computed on the deformed geometry
and can be included as constraints, but they do not directly con-
trol the shape modification.

3. Shape parametrization

Our goal is to develop a generic methodology to deform
shapes with architectural constraints. To achieve this objective,
we use a twofold parametrization of the shape that allows us to
describe a large class of objects in the same way. We base our
method on a generic skeleton concept to describe the geometry,
completed by specific architectural parameters according to the
studied shape.

3.1. Geometrical parametrization

Our motivation for using a skeleton based representation of
the geometry comes from two considerations:

1. Lines plan are used by naval architects to define the ex-
ternal shape of the hull, for which consistent shapes must
be obtained once deformed.

2. Classical and efficient techniques in 3D animation are
based on the deformation of medial axis curves associ-
ated to a shape [14].

By combining these two types of representations, we aim at
applying generic deformation algorithms while controlling the
architectural consistency.

We consider the skeleton as a set of curves composed of a
generating curve and section curves. Each section curve needs
to be identified on the generating curve: a local coordinate sys-
tem, with an origin and a rotation, allows us to know its posi-
tion and orientation. We are going to describe more precisely
this skeleton based representation in the next section and how
the architectural parameters are associated to the geometry in
the following sections.

3.1.1. Generating curve and section curves
In our skeleton concept, the generating curve describes the

general shape of the object, whereas sections describe more pre-
cisely the outlines of the object around the generating curve,
similarly to the architect’s line plan.

The generating curve needs to describe the prominent fea-
tures of the object. It is defined to be lying on the geometry and
connects all the section curves. It is not necessarily planar, but
symmetry considerations of the object allow to describe it as a
planar curve in most cases.

Section curves are computed as the intersection curves be-
tween the studied object and a family of planes. To each section
curve, we associate a point on the generating curve, a local co-
ordinate system, an origin and a rotation which allows to know
the position and the orientation of the section curve. The cut-
ting planes are defined to be normal to the tangent vector of the
generating curve at the corresponding point adjusted with the
rotation associated to the section.

For practical purposes, we represent the generating curve
and the section curves as B-splines curves with a given num-
ber of control points. We further simplify the representation by
choosing a finite subset of the section curves, associated with a
finite sampling of the generating curve. Fig.2 illustrates skele-
tons obtained with Rhinoceros 3DTM.

(a) Skeleton of a sail boat’s foil

(b) Skeleton of a bulbous bow

Figure 2: Examples of skeletons

This leads to a representation of the geometry in terms of a
finite set of control points. We denote by cg the control points
of the generating curve and by ci the control points of the ith

sampled section curve for i = 1, . . . ,N.

We illustrate in the next paragraphs the method to obtain the
skeleton on two different models.

To construct a skeleton-based representation from an initial
geometric model, we first choose a relevant generating curve
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according to the model. For airfoil based shapes, the trailing
edges is an ideal choice, as is the keeline for a hull.

To obtain the section curves, we compute the intersection
between the object and the set of planes defined according to
the tangent of the generating curve. If a non-null rotation is
associated to the section, the cutting plane is first transformed
according to this rotation. The planes are sampled along the
generating curve, following a chord length or a curvature based
distribution. At this stage, we obtained a first skeleton from the
model. The number of control points or the quality (continuity,
smoothness, etc.) of the curves depends on the original design.

Then, we reconstruct new B-Spline curves with a fitting
process [25] from a point cloud sampled on the current sections
and the generating curve. We use a small number of control
points (e.g. ≤ 10) to represent these curves, that are smoothed
and cleaned. In the applications that we have considered this is
usually enough to ensure a good level of approximation. The
average normalized distance between the intersection curves
and the B-spline section curves is kept under 10−5 m.

3.1.2. Local coordinate systems for the section curves
Section curves are identified on the generating curve thanks

to a local coordinate system. Each local coordinate system has
its origin defined from a point on the generating curve, allowing
to locate the section in 3D space.

The first axis U is defined into the section plane, its direc-
tion is imposed by a main feature of the section, as the leading
edge for an airfoil section, or the maximum height for a bulbous
bow section.
The second axis V is represented by the tangent of the generat-
ing curve Tσ(t) at the origin point of the local coordinate system.
In most cases, the first and second axes are orthogonal by con-
struction, but some sections representing special features of the
geometry, as the extremities of the foil, are not defined in the
plane PT orthogonal to Tσ(t). Thus U and V are not orthogonal
to each other.

Let RT be the rotation that transform U such as U ∈ PT . We
apply the inverse of the rotation RT to Tσ(t) in order to obtain the
second axis V orthogonal to U. RT is associated to the section.

Then the third axis W is computed as the cross product of
the first two axes.

The implicit definition of the second axis V allows the lo-
cal coordinate system to move when the generating curve is
modified, computing the new orientation of the section auto-
matically. The translation and rotation matrices that turns the
original tangent to the new one is applied to the other axis U
and W and to the section control points. Therefore modifying
the generating curve induces affine transformations on the sec-
tion curves, given by the modification of the local coordinate
system.

3.2. Architectural parameters
Architectural parameters describe the main characteristics

of the object. They are chosen according to the design practice

and effects on the object performance. Our goal is to control the
shape of the studied object through the architectural parameters
value.

We associate different parameters to the generating curve
and the section curves in order to control the whole shape.

For example, the main characteristics of an L-shaped sail
boat foil are the length of the two parts, the angle between
them and the angle of the entire foil called Cant. Then each air-
foil profile section has particular features, such as chord length,
thickness, angle of attack, etc. [26].

For a bulbous bow, the main features are the length, the
angle, the height and thickness [27]. We illustrate those param-
eters in Fig.3 and Fig.4. The generating curve begins where the
bulbous bow start to influence the hull shape. The length pa-
rameter is the total length of the generating curve. The angle
parameter measures the angle between the x-axis and the ex-
tremity of the bulb. Variations of these parameters are shown in
Fig.18. New types of parameters can be implemented easily to
enrich the model, such as the sectional areas curve, the volume
of the bulb, etc.

(a) Generating curve parameters

(b) Section parameters (airfoil parameters)

Figure 3: Foil parameters

(a) Generating curve parameters (b) Section pa-
rameters

Figure 4: Bulbous bow parameters

4



3.3. Observer function

We call φ, the observer function that computes the set of
architectural parameters P on a given geometry G: φ : G −→ P.
These parameters can be real values such as the length of a foil
or functions of the generating curve parameter, such as the twist
angle of a profile defined at each point of the generating curve.
For a given geometry σ ∈ G, the architectural parameters φ(σ)
can thus belong to an infinite dimensional space since it can
contain functions which represents values along the generating
curve.

In practice, these functions will be represented with a B-
Spline curves passing through the section parameter values ac-
cording to their position on the generating curve. The B-Spline
curves belong to a finite dimensional space with a small num-
ber of control points. These are the parameters that we will use
to control the shape.

An illustration is shown in Fig.5, where the observer func-
tion made of 13 control points represents the chord length dis-
tribution of 28 section curves.

From this consideration, managing the B-Spline instead of
each section parameters represents two main advantages. First,
we reduce drastically the number of parameters that control the
shape of the object and that are used in an optimisation loop.
Secondly, the modification of a B-Spline curve can ensure a
smooth distribution of the parameters, preserving the fairness of
the object. The observer function can be split into a part for the
generating curve and a part for the section curves, as different
set of parameters can be defined on each type of curves.

Figure 5: Distribution of the chord length parameter along the generating curve
of a foil, approximated with a B-spline curve called observer function

4. Shape deformation

This section explains our strategy for computing a smooth
shape corresponding to given architectural parameters. We de-
scribed the problem as a non-linear constrained optimisation
problem that can be applied on the generating curve or the sec-
tion curves independently.
We start by presenting the problem, then we propose an optimi-
sation algorithm to solve it numerically.

4.1. Problem setting

Our goal is to find the shape of G that matches a given set
of architectural parameters in P.

The observer function φ : G −→ P is defining the param-
eters associated to a shape. To control the shape of the object
through the parameters value, we need to find a shape corre-
sponding to given parameters. In other words, we need to com-
pute: φ−1 : P −→ G.

As the shape in G is described by a skeleton made of B-
Spline curves, we propose a method that computes new values
of the coordinates of B-Spline curves control points until the
new skeleton parameters reaches the target ones. The new coor-
dinates of the B-Spline control points are the solution of a min-
imisation system that we construct with four terms. The discre-
tised geometry, represented by a finite number of section curves
and a generating curve is called ξ. The generating curve param-
eterized by t ∈ [0, 1] is denoted ξg. Its controlled coefficients are
cg. The ith sampled section curve corresponding to the param-
eters ti on ξg is denoted ξi for i = 1, . . . ,N. It is parameterized
by s ∈ [0, 1] and its control points are ci = (ci,0, . . . , ci,M). In
the following paragraphs, ξ0 denotes the initial geometry, that
is the initial generating curve and section curves.

Parameters value
The first term measures the distance of the current parameters
values φ(ξ) to the target ones V:

Eparam = ‖φ(ξ) − V‖2 (2)

As we assume that the observer function can be split into a
part for the generating curve and a part for the section curves,
this error term is the sum of an error term for the generating
curve and error terms for the sections. We denote by Eparam,i =

‖φi(ξi) − Vi‖
2 and Eparam,g = ‖φg(ξg) − Vg‖

2 the error term cor-
responding to the ith section curve and the generating curve re-
spectively.

Shape consistency control
The second term is introduced to ensure consistency control
by measuring the distance of the current generating or section
curve to the original one. The consistency with the initial geom-
etry is measured after applying a linear transformation which
allows to match some parameters of the target curve ξ. These
transformations include a scaling of the initial curve to match
a given length or a rotation to match a given angle. In addition
to these basics transformations, we also consider other explicit
deformations which depend on the parameters V , such as a non-
linear scaling of the height of a profile. These transformations
of the initial curve, denoted DV , are explicitly computed from
the geometry ξi (or ξg). Transforming the initial curve by DV

helps matching the target parameters. The transformed geome-
try DV (ξ0

i ) (or DV (ξ0
g)) is used as the starting point of the opti-

misation algorithm.
We define:

Eshape,i = ‖ξi − DV (ξ0
i )‖2 (3)
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Similarly, for the generating curve we have Eshape,g = ‖ξg −

DV (ξ0
g)‖2.

Architectural constraints
The third term allows taking into account specific constraints F
for the studied object, usually position or tangency constraints.
These constraints are defined for each section ξi, i = 1, . . . ,N
and are not necessarily the same for all sections. For exam-
ple, an airfoil has a smooth connection between the suction and
pressure faces thanks to a tangency constraint: the tangent at
the leading edge has to be orthogonal to the chord vector:

F1 :
∂ξi

∂s
·
−−−−→
chord = 0.

For a bulbous bow, as we parametrized a half bulbous bow, we
have to ensure that the sections end at Y = 0 and that the tangent
at the extremity are preserved:

F0 : Y(ξi(1)) = 0 F1 :
∂ξi

∂s
(v) −

∂ξ0

∂s
(v) = 0 v ∈ {0, 1}

Regularization
The last term controls the overall smoothness of the shape by

introducing stiffness between successive control points ci, j. We
add correction terms to control respectively C1 and C2 proper-
ties of control points.

H0(c) =
∑

j

‖∆c j‖
2 ∆c j = c j − c j−1

H1(c) =
∑

j

‖∆2c j‖
2 ∆2c j = c j+1 − 2c j + c j−1

Finally, the proposed minimisation system is described as
follows.

min
ci

Eparam,i + εEshape,i +
∑

k

λkF2
k (ci) +

1∑
l=0

µl Hl(ci) (4)

As we decoupled it into a minimization system for each section
curve ξi and for the generating curve ξg, an optimisation prob-
lem similar to Eq.4 is solved for the generating curve ξg.

In these formulations, ε is a weight allowing to balance the
influence of the shape control term. In fact, if this term is too
high, the system will converge to a solution too close to the
initial curv, and will have difficulty to respect the target param-
eters. ε can be seen as a penalty coefficient, but we chose to
decrease it at each iteration because in our particular case the
initial guess, the original curve, needs to be degraded to match
new architectural parameters. The coefficients λi weighing the
shape constraints and µi weighing the correction matrices are
both very small, usually around 10−4.

4.2. Numerical solution
The definition of the problem is well adapted to Sequential

Quadratic Programming (SQP) [28]. SQP algorithm solves the
minimisation problem by generating successive quadratic prob-
lems that approximate the cost function by a quadratic function
obtained from a Taylor expansion of order 2. We use finite dif-
ference to compute the gradients of the system. We start with
an initial value of ε and the original curve as the starting point
of the algorithm, then we decrease ε at each iteration and start
the SQP again with the last computed curve. The algorithm
stops when the value of the objective function reaches a fixed
threshold.

Fig.6 illustrates the deformation process. This inner prob-
lem, solved by SQP, has a relatively large number of degrees
of freedom as it modifies the coordinates of control points. But
with our methodology based on architectural parameters, the
shape optimisation outer loop (see Fig.1) controls only a few
number of degrees of freedom.

Figure 6: Deformation process

Example
Fig.2(a) illustrate the skeleton we obtained for the AC45

foil. The original model is made of 22164 control points. Our
skeleton representation is made of only 578 points, 560 = 2 ×
28 × 10 points for the sections and 18 points for the generating
curve.

The associated deformation process can be decoupled into
29 independent sub-problems. 28 sub-problems representing
the suction and pressure faces of each sections are controlled
by 6 architectural parameters. Each sub-problem has 16 de-
grees of freedom, as the extremal points of the sections are pre-
determined by chord and angle of attack. The last sub-problem,
representing the generating curve, is controlled by 4 architec-
tural parameters and has 36 degrees of freedom.

For the bulbous bow, whose skeleton is illustrated in Fig.2(b),
the total number of control points for the half-hull is 2574, and
57 are directly controlling the bulbous bow shape. Our skeleton
representation is made of 180 points, 160 = 16 × 10 points for
the sections and 20 points for the generating curve. We choose
to define more control points on the shape of the bulb than in
the original model, as we look for a precise control of the shape
of the bulbous bow. The number degrees of freedom used by
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the shape optimisation problem is smaller as they are defined
by the architectural parameters.

The associated deformation process can be decoupled into
11 independent sub-problems. 10 sub-problems representing
the sections are controlled by 2 architectural parameters. Each
sub-problem has 16 degrees of freedom, as the extremal points
of the sections are pre-determined by the height. The last sub-
problem, representing the generating curve, is controlled by 2
architectural parameters and has 40 degrees of freedom.

Moreover, the total number of variables controlling the sec-
tions can be reduced with observer functions described in Sec-
tion 3.3.

An illustration of the deformation of a sail boat section is
shown in Fig.7(b). The three parameters of the section are de-
scribed by Fig.7(a). An observer function describes the reparti-
tion of the parameters along the sections, but only one section
of the skeleton is considered in this example, made of 8 control
points. The aim of the deformation is to reduce the value of
the Radius parameters, while Width and Length are fixed. Con-
sidering this objective, the extremal points of the sections are
fixed. The problem solved has 12 degrees of freedom and con-
verges in 15 iterations, with 20 iterations of SQP each.

With a four-cores HP Probook-450 with a Intel R© CoreTM

i7-4702MQ CPU 2.20GHZ, RAM 8.00 GB, the total time to
perform this section deformation is 1.2 seconds.

5. Surface reconstruction

The optimisation method outputs deformed sections and gen-
erating curves, corresponding to the skeleton of a new shape.
To evaluate the shape’s performances with a CFD solver, we
first need to reconstruct the 3D surface wrapping the deformed
skeleton.

Building a new surface allows to obtain a cleaned-up model
for the meshing tool. The quality of the obtained surfaces is en-
sured by the high precision of the implemented fitting process
and the control of continuity between patches.

Classical techniques such as lofting [7] are a relevant choice
for objects that can be represented with only one surface such
as foils.

For more complex objects, multi-patch surfaces are required.
In such cases, a particular attention has to be given to the con-
tinuity between them: for our application, patches have to be
at least C1. We developed a technique based on form finding
[29] to reconstruct suitable surfaces. We expose this technique
in the following paragraphs.

5.1. Problem setting

Given the section and generating curves of the new deformed
skeleton, we construct a surface which contains these curves
and satisfies tangency conditions on the boundaries of the sur-
face.

(a) Ship section parameters

(b) Deformation of the curvature radius of a sail boat section

Figure 7: Ship section parameters and deformation

Like for the skeleton deformation, we compute the surface
by solving an optimisation problem, where the control points
of the surface ci j are the unknowns. To define this optimisation
problem, we discretize the problem by sampling the curves. We
obtain a point set on which we will wrap the surface. The sur-
face is computed by fitting techniques [30], taking into account
smoothing and tangency constraints on the boundary of the sur-
face to ensure the continuity between adjacent surfaces in the
geometric model. As explained in [29], the constraints we use
are quadratic in the control point coordinates ci. We describe
them in the following paragraphs.

First, we define for each point of the point set a coordinate
mapping:

R3 −→ [0, 1] × [0, 1]
Pl −→ (ul, vl), l = 0, ...,NP

The mapping defines for each point Pl of the point set, the
parameters ul, vl of the surface σ where σ(ul, vl) = Pl will be
verified approximately.

Surface fitting
This constraint ensure that the surface σ passes thought the
points Pl:

7



E f itting :
∑

l

‖σ(ul, vl) − Pl‖
2 = 0, l = 0, ...,NP (5)

with σ(u, v) =

n∑
i=0

m∑
j=0

ci jBi(u)B j(v)

Tangency constraint with fix parts of the object
Let nl be the normal at Pl of the fix surface adjacent to a sur-
face we want to reconstruct. In the u direction, the continuity
constraint is expressed by:

E f ixT : < σu(ul, vl) · nl >
2= 0, l = 0, ...,NP (6)

where σu(u, v) =

n∑
i=0

m∑
j=0

ci jB′i(u)B j(v)

We have similar constraints in the v direction.

Tangency constraint with mobile parts
At the Nn points Pl on the frontier with other reconstructed sur-
faces, the values of the normals nk of both surfaces are new
unknowns satisfying an equality constraints. In the u direction,
the continuity constraint is expressed by:{

EmobileT1 : < σ1 u(u1,l, v1,l) · nk >
2= 0

EmobileT2 : < σ2 u(u2,l, v2,l) · nk >
2= 0 (7)

l = 0, ...,NP, k = 0, ...,Nn (and similarly for the constraints in
the v direction).

Moreover, the normal vector nk must satisfy:

Emobile normals : < nk · nk >
2= 1, k = 0, ...,Nn (8)

Notice that these constraints require an initial value of σ1, σ2
and nk.

Regularization
A regularization energy term can also be introduced for the sur-
faces, to improve the “fairness” of the surface. It is a quadratic
function of the unknowns control coefficients ci, j, similar to the
regularization term for curves used in Section 4.1. We do not
detail it here (see for instance [29]).

5.2. Numerical solution
Let us consider x as the vector containing the unknown of

the system, in other words the surfaces control points ci j and
the normals nk at the frontier with two reconstructed surfaces.
The surface is constructed so that the total energy is minimized:

Etotal = E f itting+E f ixT +EmobileT1+EmobileT2+Emobile normals (9)

A dedicated algorithm is used to compute a value of x, for
which Etotal is less than a threshold. Let us describe it briefly.

The general form of quadratic constraints that we treat is:

ϕi(x) =
1
2

xT Hix + bT
i x + ci = 0, i = 1, ...,N (10)

where Hi is a symmetric matrix, bi is a vector and ci a constant.
Some of the constraints that we use are not quadratic e.g. the
continuity between patches. In such cases we use a geometri-
cally meaningful linearization, e.g. expressing the constraint in
a quadratic form using the normal of the surface.

Given the definition of the quadratic constraints in Eq. (10)
and a value x = xn at iteration n, we can linearize ϕi(x) using:

x = xn + δx

ϕi(x) ≈ ϕi(xn) + ∇ϕi(xn)T (x − xn) = 0, i = 1, ...,N

where ∇ϕi(xn) = Hixn + bT
i . We can rewrite this linearization in

the following matrix form:
∇ϕ1(xn)T

...
∇ϕN(xn)T

 · x =


∇ϕ1(xn)T · xn − ϕ1(x)

...
∇ϕN(xn)T · xn − ϕN(x)

 ,
that is, a linear system of the form Hn ·x = rn, whose solution is
the next point xn+1. We solve this system iteratively until a fix
point is reached.

This technique is able to reconstruct efficiently and accu-
rately surfaces, which contain the skeleton curves and satisfy
tangency constraints on the boundary.

We illustrate it with the reconstruction of the surface of a
sail boat hull, in Fig.8 , and on the bulbous bow of a fishing
trawler, in Fig.9.

For the sail boat hull example, we choose to reconstruct the
middle part of the hull with two surfaces. Each surface has to be
smoothly connected to a fix part of the hull (the transom or the
stem) and to the other middle surface. The algorithm converges
in 3 iterations, and the resulting surfaces satisfy the tangency
constraints at the three junction curves.

Figure 8: Patch of surfaces reconstructed of a sail boat hull

For the bulbous bow example, the bulb is reconstructed with
two surfaces. The first one is connected to the fixed hull and the
other is connected to the first surface. The algorithm converges
in 4 iterations, and the resulting surfaces satisfy the tangency
constraints at the four junction curves.

6. Applications

In this section we present two different applications of the
parametric modeller, one on the foil of an AC45 and one on
the bulbous bow of a fishing trawler. In both cases, we aim
to increase a performance criterion with shape variations. The
parametric modeller is automatized and linked to a flow solver.
A specific flow solver is used for each application: potential

8



Figure 9: Patch of surfaces reconstructed of bulbous bow

flow solver for the foil and RANSE for the bulbous bow.

Timings in the experimentations refer to the same hardware
configuration as described in section 4.2.

6.1. Application on a sail boat’s foil: AC45

In the recent years, new high-speed boats were developed
using foils. The purpose of a foil is to lift the hull of the boat
above water surface. The hull resistance (friction and wave
making drag) is decreasing, allowing to reach very high speeds.

For sailing yachts, the foils are built as an ”L” shape with
a vertical part countering the sails forces, and a horizontal part
supporting the yacht weight.

While sailing, the foil allows the yacht to fly as shown in
Fig.10. However, to maintain this flying state, the stability of
the foil is a critical aspect for both security and performance.

Designers have to manage numerous parameters in order to
produce a foil with a low drag, but high stability.

We consider here the AC45 foil. This type of foil is ”one-
design” meaning that its shape is the same for all AC45 boats.

For this application, we aim to optimise the shape of the
AC45 foil in order to decrease its total drag while keeping sta-
bility and the ease of use as high as possible. The foil per-
formances are computed with the potential flow solver ARA-
VANTI.

The AC45 foil is currently used by the Groupama Team
France sailing team for the 35th America’s Cup. An illustration
of the sail boat flying thanks to the foil is shown in Fig.10, one
foil in the water (right) and the other one visible in the retracted
position (left).

6.1.1. Simulation with ARAVANTI
ARAVANTI, the flow code used in the present study is de-

veloped and commercialized by the company K-Epsilon. ARA-
VANTI is a coupled fluid-structure solver, with a finite element
method for solving the structure and multiple different methods
for the fluids (e.g. vortex line method, particle method, panel
method, etc.) [31, 32].

The method used here is a vortex line method with solved
wake. ARAVANTI is coupled to XFOIL in order to incorporate
the flow behaviour such as laminar transition, and stall.

Figure 10: Illustration of the AC45 on the Groupama Team France sail boat,
Credit: R© Eloi Stichelbaut / Groupama Team France

The foil is represented with a finite number of elements, i.e.
airfoil sections given by the skeleton. For each element a local
velocity, a local Reynolds number and a local angle of attack
is computed. Each element has an associated XFOIL database
containing the lift and drag of the section for a given range of
angles of attack (usually between −5◦ and 20◦).

ARAVANTI use this database to find the lift of each element
of the foil according to its current local angle of attack. Then the
lift is converted to a local vorticity. The wake is imposed with
the computed gradient of vorticity then solved. These steps are
repeated until convergence thanks to a direct iterative method,
which is able to find a stationary solution.

For this type of application, ARAVANTI does not need to be
linked to any CAD software. As inputs, it requires a 2D point
cloud description of the sections, similar to the XFOIL input,
and a text file indicating the 3D position of each section with
points and quaternions. These files are generated automatically
by the parametric modeller.

In our specific case for AC45 foil study, only the underwa-
ter part of the foil is simulated. The influence of the free sur-
face is taken into account with an anti-symmetry plane model.
This model is a satisfying approximation for high speed. As
[33] suggests, with a Froude number greater than 1, an infinite
Froude number free-surface condition can be used. In our case,
the Froude number is around 5.45.

We illustrate in Fig.11 the wake computed with ARAVANTI
and the vortex lines. The vortex line is located at 25% of the aft
of the leading edge along the foil. From the vorticity repartition
colormap, we see that the parts of the AC45 which generate
most of the force allowing to lift up the boat are the knee and
the tip.

The reference frame is defined as follows: X is in the oppo-
site direction of the flow, Z is in the vertical direction (oriented
upwards) and Y is horizontal, perpendicular to X.
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Figure 11: Illustration of the wake and vortex line on the AC45

6.1.2. Proposed performances criteria
We choose to define the foil performances with three criteria

computed with ARAVANTI.

1. The total drag Fx of the foil in the reference frame. A
low drag increases the total performance and speed of the
boat.

2. A stability criterion, represented by ∂Fz
∂z , where Fz is the

total force in the z direction of the foil. The aim of this
criterion is to ensure that the boat will stay at a fixed z
height thanks to a self adjusting Fz balancing the vertical
movements of the foil.

3. A stability and usage criterion, represented by ∂rake
∂V , where

the rake is the angle of incidence of the foil in the Y ro-
tation, and V is the boat speed. The rake is a parameter
that the crew have to adjust while sailing to modify the
vertical forces Fz. Thus a foil shape where this param-
eter does not change a lot when the speed is varying is
valuable.

Computations are performed with a fixed Fy given as the
opposite force to balance the force applied by the sails on the
hull. Fz is also fixed to counter the weight of the hull and be
able to lift it up. The speed of the yacht is first set to 22 knots.
ARAVANTI solves for the leeway and rake angles of the foil,
until computed forces converge to the imposed forces.

Fx is computed during the simulation, and we aim to de-
crease it as much as possible. In the reference frame we used,
Fx is oriented along the negative x direction. Thus, the sign of
Fx will be negative, but we can consider the absolute value to
compare the foil performance.

To compute the second criterion, we estimate ∂Fz
∂z with fi-

nite differences. We vary the foil displacement by a small ∆z
and compare the computed Fz. To be stable, the foil has to gen-
erate a Fz opposed to the direction of the displacement. Thus
the ratio ∂Fz

∂z has to be negative and as large as possible.
For example, if the boat is riding too high above the water sur-
face, the foil force Fz has to decrease in order to make the whole
system lower.

We use the same process for the third criterion, ∂rake
∂V , by

solving the rake angle for a small speed variation ∆V . Here,

the rake has to increase as little as possible when the speed in-
creases. Thus the ratio ∂rake

∂V has to be positive and as small as
possible.

For both cases, we ensure that the finite difference is a satis-
fying approximation by choosing appropriate steps ∆z and ∆V .

The aim of our study is to reduce the total drag of the AC45
as much as possible while keeping stability criteria as large as
possible.

6.1.3. Proposed deformations
We identified the most relevant parameters that influence a

foil performances as the tip length, the angle between the shaft
and the tip and the cant angle, illustrated in Fig.12. Here, we
consider the cant angle as a shape parameter and not as control
parameter of sailing.

To generate a new CAD from the original CAD model, our
tools takes on average 12 seconds to build the skeleton, 5.1 sec-
ond for the generating curve deformation and 5 seconds for the
section curve deformation. In our case, we perform only de-
formation of the generating curve. Moreover there is no need
to build a new surface around the skeleton, as ARAVANTI does
not require a continuous surface as an input. A set of points dis-
tributed on the section curves of the skeleton is sufficient. The
skeleton we used on the AC45 is illustrate in Fig.2(a).

Figure 12: Foil shape parameters

The variations of the parameters are distributed in a param-
eter space defined in Tab.1, and illustrated in Fig.13.

Tip length Angle Cant
Initial value 1.37m 77.24◦ 2.42◦

Min variation −30% −30% −313.7%
(= 0.96m) (= 54.1◦) (= −5.2◦)

Max variation +40% +20% +727.2%
(= 1.92m) (= 92.65◦) (= 20◦)

Table 1: Limits of parameters domain

To sample the parameter space, we use a Latin Hypercube
distribution [34]. Our choice is based on the future use of op-
timisation algorithms such as EGO, that are often initialized
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Figure 13: Shape variation of the foil in the paramter space

with such parameter space values distributions as they are well
adapted for response surface methods [35].

6.1.4. Results
We used a Latin Hypercube distribution with 20 points to

sample the parameter space described in Tab.1. For each set of
parameters, we build a new corresponding foil with our para-
metric modeller and we evaluate automatically the value of the
3 criteria, Fx; ∂Fz

∂z ; ∂rake
∂V , with ARAVANTI.

As our aim is to reduce the total drag as much as possible
while keeping stability criterion as large as possible, the opti-
mal solution is located on a Pareto front. We represented the
Pareto fronts of the drag with each stability criterion in Fig.14.
The Pareto front is defined with few points at this stage of the
study. More points will be added while performing the auto-
matic shape optimisation process. In a future work, the perfor-
mance of the foils located on the current Pareto front will be
improved by including an adapted optimisation algorithm.

We named the foils closest to the Pareto fronts (A,B,C,D),
Foil A being the one with the least drag and worst stability, Foil
D being the one with the most drag, but the best stability and
Foils B & C being in between. Even if Foil A has the worst
stability of the Pareto front, it is still better than the original
AC45. The other criteria vary around the original values.

Note that the foils A, B, C and D refer to the same shapes
on both Pareto fronts ∂Fz

∂z vs Fx and ∂rake
∂V vs Fx.

We detail the points on the Pareto fronts in Tab.2, with the
initial AC45 results for comparison. We illustrate the results in
Fig.15.

The two shape variations Foil A and Foil B are rather dif-
ferent for the tip length and angle values. We can deduce a link
between these two parameters that leads to more efficient foils,
either a short tip with a great angle or a long tip with a small
angle. Both cases suggest to increase the cant angle.

The two extreme shapes in the Pareto front ∂Fz
∂z vs Fx, Foil

A and D, show a very different behaviour of the foil according
to the parameters, illustrated in Fig.16 where we see the vortic-
ity distribution along the foil. In the case of Foil A (Fig.16(a))
the vorticity is uniformly distributed on the shaft, knee and tip.

Figure 14: Latin hypercube distribution of foils shape

# % Tip length % Angle % Cant Total drag ∂Fz
∂z

∂rake
∂Vvariation variation variation (|Fx|) in N

AC45 - - - 1077 −423 1.045

A −8.62% +18.58% +650.53% 983 −1495 0.825

B +34.02% +9.74% +416.79% 983 −2863 0.710

C +31.56% −5.96% +591.87% 1122 −6392 0.872

D +11.88% −29.63% +721.38% 1327 −7240 1.271

Table 2: Parameters and criteria values of points on both Pareto fronts

Whereas for Foil D (Fig.16(b)), the vorticity in essentially lo-
cated on the shaft, thus the lifting force is principally generated
from this part.

To conclude, the behaviours we observed of the different
foils match expected results, and some tendencies are well known
by designers.

A further study will include the sinkage as well as shape
parameters for the sections. We will also take into account the
moment of the boat about the x direction Mx. The moment
has an influence on the predicted performance of the foil, and
especially the value of cant angle can be affected in order to find
a configuration that counters Mx.

Also, an optimisation algorithm will be integrated in the
loop, helping to determine with certitude the best tendency of
parameter values.

6.2. Application for a bulbous bow

We present an application of our parametric modeller for
deforming a fishing trawler bulbous bow.
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(a) Foil A vs AC45 (b) Foil B vs AC45

(c) Foil C vs AC45 (d) Foil D vs AC45

Figure 15: Shape variations on Pareto fronts

The original trawler was designed without a bulbous bow.
We aim to reduce the total drag of the hull by adding a bulbous
bow.

An initial bulb was designed by a naval architect, then we
propose to vary three parameters to control the shape: the angle
the length and the width at mid-bow of the bulb.

To generate a new CAD from the original CAD model, our
tools takes on average 27.6 seconds to build the skeleton, an av-
erage of 14.1 seconds to perform deformations, and 20 seconds
to reconstruct the surface.

RANS (Reynolds-Averaged NavierStokes equations) simu-
lation being more complex to set-up, the link with the paramet-
ric modeller was not fully automatised.

6.2.1. Simulation with FINETM/Marine
To generate non-conformal, fully hexahedral, unstructured

meshes for complex arbitrary geometries, we use HEXPRESSTM

from Numeca International. The advanced smoothing capabil-
ity provides high-quality boundary layers insertion [36]. The
software HEXPRESSTM creates a closed water-tight triangular-
ized volume, embedding the ship hull, then a body-fitted com-
putational grid is built. One of the meshes used in our simula-
tions is shown in Fig.17.

The grid generation process requires a clean and closed ge-
ometries to provide robust meshes. Thanks to the shape con-
sistency control and the smooth reconstruction of surfaces, the

(a) Foil A

(b) Foil D

Figure 16: Wake of Foils A and D, front view

modeller generates shapes which are well-adapted to these re-
quirements and which allow to produce high-quality meshes for
computations.

During the computation, automatic mesh refinement has been
used. Automatic, adaptive mesh refinement is a technique for
optimising the grid in the simulation, by adapting the grid to the
flow as it develops during the simulation to increase the preci-
sion locally. This is done by locally dividing cells into smaller
cells, or if necessary, by merging small cells back into larger
cells in order to undo earlier refinement. During the computa-
tion, the number of cells increases from 1.9 to approximatively
to 2.2 million cells, for a half hull mesh. Fig.17 shows the mesh
refinement around the hull and the free surface at the end of the
computation.

We use the flow solver ISIS-CFD, available as a part of the
FINETM/Marine computing suite. It is an incompressible, un-
steady Reynolds-averaged Navier-Stokes (RANS) solver [37,
38]. For the turbulent flow, additional transport equations for
the modeled variables are discretized and solved. The two-
equation k-ω SST linear eddy-viscosity model of Menter is
used for turbulence modeling. The solver is based on the finite
volume method to build the spatial discretisation of the trans-
port equations.
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Figure 17: View of the mesh around the hull with free free surface deformation

The unstructured discretisation is face-based, which means that
cells with an arbitrary number of faces are accepted. This makes
the solver ideal for adaptive grid refinement, as it can perform
computations on locally refined grids without any modification.
Free-surface flow is simulated with a volume of fluid approach:
the water surface is captured with a conservation equation for
the volume fraction of water, discretised with specific compres-
sive discretisation schemes, [38]. The vessel’s dynamic trim
and sinkage are resolved during the simulation.

The studied trawler has a waterline length of 22.35 metres
and a displacement of 150 metric tons. Simulations are done at
a speed of 13 knots (6.688m/s). Trim and sinkage are solved,
while the hull speed is imposed according to a 1

4 sinusoidal ac-
celeration. Fluid characteristics are shown in Tab.3.

ρ(kg/m3) µ(Pa.s)
Water 1026.02 0.00122

Air 1.2 1.85 ∗ 10−5

Table 3: Fluid characteristics

6.2.2. Proposed deformations
The skeleton used for the bulbous bow is illustrate in Fig.2(b).
We propose to vary three parameters to control the shape:

the angle, the length, and the width at mid-bow of the bulb.
Fig.18 illustrates variations of bulbous bow shape according to
the parameters.

(a) Length variation (b) Angle variation (c) Width variation

Figure 18: Bulbous bow shape variations

Parameters such as sectional area, vertical position of the

centroid, type of sections (delta, oval, nabla) are also important
parameters for the shape of the bulbous bow. These parameters
are being integrated into the parametric modeller. The current
study focuses on the three parameters (angle, length and width),
and will be extended in a future work with new parameters.

The variations are distributed in a parameter space defined
in Tab.4, according to limits given by architectural criteria.

The initial bulb being quite short, we assumed that shapes
with a lower length than 1.86m will not positively influence
the drag, likewise we restricted the bulb to not be longer than
the extremity of the upper bow. For the angle, we noticed that
when the length of the bow is increased, keeping the original
value will cause the bulb to pierce the free surface, again this
configuration is unwanted.

Length Angle Width
Initial value 1.61m 31.52◦ 0.83m

Min variation +15% −25% −20%
(= 1.86m) (= 23.64◦) (= 0.66m)

Max variation +90% 0% +20%
(= 3.07m) (= 31.52◦) (0.99m)

Table 4: Limits of parameters domain

As for the application to the foil, we use a Latin Hypercube
distribution to sample the parameter space in order to prepare
a relevant dataset for the future use of optimisation algorithms
such as EGO.

6.2.3. Results
We used a Latin Hypercube distribution with 20 values. We

present in Tab.5 the results of the original hull without bulb, the
hull with the initial bulb and the best variation obtained from
the parameters variation. The best variation is not a fully opti-
mised bulbous bow, as no optimisation algorithm has yet been
used for this application. It is planned to use EGO [35] on the
distribution obtained through this study as a future work.

The best drag reduction is obtained with the following pa-
rameter values : Length: +58.70% (= 2.56m) ; Angle: −19.81%
(= 25.28◦) ; Width: +9.99% (= 0.66m). The drag Fx is com-
posed of viscous drag FViscx and pressure drag FPresx com-
ponents.

Drag (Fx) FViscx FPresx % reduction
in N in N in N Fx

Original hull 79910 9311 70599 -(without bulb)
Initial bulb 73740 9887 63852 7.72%

Best variation 71054 10083 60970 11.08%

Table 5: Drag results and variations on the bulbous bow

In other terms, the best variation represents an improvement
of 3.64% from the first bulb design. The bulbous bow reduces
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the pressure drag by reducing the height of the bow wave (see
Fig.19). The viscous drag is increased with the increase of the
wetted surface, but this drag increase is compensated by the de-
crease in the pressure drag.

Trim affects the drag by modifying the flow around the ship
hull. The volume distribution of the bulbous bow is not pre-
served during the shape deformation, but the total displacement
and location of the center of gravity are kept identical for each
design.

Tab.6 shows the evolution of the total trim and sinkage of
the three hulls. The total trim (resp. sinkage) is the sum of the
hydrostatic the dynamic trim (resp. sinkage). The variation of
total trim is relativity small between the different designs. As
trim of the original hull and best variation are similar, the effect
on the drag is mostly produced by the modification of the shape
of the bulbous bow.

Total trim in deg Total sinkage in m
Original hull 1.656 −0.257(without bulb)
Initial bulb 1.495 −0.264

Best variation 1.728 −0.225

Table 6: Trim and sinkage results

Fig.19 illustrates the free surface elevation of the two de-
signs, Initial bulb and Best variation, and Fig.20 show the wave
patterns.

The sampling we performed with the Latin Hypercube is
represented graphically with a response surface method, illus-
trated in Fig.21. Figure 21(a) represents cutting planes of the
design space, showing two main local minima. In Figure 21(b),
we show iso-values of the total drag Fx. We can identify a re-
gion where the objective function is predicted to be smaller than
in the other parts of parameter domain.

Further investigations may lead to finding better drag reduc-
tion results by using an adapted optimisation algorithm based
on Kriging such as EGO to find minima using the model built
from the response surface.

7. Conclusion and future work

This paper presents a method for parametrizing and deform-
ing different type of shapes with a skeleton-based approach.
The methodology we develop reduces the number of degrees of
freedom thanks to observer functions described with B-Splines
and provides a fine control of the geometry in terms of archi-
tectural parameters. Our tool can handle any shape that can be
described with the skeleton-based parametrization.

Our parametric modeller allows to explore the domain of
possible shapes in an efficient way, and allows to determine im-
provements of the design that are architecturally relevant.

As shown by the experiments, we are able to improve the
hydrodynamic performances of a AC45 foil and a bulbous bow,

(a) Free surface elevation for the Initial bulb

(b) Free surface elevation for the Best variation

Figure 19: Free surface elevation

with a few number of parameters.

Further work will focus on handling more complex geome-
tries with the skeleton representation. Section curves with mul-
tiple components, branching curves will be possible.

We will also develop the link with optimisation algorithm
solvers. A fully automatised optimisation loop will be devel-
oped. Sensitivity of the simulation results to parameters will be
taken into account in order to reduce the degrees of freedom as
much as possible.
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