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Abstract

The precise control of geometric models plays an important role in many domains such as Computer Aided geometric Design and
numerical simulation. For shape optimisation in Computational Fluid Dynamics, the choice of control parameters and the way to
deform a shape are critical. In this paper, we describe a skeleton-based representation of shapes adapted for CFD simulation and
automatic shape optimisation. Instead of using the control points of a classical B-spline representation, we control the geometry in
terms of architectural parameters. We assure valid shapes with a strong shape consistency control. Deformations of the geometry
are performed by solving optimisation problems on the skeleton. Finally, a surface reconstruction method is proposed to evaluate
the shape’s performances with CFD solvers. We illustrate the approach on two problems: the foil of an AC45 racing sail boat and
the bulbous bow of a fishing trawler. For each case, we obtained a set of shape deformations and then we evaluated and analysed
the performances of the different shapes with CFD computations.

Keywords: computers in design, hydrodynamics (hull form), design (vessels)

1. Introduction1

Automatic shape optimisation is a growing field of study,2

with applications in various industrial sectors. As the perfor-3

mance of a flow-exposed object can be obtained accurately with4

CFD (Computational Fluid Dynamics), small changes in de-5

sign can be captured and analysed. Based on these performance6

analysis capabilities, optimisation strategies can then be applied7

to deform the geometric model in order to improve the physical8

behaviour and the performances of the model.9

Fig.1 shows the core of an optimization loop, which will10

repeatedly run numerical simulations and deform the geometry11

for an automatic search of an optimal shape.

Figure 1: Automatic shape optimisation loop.

12

Different types of tools need to be linked together to per-13

form such automatic shape optimisation with aerodynamic or14

hydrodynamic criteria: a parametric modeller, a meshing tool,15

a flow solver and an optimisation algorithm [1, 2, 3], see Fig.1.16

Recent technological progresses allow to quasi-automatically17
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run the meshing tool, the CFD solver and the post-processing18

of the relevant results of the computation. Then optimisation19

algorithms such as EGO (Efficient Global optimisation) [4, 5,20

6] demonstrate their efficiency to solve problems with a large21

number of degrees of freedom and where the objective function22

values are difficult and costly to evaluate.23

However, less efforts have been dedicated to the develop-24

ment of efficient parametric modellers. These components de-25

form the object according to the optimisation algorithm output.26

Their role is critical in the way the space of possible shapes is27

explored. To be compatible with the current capabilities of the28

optimisation tools, the parametric modeller has to modify the29

shape of the object using a reduced number of parameters. It30

should provide a precise control of the shape, while allowing to31

generate a wide range of admissible shapes.32

A parametric modeller is intuitively strongly linked to the33

CAD (Computer Aided-Design) software used to build the ge-34

ometry. However, deforming the control points of the standard35

NURBS representations used in CAD to generate automatically36

new shapes is not appropriate. The number of control points to37

represent adequately the shape may be too large to be used in38

shape optimisation. Another obstacle is the complexity of the39

geometric models that can be trimmed, or subdivided into too40

numerous patches that cannot be deformed in a structured way41

or that are just not clean enough for CFD computations.42

43

In this paper, we propose a new approach to shape defor-44

mation for parametric modellers with the purpose of being in-45

tegrated into an automatic shape optimisation loop with a CFD46

solver.47

The methodology presented here has the ability to gener-48
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ate valid shapes from an architectural point of view thanks to a49

novel shape consistency control based on architectural parame-50

ters. We focus on reducing the number of degrees of freedom51

of the deformation problem and on being independent from the52

CAD software used to design the model by representing ob-53

jects with a skeleton. Finally, we propose a methodology to link54

shape representation, shape deformation and numerical simula-55

tion.56

57

The motivation of working with architectural parameters is58

lead by the intuitiveness for an architect to control a shape by59

such expert variables instead of control points, which have no60

physical meaning in computations. We propose a way to control61

shapes efficiently in terms of these architectural parameters, by62

controlling and deforming the generating curve and the section63

curves in terms of these parameters.64

The skeleton deformation is completed by a surface recon-65

struction step, to produce a smooth geometric model that can be66

used by the meshing and simulation tools. The approach allows67

us to be independent of the initial CAD representation and is68

not limited to a specific CAD software.69

70

The generalizable concept of skeleton-based representation71

is well adapted to extend our tool to a large set a shapes e.g.72

hulls, appendages, propellers, blades of wind turbines, airships.73

74

In this paper, we illustrate application of the modeller on75

two applications: the AC45 foil used by racing yachts, and the76

bulbous bow of a trawler ship. For each case, we present the77

chosen hydrodynamic criteria to measure the performances, the78

shape parameter that we will modify and then we propose an79

analysis of the results.80

2. Related work81

In CAD software, the standard description used to describe82

shapes are B-Spline curves and surfaces [7]. A B-Spline curve83

of degree p is defined as :84

C(t) =

n∑
i=0

Bi,p(t)ci, t ∈ [0, 1] (1)

where ci = (xi, yi, zi) are the 3D control points, and Bi,p(t) are85

the B-Spline basis functions.86

For CFD computation, the object geometry is represented87

by a mesh. We present in the following paragraph existing88

methods based on both surface or mesh representations of shapes.89

90

Shape deformation of ships for automatic shape optimisa-91

tion is a relatively recent approach. However, deformation tech-92

niques have been highly developed in other application fields,93

such as 3D animation and movies.94

95

Free Form Deformation FFD and morphing are classical96

methods created for 3D animations purposes, and they have97

been applied to shape optimisation for ships. Close to the FFD98

method, deformation techniques that enclose a shape in a mesh99

cage linked with barycentric coordinates have been proposed100

[8]. Naval applications with morphing can be found in [9, 10]101

and applications with FFD can be found in [11, 12, 13].102

FFD and morphing are usually applied to meshes and not103

to a continuous geometry, thus limiting deformation because104

the meshes can be subject to degeneration. FFD method can105

be very efficient with a small number of degrees of freedom to106

control the whole shape of the object. However, in order to per-107

form local deformation, the only way is to increase the number108

of control points by refining the areas of interest. Moreover,109

FFD does not take into account any architectural parameters110

when deforming an object, leading possibly to non-realistic re-111

sults.112

113

For 3D animation, another common technique for control-114

ling shape are skeleton-based mesh deformation techniques [14].115

We can also find deformation techniques with subdivision sur-116

faces [15], for example by using energy minimization tech-117

niques to find the best position of mesh elements to match the118

user’s manipulations.119

120

For applications with a direct interaction with the physi-121

cal characteristics of the object, physically driven deformation122

methods exist. In this type of methods, the shape represents the123

domain where Partial Differential Equations (PDE) are solved.124

The domain, thus the can be either a mesh or a level set func-125

tion. The results of the PDE are used in a cost function to deter-126

mine parts of the domain needing to be deformed to optimize127

its value. Applications can be found for meshes [16], subdi-128

vision surfaces [17] and on level set function [18]. Generally129

in such applications, solving the PDE is not excessively costly.130

In shipbuilding, methods based on shape gradients focuses on131

minimizing an energy function obtained by solving the Navier-132

Stokes equations [19, 20].133

134

Engineering dedicated CAD software can also provide para-135

metric design features, allowing the user to build parametrized136

models such as CatiaTM or Grasshopper for Rhinoceros 3DTM.137

They have been combined with isogeometric flow solvers for138

ship hull optimization, for instance in [21]. Specific software139

have been developed during the last decades for ship applica-140

tions. One of the most widespread is CAESES from Friend-141

ship SystemTM, allowing the user to create geometries using142

advanced parameters that can be modified easily by hand or143

automatically with a CFD optimisation loop [22]. The shape144

can be controlled either by parameters introduced in the de-145

sign process or by curves or surfaces around the object called146

delta-shift. Points of the object are linked to the delta-shift, and147

follow the deformations of the delta-shift curves or surfaces.148

149

Similarly, a ship dedicated tool Bataos [23] allows to mod-150

ify the shape of sections of the hull by multiplying or adding151

predefined functions to the control points of the B-Spline curve152

describing the section.153

154
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3. Shape parametrization155

Our goal is to develop a generic methodology to deform156

shapes with architectural constraints. To achieve this objective,157

we use a twofold parametrization of the shape that allows us to158

describe a large class of objects in the same way. We base our159

method on a generic skeleton concept to describe the geometry,160

completed by specific architectural parameters according to the161

studied shape.162

3.1. Geometrical parametrization163

Our motivation for using a skeleton based representation of164

the geometry comes from two considerations:165

1. Lines plan are used by naval architects to define the ex-166

ternal shape of the boat, as consistent shapes must be ob-167

tained once deformed.168

2. Classical and efficient techniques in 3D animation are169

based on the deformation of medial axis curves associ-170

ated to a shape [14].171

By combining these two types of representations, we aim at172

applying generic deformation algorithms while controlling the173

architectural consistency.174

We consider the skeleton as a set of curves composed of a175

generating curve and section curves. Each section curve needs176

to be identified on the generating curve: a local coordinate sys-177

tem, with an origin and a rotation, allows us to know its posi-178

tion and orientation. We are going to describe more precisely179

this skeleton based representation in the next section and how180

the architectural parameters are associated to the geometry in181

the following sections.182

3.1.1. Generating curve and section curves183

In our skeleton concept, the generating curve describes the184

general shape of the object, whereas sections describe more pre-185

cisely the outlines of the object around the generating curve,186

similarly to the architect’s line plan.187

The generating curve needs to describe the prominent fea-188

tures of the object. It is defined to be lying on the geometry and189

connects all the section curves. It is not necessarily planar, but190

symmetrical considerations of the object allow to describe it as191

a planar curve in most cases.192

Section curves are computed as the intersection curves be-193

tween the studied object and a family of planes. To each section194

curve, we associate a point on the generating curve, a local co-195

ordinate system, an origin and a rotation which allows to know196

the position and the orientation of the section curve. The cut-197

ting planes are defined to be normal to the tangent vector of the198

generating curve at the corresponding point adjusted with the199

rotation associated to the section.200

201

For practical purposes, we represent the generating curve202

and the section curves as B-splines curves with a given num-203

ber of control points. We further simplify the representation by204

choosing a finite subset of the section curves, associated with a205

finite sampling of the generating curve (See Fig.2).206

This leads to a representation of the geometry in terms of a207

finite set of control points. We denote by cg the control points208

of the generating curve and by ci the control points of the ith209

sampled section curve for i = 1, . . . ,N.210

211

We illustrate in the next paragraphs the method to obtain the212

skeleton on two different models.213

To construct a skeleton-based representation from an initial214

geometric model, we first choose a relevant generating curve215

according to the model. For airfoil based shapes, the trailing216

edges is an ideal choice, as is the keeline for a hull. To ob-217

tain the section curves, we compute the intersection between218

the object and the set of planes defined according to the tan-219

gent of the generating curve. If a non-null rotation is associated220

to the section, the cutting plane is first transformed according221

to this rotation. The planes are sampled along the generating222

curve, following a chord length or a curvature based distribu-223

tion. At this stage, we obtained a first skeleton from the model.224

The number of control points or the quality (continuity, smooth-225

ness, etc.) of the curves depends on the original design.226

Then, we reconstruct new B-Spline curves with a fitting227

process [24] from a point cloud sampled on the current sections228

and the generating curve. We use a small number of control229

points (e.g. ≤ 10) to represent these curves, that are smoothed230

and cleaned. In the applications that we have considered this is231

usually enough to ensure a good level of approximation. The232

average normalized distance between the intersection curves233

and the B-spline section curves is kept under 10−5 m.234

235

In the Fig.2, we illustrate the skeleton we obtained with236

Rhinoceros 3DTM. The original model of the AC45 foil model237

is made of 22164 control points. Our skeleton representation is238

made of only 578 points, 560 = 2 ∗ 28 ∗ 10 points for sections239

and 18 points for the generating curve.240

For the bulbous bow, the total number of control for the241

half-hull is 2574, and 57 are directly linked to the bulbous bow242

part. Our model is made of 185 points, 160 = 16 ∗ 10 points243

for sections and 25 points for the generating curve. We choose244

to define more control points linked to the bulb than the origi-245

nal model, as we look for a precise control of the shape of the246

bulbous bow. Moreover, this representation is temporary as the247

total number of parameter that control the shape is then reduced248

by the architectural parameters and by the observer functions,249

see in sections 3.2 and 3.3.250

3.1.2. Local coordinate systems for the section curves251

Section curves are identified on the generating curve thanks252

to a local coordinate system. Each local coordinate system has253

its origin defined from a point on the generating curve, allowing254

to locate the section in 3D space.255

256

The first axis U is defined into the section plane, its direc-257

tion is imposed by a main feature of the section, as the leading258

edge for an airfoil section, or the maximum height for a bulbous259

bow section.260

The second axis V is represented by the tangent of the generat-261

ing curve Tσ(t) at the origin point of the local coordinate system.262
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(a) Skeleton of a sail
boat’s foil

(b) Skeleton of a bulbous bow

Figure 2: Examples of skeletons

In most cases, the first and second axes are orthogonal by con-263

struction, but some sections representing special features of the264

geometry, as the extremities of the foil, are not defined in the265

plane PT orthogonal to Tσ(t). Thus U and V are not orthogonal266

to each other.267

Let RT be the rotation that transform U such as U ∈ PT . We268

apply the inverse of the rotation RT to Tσ(t) in order to obtain the269

second axis V orthogonal to U. RT is associated to the section.270

Then the third axis W is computed as the cross product of271

the first two axes.272

273

The implicit definition of the second axis V allows the lo-274

cal coordinate system to move when the generating curve is275

modified, computing the new orientation of the section auto-276

matically. The translation and rotation matrices that turns the277

original tangent to the new one is applied to the other axis U278

and W and to the section control points. Therefore modifying279

the generating curve induces affine transformations on the sec-280

tion curves, given by the modification of the local coordinate281

system.282

3.2. Architectural parameters283

Architectural parameters describe the main characteristics284

of the object. They are chosen according to the design practice285

and effects on the object performance. Our goal is to control the286

shape of the studied object through the architectural parameters287

value.288

We associate different parameters to the generating curve289

and the section curves in order to control the whole shape.290

For example, the main characteristics of an L-shaped sail291

boat foil are the length of the two parts and the angle between292

them. Then each airfoil profile section has particular features,293

as chord length, thickness, angle of attack, etc. [25]. For a294

bulbous bow, the main features are the length, the angle, the295

height and thickness [26]. We illustrate those parameters in296

Fig.3 and Fig.4. New types of parameters can be implemented297

easily to enrich the model, such as the sectional areas curve, the298

volume of the bulb, etc.299

(a) Generating curve pa-
rameters

(b) Section parameters

Figure 3: Foil parameters

(a) Generating curve parameters (b) Section pa-
rameters

Figure 4: Bulbous bow parameters

3.3. Observer function300

We call φ, the observer function that computes the set of301

architectural parameters P on a given geometry G: φ : G −→ P.302

These parameters can be real values such as the length of a foil303

or functions of the generating curve parameter, such as the twist304

angle of a profile defined at each point of the generating curve.305

For a given geometry σ ∈ G, the architectural parameters φ(σ)306

can thus belong to an infinite dimensional space since it can307

contain functions which represents values along the generating308

curve.309

In practice, these functions will be represented with a B-310

Spline curves passing through the section parameter values ac-311

cording to their position on the generating curve. The B-Spline312

curves belong to a finite dimensional space with a small num-313

ber of control points. These are the parameters that we will use314

to control the shape.315

316

An illustration is shown in Fig.5, where the observer func-317

tion made of 13 control points represents the chord length dis-318

tribution of 28 section curves.319

From this consideration, managing the B-Spline instead of320

each section parameters represent two main advantages. First,321
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we reduce drastically the number of parameters that control the322

shape of the object and that are used in an optimisation loop.323

Secondly, the modification of a B-Spline curve can ensure a324

smooth distribution of the parameters, preserving the fairness of325

the object. The observer function can be split into a part for the326

generating curve and a part for the section curves, as different327

set of parameters can be defined on each type of curves.328

Figure 5: Distribution of the chord length parameter along the generating curve
of a foil

4. Shape deformation329

This section explains our strategy for computing a smooth330

shape corresponding to given architectural parameters. We de-331

scribed the problem as a non-linear constrained optimisation332

problem that can be applied on the generating curve or the sec-333

tion curves independently.334

We start by presenting the problem, then we propose an optimi-335

sation algorithm to solve it numerically.336

4.1. Problem setting337

Our goal is to find the shape of G that matches a given set338

of architectural parameters in P.339

The observer function φ : G −→ P is defining the param-340

eters associated to a shape. To control the shape of the object341

through the parameters value, we need to find a shape corre-342

sponding to given parameters. In other words, we need to com-343

pute: φ−1 : P −→ G.344

As the shape in G is described by a skeleton made of B-345

Spline curves, we propose a method that computes new values346

of the coordinate of B-Spline curves control points until the new347

skeleton parameters reaches the target ones. The new coordi-348

nates of the B-Spline control points are the solution of a min-349

imisation system that we construct with four terms. The discre-350

tised geometry, represented by a finite number of section curves351

and a generating curve is called ξ. The generating curve param-352

eterized by t ∈ [0, 1] is denoted ξg. Its controlled coefficients are353

cg. The ith sampled section curve corresponding to the param-354

eters ti on ξg is denoted ξi for i = 1, . . . ,N. It is parameterized355

by s ∈ [0, 1] and its control points are ci = (ci,0, . . . , ci,M). In356

the following paragraphs, ξ0 denotes the initial geometry, that357

is the initial generating curve and section curves.358

359

Parameters value360

The first term measures the distance of the current parameters361

values φ(ξ) to the target ones V:362

Eparam = ‖φ(ξ) − V‖2 (2)

As we assume that the observer function can be split into a363

part for the generating curve and a part for the section curves,364

this error term is the sum of an error term for the generating365

curve and error terms for the sections. We denote by Eparam,i =366

‖φi(ξi) − Vi‖
2 and Eparam,g = ‖φg(ξg) − Vg‖

2 the error term cor-367

responding to the ith section curve and the generating curve re-368

spectively.369

370

Shape consistency control371

The second term is introduced to ensure consistency control372

by measuring the distance of the current generating or section373

curve to the original one. The consistency with the initial geom-374

etry is measured after applying a linear transformation which375

allows to match some parameters of the target curve ξ. These376

transformations include a scaling of the initial curve to match377

a given length or a rotation to match a given angle. In addition378

to these basics transformations, we also consider other explicit379

deformations which depend on the parameters V , such as a non-380

linear scaling of the height of a profile. These transformations381

of the initial curve, denoted DV , are explicitly computed from382

the geometry ξi (or ξg). Transforming the initial curve by DV383

helps matching the target parameters. The transformed geome-384

try DV (ξ0
i ) (or DV (ξ0

g)) is used as the starting point of the opti-385

misation algorithm.386

We define:387

Eshape,i = ‖ξi − DV (ξ0
i )‖2 (3)

Similarly, for the generating curve we have Eshape,g = ‖ξg −388

DV (ξ0
g)‖2.389

390

Architectural constraints391

The third term allows taking into account specific constraints F392

for the studied object, usually position or tangency constraints.393

These constraints are defined for each section ξi, i = 1, . . . ,N394

and are not necessarily the same for all sections. For exam-395

ple, an airfoil has a smooth connection between the suction and396

pressure faces thanks to a tangency constraint: the tangent at397

the leading edge has to be orthogonal to the chord vector:398

F1 :
∂ξi

∂s
·
−−−−→
chord = 0.

For a bulbous bow, as we parametrized a half bulbous bow, we399

have to ensure that the sections end at Y = 0 and that the tangent400

at the extremity are preserved:401

F0 : Y(ξi(1)) = 0 F1 :
∂ξi

∂s
(v) −

∂ξ0

∂s
(v) = 0 v ∈ {0, 1}

Regularization402

The last term controls the overall smoothness of the shape by403
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introducing stiffness between successive control points ci, j. We404

add correction terms to control respectively C1 and C2 proper-405

ties of control points.406

E0(c) =
∑

j

‖∆c j‖
2 ∆c j = c j − c j−1

E1(c) =
∑

j

‖∆2c j‖
2 ∆2c j = c j+1 − 2c j + c j−1

Finally, the proposed minimisation system is described as407

follows.408

min
ci

Eparam,i + εEshape,i +
∑

k

λkF2
k (ci) +

1∑
l=0

µl El(ci) (4)

As we decoupled it into a minimization system for each section409

curve ξi and for the generating curve ξg, an optimisation prob-410

lem similar to Eq.4 is solved for the generating curve ξg.411

412

In these formulations, ε is a weight allowing to balance the413

influence of the shape control term. In fact, if this term is too414

high, the system will converge to a solution too close to the415

initial curv, and will have difficulty to respect the target param-416

eters. ε can be seen as a penalty coefficient, but we chose to417

decrease it at each iteration because in our particular case the418

initial guess, the original curve, needs to be degraded to match419

new architectural parameters. The coefficients λi weighing the420

shape constraints and µi weighing the correction matrices are421

both very small, usually around 10−4.422

4.2. Numerical solution423

The problem has a relatively large number of degrees of424

freedom: in most cases we have 2 DOF (Degree Of Freedom)425

per control points (e.g. modification on X and Y direction as426

sections and the generating curve are planar) and usually curves427

have around 10 control points. If the generating curve is not428

planar, then we have 3 DOF per control points.429

The definition of the problem is well adapted to Sequential430

Quadratic Programming (SQP) [27]. SQP algorithm uses New-431

ton’s method to find roots of the gradient. We use finite differ-432

ence to compute the gradients of the system. We start with an433

initial value of ε and the original curve as the starting point of434

the algorithm, then we decrease ε at each iteration and start the435

SQP again with the last computed curve. The algorithm stops436

when the value of the objective function reaches a fixed thresh-437

old.438

439

An illustration of airfoil deformation is shown in Fig.6. Air-440

foil parameters are described in Fig3(b). In this example only441

height is modified: chord length, curvature radius at leading442

edge and tangent slope at trailing edge are kept identical to the443

original airfoil. The final shape is obtain with 16 iterations for444

the suction face and 10 iterations for the pressure face.445

With a four-cores HP Probook-450 with a Intel R© CoreTM
446

i7-4702MQ CPU 2.20GHZ, RAM 8.00 Go, the total time to447

perform this airfoil deformation (pressure and suction faces) is448

12 seconds.449

Figure 6: Deformation of the height of an airfoil section, with fixed curvature
radius at leading edge and tangent slope at trailing edge

5. Surface reconstruction450

The optimisation method outputs deformed sections and gen-451

erating curves, corresponding to the skeleton of a new shape.452

To evaluate the shape’s performances with a CFD solver, we453

first need to reconstruct the 3D surface wrapping the deformed454

skeleton. Moreover, building a new surface allows to obtain a455

cleaned-up model for the meshing tool. Classical techniques456

such as lofting [7] are a relevant choice for objects that can be457

represented with only one surface such as foils.458

459

For more complex objects, multi-patch surfaces are required.460

In such cases, a particular attention has to be given to the con-461

tinuity between them: for our application, patches have to be462

at least C1. We developed a technique based on form finding463

[28] to reconstruct suitable surfaces. We expose this technique464

in the following paragraphs.465

5.1. Problem setting466

Given the section and generating curves of the new deformed467

skeleton, we construct a surface which contains these curves468

and satisfies tangency conditions on the boundaries of the sur-469

face.470

Like for the skeleton deformation, we compute the surface471

by solving an optimization problem, where the control points472

of the surface ci j are the unknowns. To define this optimization473

problem, we discretize the problem by sampling the curves. We474

obtain a point set on which we will wrap the surface. The sur-475

face is computed by fitting techniques [29], taking into account476

smoothing and tangency constraints on the boundary of the sur-477

face to ensure the continuity between adjacent surfaces in the478

geometric model. As explained in [28], the constraints we use479

are quadratic in the control point coordinates ci. We describe480

them in the following paragraphs.481

482

First, we define for each point of the point set a coordinate
mapping:

R3 −→ [0, 1] × [0, 1]
Pl −→ (ul, vl), l = 0, ...,NP

The mapping defines for each point Pl of the point set, the483

parameters ul, vl of the surface σ where σ(ul, vl) = Pl will be484

verified approximately.485

486
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Surface fitting487

This constraint ensure that the surface σ passes thought the488

points Pl:489

E f itting :
∑

l

‖(ul, vl) − Pl‖
2 = 0, l = 0, ...,NP (5)

with σ(u, v) =

n∑
i=0

m∑
j=0

ci jBi(u)B j(v)

Tangency constraint with fix parts of the object490

Let nl be the normal at Pl of the fix surface adjacent to a sur-491

face we want to reconstruct. In the u direction, the continuity492

constraint is expressed by:493

E f ixT : < σu(ul, vl) · nl >
2= 0, l = 0, ...,NP (6)

where σu(u, v) =

n∑
i=0

m∑
j=0

ci jB′i(u)B j(v)

We have similar constraints in the v direction.494

495

Tangency constraint with mobile parts496

At the Nn points Pl on the frontier with other reconstructed sur-497

faces, the values of the normals nk of both surfaces are new498

unknowns satisfying an equality constraints. In the u direction,499

the continuity constraint is expressed by:500 {
EmobileT1 : < σ1 u(u1,l, v1,l) · nk >

2= 0
EmobileT2 : < σ2 u(u2,l, v2,l) · nk >

2= 0 (7)

l = 0, ...,NP, k = 0, ...,Nn (and similarly for the constraints in501

the v direction).502

503

Moreover, the normal vector nk must satisfy:

Emobile normals : < nk · nk >
2= 1, k = 0, ...,Nn (8)

Notice that these constraints require an initial value of σ1, σ2504

and nk.505

506

Regularization507

A regularization energy term can also be introduced for the sur-508

faces, to improve the “fairness” of the surface. It is a quadratic509

function of the unknowns control coefficients ci, j, similar to the510

regularization term for curves used in Section 4.1. We do not511

detail it here (see for instance [28]).512

513

5.2. Numerical solution514

Let us consider x as the vector containing the unknown of
the system, in other words the surfaces control points ci j and
the normals nk at the frontier with two reconstructed surfaces.
The surface is constructed so that the total energy is minimized:

Etotal = E f itting+E f ixT +EmobileT1+EmobileT2+Emobile normals (9)

A dedicated algorithm is used to compute a value of x, for515

which Etotal is less than a threshold. Let us describe it briefly.516

The general form of quadratic constraints that we treat is:

ϕi(x) =
1
2

xT Hix + bT
i x + ci = 0, i = 1, ...,N (10)

where Hi is a symmetric matrix, bi is a vector and ci a constant.517

Some of the constraints that we use are not quadratic e.g. the518

continuity between patches. In such cases we use a geometri-519

cally meaningful linearization, e.g. expressing the constraint in520

a quadratic form using the normal of the surface.521

522

Given the definition of the quadratic constraints in Eq. (10)
and a value x = xn at iteration n, we can linearize ϕi(x) using:

x = xn + δx

ϕi(x) ≈ ϕi(xn) + ∇ϕi(xn)T (x − xn) = 0, i = 1, ...,N

where ∇ϕi(xn) = Hixn + bT
i . We can rewrite this linearization in

the following matrix form:
∇ϕ1(xn)T

...
∇ϕN(xn)T

 · x =


∇ϕ1(xn)T · xn − ϕ1(x)

...
∇ϕN(xn)T · xn − ϕN(x)

 ,
that is, a linear system of the form Hn ·x = rn, whose solution is523

the next point xn+1. We solve this system iteratively until a fix524

point is reached.525

This technique is able to reconstruct efficiently and accu-526

rately surfaces, which contain the skeleton curves and satisfy527

tangency constraints on the boundary.528

529

We illustrate it with the reconstruction of the surface of a530

sail boat hull, in Fig.7. In this example, we choose to recon-531

struct the middle part of the hull with two surfaces. Each sur-532

face has to be smoothly connected to a fix part of the hull (the533

transom or the stem) and to the other middle surface. The algo-534

rithm converges in 5 iterations, and the resulting surfaces satisfy535

the tangency constraints at the three junction curves.536

Figure 7: Patch of surfaces reconstructed of a sail boat hull

6. Applications537

In this section we present two different applications of the538

parametric modeller, one on the foil of an AC45 and one on539

the bulbous bow of a fishing trawler. In both cases, we aim540

to increase a performance criterion with shape variations. The541

parametric modeller is automatized and linked to a flow solver.542

A specific flow solver is used for each application: for the foil,543

we use a potential flow solver and for the bulbous bow we use544

RANS.545

546
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Timing of the code refer to a four-cores HP Probook-450547

with a Intel R© CoreTM i7-4702MQ CPU 2.20GHZ, RAM 8.00548

Go.549

550

6.1. Application on a sail boat’s foil: AC45551

In the recent years, new high-speed boats were developed552

using foils. The purpose of a foil is to lift the hull of the boat553

above water surface. The hull resistance (friction and wave554

making drag) is decreasing, allowing to reach very high speeds.555

556

For sailing yachts, the foils are built as an ”L” shape with557

a vertical part countering the sails forces, and a horizontal part558

supporting the boat weight.559

While sailing, the foil allows the boat to fly as shown in560

Fig.8. However, to maintain this flying state, the stability of the561

foil is a critical aspect for both security and performance.562

Designers have to manage numerous parameters in order to563

produce a foil with a low drag but high stability.564

565

We consider here the AC45 foil. This type of foil is ”one-566

design” meaning that its shape is the same for all AC45 boats.567

For this application, we aim to optimize the shape of the568

AC45 foil in order to decrease its total drag while keeping sta-569

bility and the ease of use as high as possible. The foil per-570

formances are computed with the potential flow solver ARA-571

VANTI.572

573

The AC45 foil is currently used by the Groupama Team574

France sailing team for the 35th America’s Cup. An illustration575

of the sail boat flying thanks to the foil is shown in Fig.8, one576

foil in the water (right) and the other one visible in the retracted577

position (left).578

Figure 8: Illustration of the AC45 on the Groupama Team France sail boat,
Credit: R© Eloi Stichelbaut / Groupama Team France

6.1.1. Simulation with ARAVANTI579

ARAVANTI, the flow code used in the present study is de-580

veloped and commercialized by the company K-Epsilon. ARA-581

VANTI is a coupled fluid-structure solver, with a finite element582

method for solving the structure and multiple different methods583

for the fluids (e.g. vortex line method, particle method, panel584

method, etc.).585

The method used here is a vortex line method with solved586

wake. ARAVANTI is coupled to XFOIL in order to incorporate587

the flow behaviour, laminar or separated.588

589

The foil is represented with a finite number of elements, i.e.590

airfoil sections given by the skeleton. For each element a local591

velocity, a local Reynolds number and a local angle of attack592

is computed. Each element has an associated XFOIL database593

containing the lift and drag of the section for a given range of594

angles of attack (usually between −5◦ and 20◦).595

ARAVANTI use this database to find the lift of each element596

of the foil according to its current local angle of attack. Then the597

lift is converted to a local vorticity. The wake is imposed with598

the computed gradient of vorticity then solved. These steps are599

repeated until convergence thanks to a direct iterative method,600

which is able to find a stationary solution.601

602

In our specific case for AC45 foil study, only the underwa-603

ter part of the foil is simulated. The influence of the free sur-604

face is taken into account with an anti-symmetry plane model.605

This model is a satisfying approximation for high speed. As606

[30] suggests, with a Froude number greater than 1, an infinite607

Froude number free-surface condition can be used. In our case,608

the Froude number is around 5.45.609

610

We illustrate in Fig.9 the wake computed with ARAVANTI611

and the vortex lines. The vortex line is located at 25% of the aft612

of the leading edge along the foil. From the vorticity repartition613

colormap, we see that the parts of the AC45 which generate614

most of the force allowing to lift up the boat are the knee and615

the tip.616

The reference frame is defined as follows: X is in the oppo-617

site direction of the flow, Z is in the vertical direction (oriented618

upwards) and Y is horizontal, perpendicular to X.619

Figure 9: Illustration of the wake and vortex line on the AC45

620

6.1.2. Proposed performances criteria621

We choose to define the foil performances with three criteria622

computed with ARAVANTI.623

8



1. The total drag Fx of the foil in the reference frame. A624

low drag increases the total performance and speed of the625

boat.626

2. A stability criterion, represented by ∂Fz
∂z , where Fz is the627

total force in the z direction of the foil. The aim of this628

criterion is to ensure that the boat will stay at a fixed z629

height thanks to a self adjusting Fz balancing the vertical630

movements of the foil.631

3. A stability and usage criterion, represented by ∂rake
∂V , where632

the rake is the angle of incidence of the foil in the Y ro-633

tation, and V is the boat speed. The rake is a parameter634

that the crew have to adjust while sailing to modify the635

vertical forces Fz. Thus a foil shape where this param-636

eter does not change a lot when the speed is varying is637

valuable.638

Computations are performed with a fixed Fy given as the639

opposite force to balance the force applied by the sails on the640

hull. Fz is also fixed to counter the weight of the hull and be641

able to lift it up. The speed of the hull is first set to 22 knots.642

ARAVANTI solves for the leeway and rake angles of the foil,643

until computed forces converge to the imposed forces.644

645

Fx is computed during the simulation, and we aim to de-646

crease it as much as possible. In the reference frame we used,647

Fx is oriented along the negative x direction. Thus, the sign of648

Fx will be negative, but we can consider the absolute value to649

compare the foil performance.650

651

To compute the second criterion, we estimate ∂Fz
∂z with fi-652

nite differences. We vary the foil displacement by a small ∆z653

and compare the computed Fz. To be stable, the foil has to gen-654

erate a Fz opposed to the direction of the displacement. Thus655

the ratio ∂Fz
∂z has to be negative and as large as possible.656

For example, if the boat is going too high above the water sur-657

face, the foil force Fz has to decrease in order to make the whole658

system lower.659

660

We use the same process for the third criterion, ∂rake
∂V , by661

solving the rake angle for a small speed variation ∆V . Here,662

the rake has to increase as little as possible when the speed in-663

creases. Thus the ratio ∂rake
∂V has to be positive and as small as664

possible.665

666

For both case, we ensure that the finite difference is a satis-667

fying approximation by choosing appropriate steps ∆z and ∆V .668

669

The aim of our study is to reduce the total drag of the AC45670

as much as possible while keeping stability criteria as large as671

possible.672

673

6.1.3. Proposed deformations674

We identified the most relevant parameters that influence a675

foil performances as the tip length, the angle between the shaft676

and the tip and the cant angle, illustrated in Fig.10. Here, we677

consider the cant angle as a shape parameter and not as control678

parameter of sailing.679

680

To generate a new CAD from the original CAD model, our681

tools takes on average 12 seconds to build the skeleton, 5.1 sec-682

ond for the generating curve deformation and 5 seconds for the683

section curve deformation. In our case, we perform only de-684

formation of the generating curve. Moreover there is no need685

to build a new surface around the skeleton, as ARAVANTI does686

not require a continuous surface as an input. Only a set of points687

distributed on the section curves of the skeleton is sufficient.688

The skeleton we used on the AC45 is illustrate in Fig.2(a).689

Figure 10: Foil shape parameters

The variations of the parameters are distributed in a param-690

eter space defined in Tab.1, and illustrated in Fig.11.691

Figure 11: Shape variation of the foil in the paramter space

Tip length Angle Cant
Initial value 1.37m 77.24◦ 2.42◦

Min variation −30% (= 0.96m) −30% (= 54.1◦) −313.7% (= −5.2◦)
Max variation +40% (= 1.92m) +20% (= 92.65◦) +727.2% (= 20◦)

Table 1: Limits of parameters domain

To sample the parameter space, we use a Latin Hypercube692

distribution [31]. Our choice is based on the future use of op-693

timisation algorithms such as EGO, that are often initialized694

with such parameter space values distributions as they are well695

adapted for response surface methods [32].696

697

6.1.4. Results698

We used a Latin Hypercube distribution with 20 points to699

sample the parameter space described in Tab.1. For each set of700
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parameters, we build a new corresponding foil with our para-701

metric modeller and we evaluate automatically the value of the702

3 criteria, Fx; ∂Fz
∂z ; ∂rake

∂V , with ARAVANTI.703

704

As our aim is to reduce the total drag as much as possible705

while keeping stability criterion as high as possible, the optimal706

solution is located on a Pareto front. We represented the Pareto707

fronts of the drag with each stability criterion in Fig.12.708

709

We named the foils on Pareto fronts (A,B,C,D), Foil A be-710

ing the one with the least drag and worst stability, Foil D being711

the one with the must drag, but the best stability and Foils B &712

C being in between. Even if Foil A has the worst stability of the713

Pareto front, it is still better than the original AC45. The other714

criteria vary around the original values.715

Note that the foils A, B, C and D refer to the same shapes716

on both Pareto fronts ∂Fz
∂z vs Fx and ∂rake

∂V vs Fx.717

(a)

(b)

Figure 12: Pareto fronts

We detail the points on the Pareto fronts in Tab.2, with the718

initial AC45 results for comparison. We illustrate the results in719

Fig.13.720

721

# % Tip length % Angle variation % Cant variation Total drag ∂Fz
∂z

∂rake
∂Vvariation variation variation (|Fx|) in N

AC45 0% 0% 0% 1077 -423 1.045(= 1.37m) (= 77.24◦) (= 2.42◦)

A −8.62% +18.58% +650.53% 983 -1495 0.825
(= 1.25m) (= 91.6◦) (= 18.16◦) (+8.68%) (+253.28%) (+21.07%)

B +34.02% +9.74% +416.79% 983 -2863 0.710
(= 1.84m) (= 84.76◦) (= 12.51◦) (+8.68%) (+576.44%) (+32.04%)

C +31.56% −5.96% +591.87% 1122 -6392 0.872
(= 1.80m) (= 72.64◦) (= 16.74◦) (-4.22%) (+1410.41%) (+16.58%)

D +11.88% −29.63% +721.38% 1327 -7240 1.271
(= 1.53m) (= 54.35◦) (= 19.88◦) (-23.22%) (+1610.95%) (-21.64%)

Table 2: Parameters and criteria values of points on both Pareto fronts

(a) Foil A vs AC45 (b) Foil B vs AC45

(c) Foil C vs AC45 (d) Foil D vs AC45

Figure 13: Shape variations on Pareto fronts

The two shape variations Foil A and Foil B are rather dif-722

ferent for the tip length and angle values. We can deduce a link723

between these two parameters that leads to more efficient foils,724

either a short tip with a great angle or a long tip with a small725

angle. Both cases suggest to increase the cant angle.726

The two extreme shapes in the Pareto front ∂Fz
∂z vs Fx, Foil727

A and D, show a very different behaviour of the foil according728

to the parameters, illustrated in Fig.14 where we see the vortic-729

ity distribution along the foil. In the case of Foil A (Fig.14(b))730

the vorticity is uniformly distributed on the shaft, knee and tip.731

Whereas for Foil D (Fig.14(d)), the vorticity in essentially lo-732

cated on the shaft, thus the lifting force is principally generated733

from this part.734

735

To conclude, the behaviours we observed of the different736

foils match expected results, and some tendencies are well known737

by designers.738

A further study will include the sinkage as well as shape739

parameters for the sections. We will also take into account the740

moment of the boat about the x direction Mx. The moment741

has an influence on the predicted performance of the foil, and742

especially the value of cant angle can be affected in order to find743

a configuration that counters Mx.744

Also, an optimisation algorithm will be integrated in the745

loop, helping to determine with certitude the best tendency of746

parameter values.747

748
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(a) Wake of Foil A, perspective view

(b) Wake of Foil A, front view

(c) Wake of Foil D, perspective view

(d) Wake of Foil D, front view

Figure 14: Wake of Foils A and D

6.2. Application for a bulbous bow749

We present an application of our parametric modeller for750

deforming a fishing trawler bulbous bow.751

The original trawler was designed without a bulbous bow.752

We aim to reduce the total drag of the hull by adding a bulbous753

bow.754

755

An initial bulb was designed by a naval architect, then we756

propose to vary three parameters to control the shape: the angle757

the length and the width at mid-bow of the bulb.758

To generate a new CAD from the original CAD model, our759

tools takes on average 27.6 seconds to build the skeleton, an av-760

erage of 14.1 seconds to perform deformations, and 20 seconds761

to reconstruct the surface.762

RANS (Reynolds-Averaged NavierStokes equations) simu-763

lation being more complex to set-up, the link with the paramet-764

ric modeller was not fully automatised.765

766

6.2.1. Simulation with FINETM/Marine767

To generate non-conformal, fully hexahedral, unstructured768

meshes for complex arbitrary geometries, we use HEXPRESSTM
769

from Numeca International. The advanced smoothing capabil-770

ity provides high-quality boundary layers insertion [33]. The771

software HEXPRESSTM creates a closed water-tight triangular-772

ized volume, embedding the ship hull, then a body-fitted com-773

putational grid is built. One of the meshes used in our simula-774

tions is shown in Fig.15.775

776

The grid generation process requires a clean and closed ge-777

ometries to provide robust meshes. Thanks to the shape con-778

sistency control and the smooth reconstruction of surfaces, the779

modeler generates shapes which are well-adapted to these re-780

quirements and which allow to produce high-quality meshes for781

computations.782

783

During the computation, automatic mesh refinement has been784

used. Automatic, adaptive mesh refinement is a technique for785

optimising the grid in the simulation, by adapting the grid to the786

flow as it develops during the simulation to increase the preci-787

sion locally. This is done by locally dividing cells into smaller788

cells, or if necessary, by merging small cells back into larger789

cells in order to undo earlier refinement. During the computa-790

tion, the number of cells increases from 1.9 to approximatively791

to 2.2 million cells, for a half hull mesh. Fig.15(a) shows a792

view of the whole grid and Fig.15(b) shows the mesh refine-793

ment around the hull and the free surface at the end of the com-794

putation.795

796

We use the flow solver ISIS-CFD, available as a part of the797

FINETM/Marine computing suite. It is an incompressible, un-798

steady Reynolds-averaged Navier-Stokes (RANS) solver [34,799

35]. For the turbulent flow, additional transport equations for800

the modeled variables are discretized and solved. The two-801

equation k-ω SST linear eddy-viscosity model of Menter is802

used for turbulence modeling. The solver is based on the finite803
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(a) General view of the mesh and the computational domain

(b) View of the mesh around the hull with free free surface deformation

Figure 15: View of the mesh

volume method to build the spatial discretisation of the trans-804

port equations.805

The unstructured discretisation is face-based, which means that806

cells with an arbitrary number of faces are accepted. This makes807

the solver ideal for adaptive grid refinement, as it can perform808

computations on locally refined grids without any modification.809

Free-surface flow is simulated with a volume of fluid approach:810

the water surface is captured with a conservation equation for811

the volume fraction of water, discretised with specific compres-812

sive discretisation schemes, [35]. The vessel’s dynamic trim813

and sinkage are resolved during the simulation.814

815

The studied trawler has a waterline length of 22.35 metres816

and a displacement of 150 metric tons. Simulations are done at817

a speed of 13 knots (6.688m/s). Trim and sinkage are solved,818

while the hull speed is imposed according to a 1
4 sinusoidal819

ramp law. Fluid characteristics are shown in Tab.3.820

ρ(kg/m3) µ(Pa.s)
Water 1026.02 0.00122

Air 1.2 1.85 ∗ 10−5

Table 3: Fluid characteristics

6.2.2. Proposed deformations821

The skeleton used for the bulbous bow is illustrate in Fig.2(b).822

We propose to vary three parameters to control the shape:823

the angle, the length, and the width at mid-bow of the bulb.824

825

The variations are distributed in a parameter space defined826

in Tab.4, according to limits given by architectural criteria.827

828

The initial bulb being quite short, we assumed that shapes829

with a lower length than 1.86m will not positively influence830

the drag, likewise we restricted the bulb to not be longer than831

the extremity of the upper bow. For the angle, we noticed that832

when the length of the bow is increased, keeping the original833

value will cause the bulb to pierce the free surface, again this834

configuration is unwanted.835

Length Angle Width
Initial value 1.61m 31.52◦ 0.83m
Min variation +15% (= 1.86m) −25% (= 23.64◦) −20% (= 0.66m)
Max variation +90% (= 3.07m) 0% (= 31.52◦) +20% (0.99m)

Table 4: Limits of parameters domain

As for the application to the foil, we use a Latin Hypercube836

distribution to sample the parameter space in order to prepare837

a relevant dataset for the future use of optimisation algorithms838

such as EGO.839

6.2.3. Results840

We used a Latin Hypercube distribution with 20 values. We841

present in Tab.5 the results of the original hull without bulb, the842

hull with the initial bulb and the best variation obtained from843

the parameters variation.844

845

The best drag reduction is reached at the following param-846

eter values : Length: +58.70% (= 2.56m) ; Angle: −19.81%847

(= 25.28◦) ; Width: +9.99% (= 0.66m).848

Drag (Fx) in N % difference
Original hull (without bulb) 79910 -

Initial bulb 73740 7.72%
Best variation 71054 11.08%

Table 5: Drag results and variations on the bulbous bow

In other terms, the best variation represents a save of 3.64%849

from the first bulb design. We illustrate the free surface eleva-850

tion of these two cases in Fig.16.851

852

The sampling we performed with the Latin Hypercube is853

represented graphically with a response surface method, illus-854

trated in Fig.17. Figure 17(a) represents cutting planes of the855

design space, showing two main local minima. In Figure 17(b),856

we show iso-values of the total drag Fx. We can identify a re-857

gion where the objective function is predicted to be smaller than858

in the other parts of parameter domain.859

Further investigations may lead to finding better drag reduc-860

tion results by using an adapted optimisation algorithm based861

on Kriging such as EGO to find minima using the model built862

from the response surface.863
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(a) Free surface elevation for the Initial bulb

(b) Free surface elevation for the Best variation

Figure 16: Free surface elevation

7. Conclusion and future work864

This paper presents a method for parametrizing and deform-865

ing different type of shapes with a skeleton-based approach.866

The methodology we develop reduces the number of degrees of867

freedom thanks to observer functions described with B-Splines868

and provides a fine control of the geometry in terms of archi-869

tectural parameters. Our tool can handle any shape that can be870

described with the skeleton-based parametrization.871

872

Our parametric modeller allows to explore the domain of873

possible shapes in an efficient way, and allows to determine im-874

provements of the design that are architecturally relevant.875

As shown by the experiments, we are able to improve the876

hydrodynamic performances of a AC45 foil and a bulbous bow,877

with a few number of parameters.878

879

Further work will focus on handling more complex geome-880

tries with the skeleton representation. Section curves with mul-881

tiple components, branching curves will be possible.882

883

We will also develop the link with optimisation algorithm884

solvers. A fully automatised optimisation loop will be devel-885

oped. Sensitivity of the simulation results to parameters will be886

taken into account in order to reduce the degrees of freedom as887

much as possible.888

889
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893

(a) Cutting planes of the response surface

(b) Iso values of the total drag Fx in the response surface

Figure 17: View of the response surface
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