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Abstract—A plethora of techniques for cardiac deformation
imaging with 3D ultrasound, typically referred to as 3D speckle
tracking techniques, are available from academia and industry.
Although the benefits of single methods over alternative ones have
been reported in separate publications, the intrinsic differences
in the data and definitions used makes it hard to compare the
relative performance of different solutions. To address this issue,
we have recently proposed a framework to simulate realistic 3D
echocardiographic recordings and used it to generate a common
set of ground-truth data for 3D speckle tracking algorithms,
which was made available online.

The aim of this study was therefore to use the newly developed
database to contrast non-commercial speckle tracking solutions
from research groups with leading expertise in the field. The
five techniques involved cover the most representative families
of existing approaches, namely block-matching, radio-frequency
tracking, optical flow and elastic image registration. The tech-
niques were contrasted in terms of tracking and strain accuracy.
The feasibility of the obtained strain measurements to diagnose
pathology was also tested for ischemia and dyssynchrony.

Index Terms—3D echocardiography, speckle tracking, cardiac
strain, standardization, quality assurance, synthetic datasets.
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I. INTRODUCTION

A. Echocardiographic Strain Imaging

Echocardiographic strain imaging has emerged as a power-
ful tool to quantify local cardiac mechanics non-invasively [1].
Although strain heavily depends on extrinsic conditions (size,
preload, and afterload), it decreases when contractility is af-
fected [2]. Strain is less sensitive to tethering from surrounding
segments than velocity or displacement measurements, and is
therefore preferred for detecting abnormal segments [2].

Clinical feasibility of echocardiographic strain has been
shown in a multitude of studies: strain has been used to
diagnose myocardial ischaemia; it has been proposed as a
tool to predict infarct size after coronary reperfusion; it is
recommended as routine measurement in patients undergoing
chemotherapy; it has been proposed as predictor of risk of
ventricular arrhythmias; it may be applied to guide placement
of the pacing lead in patients receiving cardiac resynchro-
nization therapy [3]. Strain is more sensitive than ejection
fraction as a measure of systolic function [3] and has better
prognostic value [4]. Although strain imaging still remains a
technology under development whose employment is limited
to centers with expertise in deformation imaging, there are
strong ongoing efforts aimed to standardize its use and foster
its adoption in the clinical routine [5].

Recently, real time 3D ultrasound has become technically
feasible. Volumetric imaging solves intrinsic shortcomings of
the standard 2D modality, such as the presence of out-of-
plane motion, problems in the optimal slice selection and
the need of geometrical assumptions. This has motivated
natural attempts from academia and industry to translate the
strain imaging technology to 3D. Yet, the reduced temporal
resolution of today’s 3D equipment and the increased data
size make accurate and time effective estimation of cardiac
strain in 3D still challenging. As such, 3D strain technology
remains so far mainly confined to the research arena [6], [7].

B. 3D Speckle Tracking

To prepare for the clinical translation of the 3D strain tech-
nology, a plethora of solutions have been constantly proposed,
generally referred to as 3D speckle tracking (3D STE). Based
on the way the displacement is computed from the image
sequence, they can be grouped in three main categories.
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One possibility is to extend the original block matching

technique, initially developed for 2D ultrasound [8] to 3D
[9], [10]. Hereto, a set of 3D image patches are tracked
independently from one another over the cardiac cycle. Their
position in the following frame is updated by looking for
the most similar patch over a predefined search window.
Similarity can be defined in several ways, e.g. by normalized
cross correlation [9]. Smoothness of the displacement field is
typically imposed at a post-processing stage by interpolation
and filtering. Block matching represents the conventional im-
plementation on many commercial systems. The same concept,
with appropriate modifications, can be applied to raw radio-
frequency (RF) data (RF tracking). RF tracking is receiving
an increased interest given the proven benefits when assessing
small deformations [11], [12]. Nonetheless, due to the low
temporal resolution of commercial systems and therefore the
associated large deformations between subsequent frames, the
application of RF tracking to 3D echocardiographic clinical
data remains an issue. Although an initialization technique can
be employed in this case, e.g. based on the B-mode [11], the
bias introduced by the latter might overbalance the theoretical
benefits of the RF-based estimation. Thus, it still remains
unclear whether RF tracking has to be preferred to B-mode
tracking for this particular task.

One alternative is to use the optical flow principle, which
assumes conservation of pixel brightness over time [13].
Optical flow is typically coupled with the assumption of
small displacements and either solved locally on independent
image patches [14] or globally by adding a smoothing term
[13]. Large deformations can be coped with by recursively
applying the estimator in a pyramidal refinement scheme [14].
The Demons algorithm represents a computationally efficient
simplification of the optical flow problem [15], [16]. Unlike
block matching, spatial smoothness can be more naturally
included as a constraint term in the optimization problem.

Finally, elastic image registration provides an alternative
framework to compute a smooth dense deformation field.
Hereto, cardiac deformation is parameterized by using its
decomposition into a set of basis functions, typically B-splines
[17], [18]. Several kinds of constraints can be easily included
as additive penalty terms to the global cost function, such as
smoothness [18] and incompressibility [19], [20].

C. Motivation

With the number of available solutions rapidly growing,
assessing and comparing their performance in a reliable and
reproducible way becomes of primary importance. For what
concerns cardiac deformation imaging, magnetic resonance
imaging (MRI) is commonly considered as the “gold standard”
[6]. Nonetheless, comparison against a different modality
introduces additional difficulties to the benchmarking process,
such as the need to co-register the two datasets in space and
time. One alternative is to make use of physical phantoms
or animal preparations with sonomicrometry as a reference
measurement [6]. As a drawback, all aforementioned setups
are costly, complex to implement and scarcely reproducible
between different research groups, thus making the reported

(a) synthetic dataset in [21] (b) synthetic dataset in this study

Fig. 1. Comparison between the synthetic datasets used in [21] and the present
study.

performance hard to compare. In this regard, the use of
synthetic datasets represents a more feasible alternative for
a preliminary evaluation [6], [17], [21] since i) it is a simple
setup requiring only a personal computer and ii) testing data
can be shared electronically. Nonetheless, the poor realism of
the current generation of synthetic datasets represents a limited
application scope for the evaluation studies reported so far (cf.
Fig. 1(a)).

In this context, we have been actively investing in the
development of more realistic synthetic datasets for bench-
marking 3D STE algorithms. In particular, our efforts went
on combining an accurate cardiac motion model [21] with a
realistic ultrasound speckle texture [22]. As such, in our most
recent contribution [23], state-of-the-art solutions in the fields
of electromechanical modeling (E/M) [24] and ultrasound
simulation [25] were integrated in an original framework that
exploits a real ultrasound recording to learn and simulate
realistic speckle textures. The obtained synthetic sequences
are visually realistic, i.e. fairly reproduce all major elements
that make motion tracking challenging, yet fully synthetic, in
particular the reference values of deformation and strain are
available voxelwise from the electromechanical model. The
pipeline was used to generate an online testing set for 3D
STE techniques1. The aim of this study was therefore to use
this pipeline to contrast the performance of non-commercial
3D STE solutions.

D. Statement of the Contribution

We asked groups with leading expertise in the field of
3D US deformation imaging to contribute to this compar-
ison study. Our principal effort was ensuring a maximal
methodological diversity of the techniques represented. For
practical reasons, the call was restricted to groups within the
pre-existing network of our laboratory. Ultimately, five tech-
niques from the following centers were contrasted: University
of Leuven, University of Minho, Philips Research, Warsaw
University of Technology and University of Washington. At
least one technique from each of the methodological families
previously identified was present, namely: one technique based
on elastic registration, one implementation of RF tracking, one
implementation of B-mode block matching and two techniques
based on optical flow. The comparison was focused on both
displacement and strain accuracy.

Of note, with respect to the comparison study between 3D
STE solutions recently reported in [21], the work presented
here has substantial differences:

1 https://team.inria.fr/asclepios/data/straus/
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• The synthetic dataset employed here is considerably more
realistic (hence representative of a real clinical setting)
than the one in [21], both in terms of image properties
and motion model (cf. Fig. 1). Most importantly, the
new sequences embed the major elements making wall
motion estimation challenging, such as i) the motion
of surrounding structures like papillary muscles, valves
and trabeculations which may hinder/bias the tracking
accuracy near endo- and epicardium [26] and ii) the
spatially variant contrast-to-noise-ratio along the the my-
ocardial wall [19]. Moreover, the E/M simulations were
improved as compared to [21] in order to obtain more
representative motion patterns, with particular attention to
ejection fraction and global longitudinal, circumferential
and radial strain values [23];

• This study offers a more comprehensive and representa-
tive view of the state of the research in the field of 3D
US cardiac deformation imaging. Specifically, in [21],
all considered techniques were based on elastic regis-
tration or optical flow. Differently, we aimed to include
at least one technique from each of the main families
that cluster the current research scenario. In particular,
including block matching is especially relevant given
that several commercial implementations of this method
are available [6], [27], [28]. Moreover, as mentioned,
although RF tracking is gaining popularity, a thorough
comparison against B-mode based techniques is currently
still missing.

A very preliminary version of this report was presented in
[29]. Nonetheless i) elastic registration and block matching
were considered only, ii) the implementations of the two
algorithms were different (i.e. less optimized) from the ones
considered here, iii) 5 synthetic sequences were considered
only and iv) the performance analysis was less thorough.
The paper proceeds as follows. The setup of the comparison
study is described in Sect. II. Sect. III briefly describes
the considered algorithms, while the results are presented in
Sect. IV. Discussion and limitations of the study are presented
in Sect. V and Sect. VI, respectively. Conclusions are left to
Sect. VII.

II. SETUP OF THE COMPARISON STUDY

A. Synthetic Data

The synthetic evaluation database was generated with the
pipeline described in [23] and is available online at1. The
synthetic sequences appear similar to real ultrasound record-
ings, yet, the myocardial motion is fully controlled by the E/M
model in [24]. By varying the parameters of the E/M model,
we generated 8 sequences corresponding to different patho-
physiological conditions, namely: one healthy sequence; four
ischemic cases, corresponding to occlusion of the proximal
or distal parts of the left anterior descending coronary artery
(LADprox and LADdist, respectively), of the left circumflex
coronary artery (LCX) and of the right coronary artery (RCA);
three simulations of dilated cardiomiopathy, of which one
with a synchronous activation pattern (sync) and two dyssyn-
chronous due to left branch bundle block (LBBBsmall and

(a) (b)

Fig. 2. (a) AHA segments. (b) In black the tetrahedral used by the E/M
simulator, in colors the anatomical mesh used to compute displacement and
strain indices. Colors denote different AHA segments.

LBBBlarge), characterized by a progressively longer delay in
the activation of septum and lateral wall.

Each E/M simulation returned a time series of tetrahedral
meshes defining the instantaneous position of the myocardium
over the full simulated cycle. Indices of cardiac deforma-
tion/strain are more conveniently expressed in anatomical
coordinates, namely radial (R), longitudinal (L) and circumfer-
ential (C) [6]. The anatomical coordinates were therefore used
to re-sample the original tetrahedral meshes regularly along
L (30 points), C (25 points) and R (3 points). All details are
provided in [30]. The final result of the re-meshing operation is
illustrated in Fig. 2(b). For regional analysis, the LV was split
into 17 segments according to the standard AHA subdivision
(cf. Fig. 2). The re-sampled meshes were used as ground-truth
in the comparison study, as explained in Sect. II-C, therefore
being referred to as “ground truth meshes”.

The simulated ultrasound volumes were obtained by apply-
ing the fast US simulator COLE [25]. Parameters were tuned
so to match as close as possible to the current state-of-the-art
3D ultrasound systems in clinical practice. In particular, we
implemented a phased array with center frequency of 3.3MHz
with a relative bandwidth at -6dB of 65%. Sampling frequency
was 50MHz. The US pyramid consisted of 107 beams in
azimuth and 80 beams in elevation direction over an angle of
76 degrees in both directions. As such, the size of RF volumes
was 107×13637×80 voxels. After scan conversion, the size
of B-mode volumes was 224×176×208 voxels, for a voxel
size of 0.7×0.9×0.6 mm3. For all datasets, time resolution
was 34 frames/s. For a dynamic visualization of the synthetic
recordings, we refer to our project’s web page1 and to the
interactive web interface2.

B. Processing done by the participants

For each of the 8 simulations the following was available:

• the raw RF images before envelope detection and scan
conversion;

• the B-mode voxel images, i.e. after envelope detection,
log compression and scan conversion;

• the “ground truth meshes”, i.e. after the re-sampling of
Fig. 2(b);

Additionally, a set of MATLAB scripts to compute tracking
and strain errors, hence to be used for parameters tuning, were
also distributed. The dataset was split between a training and a

2https://desk.creatis.insa-lyon.fr/straus/
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TABLE I
CONSIDERED ALGORITHMS. REFER TO THE TEXT FOR A DETAILED DESCRIPTION.

Algorithm Family Image Data
Processed

Global/
Local

Cost function Spatial
Regularization

Temporal
Regularization

AFFD [20] Elastic Image
Registration

B-mode Global Sum of Squared
Differences

Bending +
Incompressibility

Forward + backward
tracking

AAOF Optical flow B-mode Local Brightness
constancy

Local Affine
model fitting

Forward + backward
tracking

S-Demons
[16]

Optical flow B-mode Global,
sparse

Sum of Squared
Differences

Gaussian Smoothing Forward + backward
tracking

BM Block Matching B-mode Local Normalized cross
correlation

None Pointwise Gaussian
smoothing

RFBM Block Matching RF Local Complex
Normalized
cross correlation

local NCC averaging
+ spatial smoothing

None

testing set. The training set consisted of the full data package
(i.e. RF data, B-mode images and ground truth meshes) for
the LADprox and LBBBlarge sequences. For the remaining
sequences (i.e. the testing set) we provided all simulated
ultrasound data (i.e. RF data and B-mode images) plus the
ground truth mesh for the first frame only. The remaining
ground truth meshes were kept by the organizers3.

Participants ran their specific tracking solution on each
simulated dataset and used it to propagate the nodes of the
first ground truth mesh over the full cycle. Performance was
then assessed by comparing the ground truth positions against
the tracking result, as explained in Sect. II-C.

C. Performance Assessment

1) Tracking Accuracy: Tracking error vector was defined as
e
i(k) = x

i(k)−x̂
i(k), with x

i(k) representing the 3D position
of the i-th node of the ground-truth mesh at frame k and
x̂
i(k) the position of the same node when using the tracking

result. Besides error amplitude, we also evaluated separately
its projections along the R, L and C anatomical directions.

2) Strain Accuracy: Radial, longitudinal and circumfer-
ential strains (ϵR, ϵL and ϵC , respectively) were measured
by the relative change in distance between two neighboring
mesh nodes. Namely, ϵn(k) = ℓn(k)/ℓn(0) − 1 with ℓn(k)
the distance between two consecutive nodes along direction
n ∈ {R,L,C} at time k. Segmental strain values were ob-
tained by averaging point measurements per cardiac segment.

For the ischemic dataset, we focused the error analysis to
end-systolic (ES) strain, given its clinical interest as a “techno-
marker” for ischemic heart disease [6]. Hereto, we measured
the Pearsons’s correlation coefficient ρ and the slope α of
the regression line, as well as the bias µ and the limits of
agreement (LOA=1.96σ). Moreover, we tested the accuracy of
the computed ES strain values in detecting ischemia by mea-
suring the area under the curve (AUC) of the receiver operating
characteristic (ROC) curves. The ROC curves were computed

3Note that public release of the ground truth data on our web-page was
postponed until the completion of this study.

from a progressive threshold by assuming ES (absolute) strain
values below the threshold as indicative of ischemia. Segmen-
tal strain values (i.e. point estimates averaged per segment)
were considered in the analysis.

For the dyssynchronous dataset, the analysis of
the full strain profiles was considered. Accuracy in
matching full strain profiles was therefore measured
by the relative error

∑
t
|estimated strain(t)−

reference strain(t)|/
∑

t
|reference strain(t)|. The error

measurement was restricted to the septum (segments # 8 and
9) and lateral wall (segments # 11 and 12), cf. Fig. 2(a).
In particular, time-to-peak measurements were extracted as
clinical markers to quantify a contraction delay. Time-to-
peak values were computed using a continuous B-spline
interpolation of the strain profiles. As such, non-integer
values were allowed. For all the experiments, only the mesh
nodes falling inside the field of view were considered.

3) Statistical Tests: For each reported ρ value, Fisher’s
transformation was used to test the hypothesis of no corre-
lation. The slope of the regression line was assessed with a
F-test. Strain bias µ was instead evaluated with a t-test. The
statistical significance of the reported AUC values (i.e. of AUC
> 0.5) was tested with the non-parametric technique described
in [31]. We also tested the statistical significance of differences
between all possible pairs of algorithms. Hereto, the Fisher’s
transformation was used for correlation coefficients, a paired
t-test was employed for regression slopes and biases while
limits of agreement were compared with an F-test. All values
were considered statistically significant when p < 0.05.

III. CONSIDERED ALGORITHMS

The main features of the algorithms considered in the
comparison are summarized in Table I. A detailed description
follows.

A. Anatomical Free Form Deformation (AFFD)

The group from KU Leuven contributed with an anatomical
free-form deformation technique (AFFD). In this model, the
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displacement field is represented using a tensor-product B-
spline and the control points’ grid is locally oriented along
the cardiac R, L and C directions of the endocardial surface.
The nodes’s weights are optimized with a limited memory
Broyden-Fletcher-Goldfarb-Shanno optimizer with bound con-
straints (L-BFGS-B). The initial 3D AFFD technique was
presented by Heyde et al. in [32], and uses an energy consist-
ing of a sum-of-squared difference image metric representing
the data term and a bending energy to enforce smoothness.
The implementation used in this comparison evolves from the
initial one by further including a penalty for deformations de-
viating from myocardial volume conservation [20]. The hyper
parameters balancing bending energy and volume conservation
were optimized in the training phase.

The AFFD technique and all intermediate steps leading to it
have been thoroughly evaluated in-silico, in-vitro and in-vivo
(cf. [20] and the references therein). In particular, AFFD was
the technique of choice for strain imaging in a recent open
challenge [21].

B. Anatomical Affine Optical Flow (AAOF)

The group from the University of Minho contributed with a
localized anatomically-constrained affine optical flow (AAOF)
algorithm. Their algorithm is the 3D extension of the one
proposed in Queirós et al. [33] for fast left ventricle tracking
in cine cardiac MRI datasets. The principle is to estimate the
motion between adjacent cardiac phases using optical flow.
In order to reduce its computational burden and avoid the
influence of surrounding tissues, the motion estimation step
is anatomically-constrained by only considering a region of
interest around the tracked surface. Subsequently, the esti-
mated motion is integrated into a local affine motion model, in
which each surface point considers the motion of its neighbor
points and their relative distances. By including an iterative
displacement refinement scheme, the algorithm is able to
accurately capture large displacements. In the present case, the
reference mesh is initially divided into three surfaces, namely
endo-, mid- and epicardial surfaces. Each surface is then
propagated independently by estimating its motion throughout
the cardiac sequence.

The AAOF algorithm extends the recent B-spline Explicit
Active Surfaces (BEAS) framework for LV endocardial track-
ing [34]. BEAS was evaluated clinically and showed com-
petitive against non-commercial solutions (cf. [34] and the
references therein). Moreover, it was among the most accurate
techniques in a recent open challenge on 3D LV segmentation
[35]. Although this is the first application of AAOF to 3D US,
its global counterpart for cine MRI was evaluated extensively
[36].

C. Sparse Demons (S-Demons)

Philips contributed with a sparse implementation of the
Demons algorithm [15], called Sparse-Demons (S-Demons),
which was previously presented in Somphone et al. [16].
Briefly, the idea is to find a dense, non-rigid displacement
field by minimizing an energy functional defined only on a
finite number of points of interest. A fluid-like regularization

of the displacement is adopted, which can be approximated by
Gaussian filtering [16]. The crucial parameters to be adjusted
are the width of the Gaussian kernel σ (i.e. the larger sigma,
the smoother the estimated displacement field) and the number
and location of the points of interest. For more details we refer
to [16].

S-Demons was previously evaluated on synthetic 3D record-
ings in [16] and found competitive with the best performing
algorithms considered in [21].

D. B-mode Block Matching (BM)

The group from the Warsaw University of Technology con-
tributed with an implementation of B-mode block matching.
Three dimensional normalized cross correlation (NCC) was
used as a similarity function. Prior to localizing its maximum,
NCC was interpolated in 3D by using cubic B-splines in order
to achieve a resolution of 1/16 of a voxel. The search range
for each block was set to cover a maximum physiological
velocity of 12 cm/s. Kernel size was chosen experimentally
by assessing the average and median displacement errors on
the training set. As such, final estimations were carried out
using a kernel of 10.7×13.6×9.3 mm (i.e. 16×16×16 voxels).
All the mesh nodes were tracked through the whole deforma-
tion cycle. The method implemented spatial smoothing based
on gaussian filtering. This smoothing was executed at each
frame, before estimating positions of mesh nodes at next time
step. Temporal smoothing for each point trajectory was also
implemented. This was carried out after the whole cycle of
displacements was estimated. Assessment of the method’s
performance showed that, due to the sparsity of tracking
points, spatial smoothing caused estimation errors to increase.
For this reason spatial smoothing was omitted. For temporal
smoothing, Gaussian filter with size of 7 time points was
chosen.

E. RF block matching (RFBM)

The group from the University of Washington contributed
with a RF block matching implementation based on Chen
et al. [12]. Block matching was applied to RF data in po-
lar coordinates, where the axial dimension was sub-sampled
with a factor 4 for computational efficiency. Block size was
21×7×3 voxels and computed based on the expected speckle
size, as measured by the average width of the auto-correlation
function of the RF signal. The search region was 51×3×3
voxels and chosen based on the average displacement mea-
sured from the ground truth. Sub-pixel axial displacements
were computed with the phase zero-crossing method and were
totally unconstrained based on any model assumptions of ex-
pected displacement/strain values. A second-order polynomial
approximation was employed in the lateral and elevational
directions. A tracking quality check was performed based on
comparing the result of incremental (i.e. between time t − 1
and t) and direct (i.e. between time 0 and t) tracking. Motion
patterns of adjacent speckles in the myocardium have innate
coherence due to their physical proximity. Spatial coherence
was achieved by averaging the similarity (NCC) maps of
adjacent voxels. Moreover, each voxel participates in multiple
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TABLE II
GLOBAL TRACKING ERROR IN MM [5-TH PERCENTILE, MEDIAN, 95-TH

PERCENTILE]

Algorithm Full database Normal Geometry Dilated Geometry

AAOF [0.09; 0.38; 1.51] [0.09; 0.38; 1.35] [0.08; 0.39; 1.88]

AFFD [0.14; 0.47; 1.28] [0.14; 0.48; 1.30] [0.13; 0.44; 1.23]

S-Demons [0.14; 0.49; 1.41] [0.15; 0.49; 1.41] [0.13; 0.50; 1.41]

BM [0.26; 0.90; 2.46] [0.26; 0.86; 2.11] [0.25; 0.99; 3.19]

RFBM [0.09; 0.72; 4.33] [0.10; 0.72; 4.40] [0.07; 0.73; 4.23]
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Fig. 3. Box-plot of tracking error along the 3 anatomical directions. The three
markers represents 5-th, 50-th and 95-th percentile, respectively.

blocks had several estimates, which were further averaged to
reject non-consistent estimates. The algorithm was used to
find a dense displacement field on the whole volume. The
mesh nodes were then propagated by linearly interpolating the
displacement field.

RFBM was previously evaluated in-vitro on cardiac phan-
toms and in-vivo on open chest animal preparations (cf. [37]
and the references therein).

IV. RESULTS

For synthesis, we provide in this report only a, yet represen-
tative, subset of the obtained results. A supporting document
is made available containing the full set of error plots. For
reproducibility, the ground-truth meshes and the associated
tracking result from all participants are made available at our
project web-page1, along with the MATLAB scripts used to
compute tracking and strain errors. Of note, all algorithms
(with a slight difference for RFBM, as mentioned in Sect. III)
performed the tracking by accumulating incremental estimates
between couples of consecutive frames. Moreover, in order to
minimize error accumulation, AFFD, S-Demons and AAOF
implemented a bi-directional tracking strategy combining for-
ward and backward estimates (cf. Table I).

A. Tracking Accuracy

1) Global analysis: Global tracking errors (i.e. inclusive
of all nodes, time instants and sequences) are summarized in
Table II. To evaluate the influence of the geometry on the

tracking quality, error statistics are also reported separately for
sequences obtained from a healthy geometry (i.e. the healthy
simulation and the four ischemic ones) and sequences obtained
from a dilated geometry. AAOF returned the smallest mean
error on both ischemic and dilated datasets. AFFD and S-
Demons returned slightly larger average errors while error
dispersion was instead smaller as compared to AAOF. BM and
RFBM had a larger error bias and wider dispersion ranges as
compared to non-block matching solutions. As a reference, the
average ground-truth displacement at end-of-systole was 4.64
mm.

Fig. 3(b) presents the 3 anatomical components of the
tracking error. For all algorithms, radial errors had the largest
variance and a slight positive bias (i.e. tendency to underesti-
mate radial motion). Among non-block matching solutions, the
relative loss in accuracy in the radial direction was particularly
relevant for AAOF. Longitudinal and circumferential errors
did not exhibit clear biases, except for RFBM, which tended
to underestimate longitudinal displacements. Such longitudinal
errors are explained by the difficulty of RF tracking in coping
with large motions. As an example, note that, with the US
parameters employed, a displacement of 1 mm leads to a shift
of ∼ 65 RF samples.

2) Regional analysis: Error dependency on the myocardial
layer was analyzed first (cf. Fig. 4(a)). All algorithms returned
more accurate estimates at the mid-myocardial level, i.e.

where boundary effects are less important. Moreover, errors
were generally higher on the epicardial surface. This is a
consequence of the poor delineation of the epicardial border
typical of cardiac ultrasound [38]. As expected, error increase
was the highest for the solutions which did not apply an
explicit constraint in the radial direction (AAOF and RFBM in
particular). This effect was particularly important for RFBM,
as also illustrated by the bull’s eye plot in Fig. 5.

Error variations per left ventricular level (i.e. basal vs. mid
vs. apical segments) and per functional region (i.e. normal
vs. ischemic segments) were also analyzed, cf. Fig. 4(b,
c). The first experiment showed a progressive error increase
when moving from apex to base, cf. Fig. 4(b). This is
partly explained by the lower image quality when moving
away from the probe and by the progressively larger absolute
displacements in the apex to base direction. This effect was
particularly important for RFBM. Again, this can be due to the
difficulty in coping with large displacements. Errors were in
contrast more uniformly distributed with respect to variations
in the mechanical function of the segments. Yet, except for
S-Demons and AFFD, there was a tendency in returning more
accurate tracking on normal segments as compared to ischemic
ones, Fig. 4(c). This might be a consequence of the tuning
strategy chosen. In particular, tuning with respect to global
error will naturally privilege normal regions due to their larger
relative extent.

Fig. 6 displays the tracking error over time for the LADprox
training sequence. The vertical blue lines denote aortic valve
opening, aortic valve closure and opening of the mitral valve,
respectively. All algorithms made the highest errors at ES, i.e.

when the displacement is the largest. Techniques combining
forward and backward tracking (AFFD, AAOF and S-Demons)
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Fig. 4. Box-plots of tracking error per trans-mural layer (a), left ventricular level (b) per functional region (c). The main bar represents the median error
while the black segment denotes the mean absolute deviation.
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blue lines denote aortic valve opening, aortic valve closure and opening of the mitral valve, respectively. For all techniques, the population of outliers was
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Fig. 5. Bull’s eye plot of tracking error for the RFBM sequence evaluated at
ES on the LADprox sequence independently on the 3 trans-mural layers.

effectively reduced error accumulation as compared to BM and
RFBM, as evidenced by the lower end-diastolic error values. In
this sense, AFFD had a slightly higher error drift at the end
of the cardiac cycle as compared to AAOF and S-Demons.
In general, median errors had comparable behavior and were
mostly below 1 mm. Among the considered solutions, RFBM
suffered the most from the presence of outliers, as shown by
the larger error dispersion.

B. Strain Accuracy

1) Detection of Ischemia: The obtained numerical values of
correlation coefficient ρ, regression slope α, bias µ and limits
of agreement LOA for ES strain are summarized in Table III.
For each metric, the best values are denoted in bold font. In
these experiments, the 4 ischemic sequences were considered
only.

AFFD was the only algorithm to preserve high accuracy
irrespective of the strain direction. In particular, it was the
only technique for which the bias was never statistically
significant. Moreover, it had the highest ρ for C- and R-strain
and the lowest µ and LOA for R-strain. Remaining algorithms
had instead problems in retrieving R-strain accurately. AAOF
returned highly accurate estimates of L-strain, with the highest
ρ, the narrowest LOA and a non-significant bias. Compared to
AFFD and S-Demons, AAOF had the slight tendency to under-
estimate C-strain, as shown by the lower α. Moreover, AAOF
returned a statistically significant positive bias for R-strain.
S-Demons had high accuracy for L- (highest α) and C-strain
(highest ρ and narrowest LOA), while it had the tendency
to under-estimate R-strain substantially, as explained by the
statistically significant negative µ and the low α.

Algorithms based on block-matching were in general less
accurate than algorithms based on elastic registration or op-
tical flow. In particular, they mainly suffered from the noisy
displacement estimates, which explain the larger LOA. The
gap in performance was the smallest for BM, in particular
for L- and C-strain. Yet, in both cases, BM had the tendency
to underestimate strain values as shown by the relatively low
α. RFBM suffered the most from the presence of outliers as
shown by the larger LOA.

For each accuracy metric and each possible pair of algo-
rithms, we tested the statistical significance of the difference
between the values obtained, as explained in Sect. II-C. The
results of the test have been left out of this manuscript
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TABLE III
CORRELATION COEFFICIENT ρ, SLOPE OF THE REGRESSION LINE α, BIAS µ, LIMITS OF AGREEMENT LOA, AND AREA UNDER THE ROC CURVE (AUC)
FOR THE 5 ALGORITHMS. AN ASTERISK DENOTES STATISTICAL SIGNIFICANCE OF THE REPORTED MEASUREMENTS, NAMELY OF ρ > 0, α > 0, µ > 0

AND AUC > 0.5. BEST VALUES ARE REPORTED IN BOLD FONT. VALUES WERE MEASURED ON THE ISCHEMIC DATASETS ONLY.

ϵL ϵC ϵR

ρ α µ LOA AUC ρ α µ LOA AUC ρ α µ LOA AUC

AFFD 0.84∗ 0.89∗ -0.25 3.95 0.90∗ 0.98∗ 0.88∗ 0.16 4.84 0.99∗ 0.93∗ 0.83∗ -0.06 10.00 0.98∗

S-Demons 0.88∗ 0.96∗ 0.42 3.65 0.93∗ 0.98∗ 0.89∗ 0.43 4.52 0.99∗ 0.83∗ 0.62∗ -12.58∗ 15.55 0.95∗

AAOF 0.95∗ 0.88∗ -0.35 2.20 0.96∗ 0.98∗ 0.81∗ -0.09 5.63 0.99∗ 0.83∗ 0.92∗ 9.25∗ 17.21 0.96∗

BM 0.75∗ 0.61∗ -0.06 4.53 0.89∗ 0.89∗ 0.59∗ 1.71 11.14 0.97∗ 0.47∗ 0.22∗ -12.64∗ 24.25 0.81∗

RFBM 0.36 1.43∗ 14.98 25.34 0.67 0.87∗ 0.98∗ 8.22∗ 11.95 0.95∗ 0.35∗ 0.46∗ -5.04 36.36 0.80∗
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Fig. 7. Correlation plot for end-systolic circumferential strain. Empty and full markers denote healthy and ischemic segments respectively. The dashed line
in represents y = x (i.e. perfect correlation), while the regression line, whose equation is reported inside the plot, is displayed in red. Note the different error
scale used in both plots for RFBM.

for the sake of brevity and are provided in the supporting
document. The main points arising from the statistical test are
the following.

For what concerns non block-matching algorithms (AFFD,
AAOF and S-Demons), differences in L- and C-strain were, for
most of the metrics, not statistically significant. The accuracy
of AFFD in R-strain was statistically higher with respect to any
competing solution. For what concerns block-matching solu-
tions (BM and RFBM), BM accuracy was statistically higher
with respect to all metrics for L- and C-strain. Differences in
R-strain were instead not significant for most metrics.

When comparing the two groups of algorithms against each
other, BM had non-significant differences to at least one of
the non block-matching based solutions in L-strain (ρ, α, µ
and LOA, i.e. all assessed metrics), C-strain (ρ, α, µ and
LOA) and R-strain (µ). Instead, error differences between non-
block-matching algorithms and RFBM were in most cases
significant.

Correlation plots for ES C-strain are reported in Fig. 7,
where empty and full markers denote healthy and ischemic
segments, respectively. The plots in Fig. 7 allow to make
several additional considerations. At first, BM and, to a lesser
extent, AAOF seemed to be biased towards healthy segments.
The overall lower α seemed therefore mainly explained by
the tendency to underestimate strain in ischemic regions. This
trend was instead less apparent for L- and R-strain. The plots
also show that C-strain errors of RFBM were mainly localized
in few segments, while L- and R-strain errors were instead
more uniformly distributed.

The bull’s eye plots in Fig. 9 allow to gain further insights
on the algorithms’ performance. In particular, they correspond

to C-strain estimates on the normal and LCX sequences.
Ischemic segments, as available from the ground truth, are
denoted by the bold black contours. To reduce boundary
effects, strain was measured at the mid-myocardial layer. All
algorithms returned strain maps qualitatively similar to the
ground truth and ischemic segments were identified by lower
(absolute) strain values. The plots confirm the tendency of BM
and, to a lesser extent, AAOF to return low C-strain estimates.
The bull’s eyes also show that regularized solutions tended to
smear the interface between healthy and ischemic regions out.
Differently, block-matching algorithms returned strain maps
that were overall more noisy but also more sensitive to rapid
strain variations. This is particularly evident for RFBM.

To evaluate more quantitatively the capability to discrimi-
nate ischemic from normal segments, we measured, for each
algorithm, the area (AUC) under the ROC curve. The obtained
results are reported in Table III, while the ROC curves are
plotted in Fig. 8. The AUC values measured on the ground-
truth were AUC = 0.98 for R-strain, AUC = 0.95 for L-strain
and AUC = 0.99 for C-strain. In Fig. 8, the ground-truth ROC
curve is represented by the gray shaded region. All algorithms
achieved a good separation (AUC > 0.9) when using C-strain,
with S-Demons reaching the ground truth value. Interestingly,
although less accurate than for the other components, R-strain
estimates allowed a good discrimination for all algorithms.
Ground truth values of L-strain were intrinsically the less dis-
criminative and this explains the lower area values which were
obtained in average. Yet, all algorithms achieved AUC∼0.9,
except for RFBM where L-strain was deteriorated due to the
low SNR of the tracking results.
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TABLE IV
RELATIVE ERROR (IN %) BETWEEN ESTIMATED AND REFERENCE STRAIN

CURVES (MEAN ± STANDARD DEVIATION OVER THE DYSSYNCHRONOUS

DATASET).

C-strain L-strain R-strain

AFFD 0.16 ± 0.44 1.20 ± 3.58 0.48 ± 0.93

S-Demons 0.12 ± 0.15 1.10 ± 4.42 1.37 ± 2.46

AAOF 0.18 ± 0.76 1.26 ± 5.60 2.04 ± 1.96

BM 0.62 ± 1.94 9.27 ± 46.08 0.73 ± 1.16

RFBM 0.45 ± 0.38 15.00 ± 89.40 2.54 ± 4.01

2) Detection of Dyssynchrony: Table IV reports the relative
errors between estimated and ground-truth strain curves, as
defined in Sect. II-C, where the best performance is denoted
by the bold font. S-Demons returned the most accurate L- and
C-strain estimates while, as in the ischemic dataset, it tended
to underestimate R-strain. AFFD estimates were instead more
constant with respect to the strain direction. AAOF tended
to overestimate R-strain. Fig. 10 compares longitudinal strain
profiles measured from the septum and lateral wall. The higher
error drift for BM and RFBM is partly explained by the fact
that neither technique compensated for error accumulation.
The time-to-peak values computed from the estimated strain
profiles are represented by the markers in Fig. 10. Fig. 10
shows that, for all algorithms, the computed timing differences
were accurate enough to detect a dyssynchronous contraction.

C. Computation Time

Computation times cannot be compared directly because
of i) the different implementations/hardware employed ii)

conceptual differences between algorithms computing the
displacement voxelwise on the full image domain (AFFD,
RFBM) versus algorithms localizing the computation to a
sparse set of points only (AAOF, S-Demons, BM) and iii)

differences in the kind of data processed (i.e. RF tracking is
intrinsically computationally more demanding given the bigger
data size). Moreover, for the purpose of this comparison, al-
gorithms were optimized for accuracy and not execution time.
Nonetheless, computational complexity remains an important
constraint towards clinical translation and is therefore reported
here for indicative purposes.

AFFD was implemented in C++ and required ∼10
min/frame on a Linux cluster (1.8GHz CPU, 256GB RAM).
The AAOF algorithm was implemented in MATLAB and took
3.8 s/frame on a 4-core 3.60 GHz processor. The S-Demons
algorithm required 0.08 s/frame on an Intel Core i7-4800MQ

(a) normal

(b) LCX

Fig. 9. Bull’s eye plots of end-systolic circumferential strain for the normal (a)
and LCX (b) sequence. The ground truth is at the top left. Ischemic segments
are identified by the bold black contours. The text in white reports the average
strain in %, rounded to the closest integer value, measured in the segment.

CPU @ 2.70GHz with 16GB RAM. The RFBM algorithm
required 50 min/frame on a stand-alone Intel(R) Core i7 with
3.6GHz CPU and 32GB RAM. BM was coded in MATLAB
and took 129 s/frame on a Intel i7, 6GB RAM notebook.
For computational efficiency, a C implementation of the NCX
function was wrapped in the MATLAB code.

Assuming a reference temporal resolution of 30 frames/s
for 3D US, S-Demons and AAOF were therefore the best
candidates for online processing. Moreover, although this was
not the case for the considered implementation, we note that
block-matching can be easily optimized for fast execution on
parallel architectures such as GPU’s. AFFD is instead based
on iterative optimization solvers and is therefore typically
less parallelizable. Improving computational efficiency of the
AFFD technique is topic of active research within the devel-
oping team [39].

V. DISCUSSION

We contrasted five non-commercial solutions for 3D defor-
mation imaging in cardiac ultrasound by using a simulation
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pipeline we have recently developed [23].

Techniques based on elastic registration (AFFD) and optical
flow (AAOF and S-Demons) had similar tracking accuracy.
In particular, AAOF returned the smallest mean error while
error dispersion was slightly larger as compared to AFFD
and S-Demons. L-strain estimates were accurate for all three
solutions with correlation coefficients close to 0.9 and non-
significant biases. This is noteworthy given the relevance of
L-strain in clinical diagnostics [6]. AFFD and S-Demons
returned accurate C-strain estimates while AAOF had the
slight tendency to underestimate circumferential deformations.
Yet, C-strain error differences where found not to be statis-
tically significant. AFFD was the only solution to preserve
high accuracy for R-strain while performance dropped for
AAOF and S-Demons. This is particularly relevant given that
achieving accurate estimates of radial deformation appears
to be an open challenge of the 3D STE technology [21],
[40]. The higher accuracy of AFFD can be related to the
presence of a volume conservation penalty, which constrains
R-strain estimates to the, typically more robust, L- and C-strain
estimates. R-strain errors for AAOF could be due to the fact
that the three trans-mural surfaces were tracked independently.
Hence, the technique could benefit from a spatial constraint in
the radial direction.

Techniques based on block-matching (BM and RFBM) were
in general less accurate as due to the more noisy displacement
(hence, strain) estimates. Overall, BM was more accurate than
RFBM. In particular, its accuracy for L- and C-strain was not
statistically different from the one of non block-matching so-
lutions. RFBM suffered the most from the presence of outliers,

as due to the large inter-frame displacements in RF space and
to the boundary effects at endo- and epicardium. In this regard,
we note that RF-based tracking is typically coupled with
high frame rate imaging where displacements are intrinsically
smaller [41]. Hereto, an initialization based on B-mode images
could help cope with large displacements [11]. Moreover, the
high sensitivity of RF tracking can be preserved even for 3-D
tracking at low frame rates when RFBM results are integrated
with shape-based methods to constrain displacement values,
especially near boundaries where RFBM methods exhibit high
variance but shape-based methods perform well [42].

Despite the different levels of accuracy, the measured AUC
values showed that all algorithms could detect ischemia with
a good accuracy, especially when using C-strain (AUC >
0.9). This result is also partly explained by the large strain
differences between healthy and ischemic segments. This point
is addressed further in the following. Strain accuracy on the
dilated dataset reflected qualitatively what observed on the
ischemic one. Nonetheless, time-to-peak measurements were
appropriate to detect dyssynchrony for all five algorithms.
Along with the AUC value, this result points to the fact that
absolute strain accuracy and the ability to derive clinically
relevant features from the strain estimates are problems which
deserve separate attention.

VI. LIMITATIONS OF THE STUDY

A. Synthetic ultrasound data

As discussed in [23], the synthetic sequences exhibit a
sharp transition in the speckle properties, i.e. speckle motion
is coherent in the myocardium, while it is fully random in
the surrounding regions. This could make boundary effects
more important as compared to real recordings, in particular
for the un-regularized solutions. To account for this, all seed
points considered in the evaluation were placed well inside
the myocardium, i.e. far from the interface between the two
regions (cf. Fig. 2).

Second, stationary ultrasound artifacts such as dropout and
reverberations are not included in the evaluation dataset.
Robustness to these effects is an important design criterion for
effective STE solutions. Including such artifacts and evaluating
their influence on the strain estimates is priority in our ongoing
research.

B. Motion model

Concerning the healthy simulation, peak systolic L-strain
remains low as compared to reported normality ranges [23].
This is a common limitation of existing heart models and
improving this aspect is the topic of ongoing research.

Moreover, in the ischemic dataset, ischemic areas were
large and characterized by a substantial strain reduction. This
prevented from evaluating more systematically the compro-
mise, intrinsic to regularized solutions, between the enforced
smoothness of the displacement field, the spatial resolution of
the strain estimates and the sensitivity to subtle strain changes.
A sensitivity analysis for those methods fell beyond the scope
of this study, nonetheless it remains a necessary further step
towards the clinical translation of these techniques. In this
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perspective, segmental strain values should be complemented
by more detailed error maps. In this sense, the bull’s eye
plots in Fig. 9 showed that regularized solutions tended
to over-smooth the interface of the ischemic region, while
block matching estimates, although more noisy, identified the
interface with better contrast. Enlarging the synthetic dataset
by including more localized and progressive levels of ischemia
is thus part of our ongoing research.

Moreover, post-systolic shortening is an important addi-
tional marker of ischemic dysfunction. To our knowledge,
this effect is not reproduced by existing cardiac models and,
in particular, it is not present in our synthetic dataset. For
what concerns the detection of dyssynchrony, other strain
markers, such as of septal flash, can be used to complement
time-to-peak measurements [43]. Including these effects and
evaluating the accuracy in their detection is therefore the topic
of ongoing investigation.

A further point is that strain estimates are known to be de-
pendent on the temporal resolution of the imaging system [44].
In this study, temporal resolution was equal to 34 frames/s
for all dataset. The value was chosen as a representative
average of what is available clinically. Modifying frame rate
is a straightforward adjustment of the E/M model. Evaluating
the impact of frame rate on tracking and strain accuracy fell
beyond the scope of this paper. Yet, this represents one of our
ongoing topics of research and a preliminary report can be
found in [45].

Overall, the employment of a motion model, by definition,
introduces simplifications and, therefore, a bias in the results.
In particular, numerical stability aspects may favor (temporally
and spatially) smooth deformation fields and, hence, regular-
ized solutions. In this regard, we note that the bio-mechanical
model employed is among the most advanced available: it
is the output of a long-lasting research activity and several
ongoing studies are preparing its clinical translation [46], [47].
Moreover, we also stress that none of the regularized solutions
employed the bio-mechanical model as a constraint to the
computed displacement estimates which, obviously, would
introduce an unacceptable bias.

C. Sample Size

The small sample size, along with the limited diversity
of the motion patterns and image qualities mentioned above,
prevents from generalizing the obtained results as well as
extrapolating them to the clinical practice. Enriching the
synthetic database is therefore the topic of ongoing research.

D. Performance Metrics Used

For all participants, strain was computed in the same way
from the tracked positions of the mesh nodes. Nonetheless,
we note that different algorithms could benefit from different
strain computation strategies: e.g. regularized solutions could
compute strain analytically from the continuous deformation
field, while, for block-matching solutions, robust parametric
(e.g. affine) fitting of the displacement estimates could be used
to improve robustness to outliers. We kept strain computation
uniform in order to rule out additional sources of variability

in the comparison. Moreover, achieving a common set of
definitions is crucial towards the standardization of the 3D
STE technology [5], [6]. In particular, our strain definition
is based on extending to 3D the recent recommendations for
computation of global longitudinal strain with 2D US [5].

We also note that the definition of directional strain em-
ployed is insensitive to shear strain. In this perspective, the
concept of principal strain could be adopted to compute
deformation indices independent on the coordinate system
used [37].

E. Algorithm implementation

This study considered an in-house implementation of block
matching. As such, there is necessarily a disparity with respect
to what is available in commercial packages. Although the
block matching principle is in itself very well established,
there are several possible degrees of freedom, most importantly
in the way the displacement estimates are regularized, which
can affect the final output considerably. Involving commercial
packages is therefore our priority in the near future.

With these limitations in mind, this remains to our knowl-
edge the first study where an heterogeneous set of well
established non-commercial 3D STE techniques is directly
contrasted on a set of realistic echocardiographic recordings. In
silico testing is obviously not sufficient for clinical translation,
nonetheless, it is recognized as a necessary preliminary step in
this direction [48]. Extending the comparison to commercial
solutions for 2D strain by using a 2D extension of the
evaluation pipeline presented in this study [49] is the topic
of ongoing research.

VII. CONCLUSIONS

We contrasted five 3D STE algorithms from leading teams
in the field by using an evaluation pipeline we have recently
developed. To our knowledge, this was the first time a diverse
range of techniques were contrasted directly on a realistic set
of ground-truth data.

Overall, non block matching based solutions returned
closely accurate L- and C-strain estimates. AFFD was instead
the only technique to preserve good accuracy for R-strain
while performance dropped for competing solutions. Block
matching algorithms (BM and RFBM) were in average less
accurate. Yet, L- and C-strain errors for BM were mostly not
statistically different from the ones of the previous three meth-
ods. RFBM suffered instead from the low temporal resolution
(hence the large displacement) of the used dataset. Concerning
computational complexity, S-Demons and AAOF were close
to real-time processing while competing solutions (AFFD and
RFBM in particular) were computationally more demanding.
Moreover, BM could benefit from a substantial speed-up due
to the intrinsic parallelizability.

Whether the reported findings can be extrapolated to the
clinical practice remains to be established.

Our effort is to allow for a more solid and objective
assessment of the state-of-the-art of the 3D STE technology,
thereby promoting a more organized and effective development
of the latter.
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