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Layout of a power electronic device

Source/Emitter Gate/Base

Drain/Collector

I 1–2 pads on top, one on the bottom
I 50-400 µm thick, 1-100 mm2 die area
I Usually Al on top, Ag on the back
I Up to hundreds A/thousands V
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Thermal considerations

Source: Lutz, J. et al. Semiconductor Power Devices – Physics, Characteristics, Reliability Springer, 2011 [1]

I Junction temperature up to 175 °C (Si)
I Efficient cooling to avoid thermal runaway
I Ceramics often used
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Standard power module packaging

I Standard Power Modules offer good thermal management
I Well suited to higher voltages (>1200 V)
I Issues: large, not flexible, and high parasitic inductance
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Effect of the Packaging on Electrical Performance

RGl Tl

VDRl

RGh Th

VDRh

VIn

IOut

I Stray inductances cause ringing and switching losses
I Caused by packaging
I Issue highlighted by fast WBG semiconductors
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Active devices – Evolution of the Packaged Devices

2N
30
55

source: wikimedia commons for all packages except the Directfet, courtesy International Rectifier, and the WL-CSP, c.f. below

Package type Volume (mm3) molding compound% silicon % leadframe % interconnect %
DPAK 90 75 4 20 1
SO8 (wire) 28 83 6 10 1
SO8 (clip) 28 70 6 20 2
MOSFET BGA 20 0 40 50 10
WL-CSP 20 0 82 0 18

source for table and bottom figure: “Trends of power semiconductor wafer level packaging”, Yong LIU [2]

I Gradual disappearance of the FLP
(First Level Packaging)

I All fabrication steps made directly
on wafer: Wafer Level-Chip Scale
Packaging
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Literature Review – Converter on a flex substrate

I Flex PCB instead of wirebonds
I backside attached to a DBC
I advantages:

I low profile, low inductance
I higher interconnect density

I Implementations:
I GE [3]
I CPES [4]
I TU Berlin/Fraunhofer Inst. [5]
I Semikron [6]. . .

T. Stockmeier et al. “SKiN: Double side sintering technology for new
packages”, ISPD 2011

images from ECPE Seminar “Power PCBs and Busbars”, Delft, 2008, Papers: [7, 8]
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Literature Review – “PCB-like” 3D structures

P. Ning et al. “A novel high-temperature planar package for SiC multichip phase-leg power
module”, IEEE Trans on PE vol 25, 2010, 25, 2059

Silver-sintered interconnects and
Epoxy/Kapton insulation [9]

Weidner, et al. “Planar Interconnect Technology for Power Module System Integration”, CIPS
2012

SiPLIT Copper electroplating,
laminated isolation laser-structured
in-situ [10]
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Literature Review – Die embedding in PCB

Low-inductance packaging for SiC [11]
I Half bridge module
I 0.8 nH loop inductance
I Embedding die using stud bumps

E. Hoene, “Ultra Low Inductance Package for SiC” ECPE workshop on power
boards, 2012

I Power module development through german
project Hi-LEVEL [12]

I 10 kW and 50 kW demonstrators
I Thick copper or DBC for thermal management

http://www.pcdandf.com/pcdesign/index.php/editorial/menu-features/9257-component-packaging-1405
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Overview of the process

I Start with a DBC substrate
I Die attach (silver sintering)
I PCB stacking
I PCB lamination
I Topside copper etching
I Laser ablation
I Copper electroplating
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Overview of the process – significant points

I Backside die attach with silver sintering:
I The die does not move during assembly
I Accurate positioning

I Ablation using a CO2 laser
I Very good selectivity (metal layers insensitive to laser light)
I Use of the copper layer as an alignment mask

I Prototype-scale equipment used
I Can manufacture prototypes from 4x4 cm2 up to 21x28 cm2

I Affordable, useful for process development.
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Effect of die finish

Preparation

Die
Mask

PVD

Two die finishes evaluated
I Standard Al topside
I Ti/Cu PVD with a shadow

mask
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Ü Need for a suitable topside finish for electroplating : copper
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Cross section

I Vertical walls in epoxy layers
I Good self-alignment
I No degradation of die topside

metal due to CO2 laser
I Die contact not yet perfect
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Effect of contact area

Die

Topside copper

Wells

R

Rtop

Rwall

Rcont

Rdie

RAl

Raccess

Vin

I Thick topside copper foil (35 µm)
I Thin electroplated copper (10 µm)
I Many wells:

I More copper section on walls
I Large well(s):

I Thicker die contact metallization
I reduction of topside copper section
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Electrical Characterization
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I Tests performed in air, without additional passivation
I Most important parameter for contact resistance:

distribution of contacts over die area
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Summary and Conclusion

I Embedding of power devices
I Scalable technology
I Allows for more compact systems
I Custom design
I Attractive for fast, wide-bandgap

devices
I Simple process

I Lab-scale process presented
I Good compatibility with CO2 laser
I Main issue: die topside finish

I Developments to come:
I Half-bridge with gate drivers
I Multi-layer design
I Embedding of passive components
I Work on thermal design
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