Comparison of topside contact layouts for power dies embedded in PCB ESTC 2016, Grenoble

Chenjiang Yu¹, Cyril BUTTAY², Éric LABOURÉ¹, Vincent BLEY³, Céline COMBETTES³, Gilles BRILLAT³

> ¹GEEPS, Paris, France ²Laboratoire Ampère, Lyon, France ³ LAPLACE, Toulouse, France

> > 14/09/16

Introduction

Proposed Embedding Technique

Effect of Contact Area/Layout

Summary and Conclusion

Introduction

Proposed Embedding Technique

Effect of Contact Area/Layout

Summary and Conclusion

The Printed-Circuit-Board technology (PCB) enables:

- higher interconnect density
 - multi-layer
 - ► small pitch (down to 25 µm linewidth)
- Low inductance [1]
 - small size
 - Iaminated busbar structure
- batch-processed manufacturing
 - all interconnects are processed at once

E. Hoene, "Ultra Low Inductance Package for SiC" ECPE workshop on power boards, 2012, [1]

The Printed-Circuit-Board technology (PCB) enables:

- higher interconnect density
 - multi-layer
 - ► small pitch (down to 25 µm linewidth)
- Low inductance [1]
 - small size
 - laminated busbar structure

```
batch-processed manufacturing
```

all interconnects are processed at once

E. Hoene, "Ultra Low Inductance Package for SiC" ECPE workshop on power boards, 2012, [1]

The Printed-Circuit-Board technology (PCB) enables:

- higher interconnect density
 - multi-layer
 - ▶ small pitch (down to 25 µm linewidth)
- Low inductance [1]
 - small size
 - laminated busbar structure
- batch-processed manufacturing
 - all interconnects are processed at once

E. Hoene, "Ultra Low Inductance Package for SiC" ECPE workshop on power boards, 2012, [1]

Literature Review – Die embedding in PCB – 1

- Very active area in recent years
- Many applications to high interconnect density
- Several industrial developments (AT&S, Schweizer, etc.)
 Recept

Literature Review – Die embedding in PCB – 2

Low-inductance packaging for SiC [1]

- Half bridge module
- 0.8 nH loop inductance
- Embedding die using stud bumps

E. Hoene, "Ultra Low Inductance Package for SiC" ECPE workshop on power boards, 2012 [1]

Literature Review – Die embedding in PCB – 2

Low-inductance packaging for SiC [1]

- Half bridge module
- 0.8 nH loop inductance
- Embedding die using stud bumps

E. Hoene, "Ultra Low Inductance Package for SiC" ECPE workshop on power boards, 2012 [1]

- Power module development through german project Hi-LEVEL [3]
- 10 kW and 50 kW demonstrators
- Thick copper or DBC for thermal management

http://www.pcdandf.com/pcdesign/index.php/editorial/menu-features/9257-component-packaging-1405

Introduction

Proposed Embedding Technique

Effect of Contact Area/Layout

Summary and Conclusion

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating

Backside die attach with silver sintering:

- The die does not move during assembly
- Accurate positioning
- Ablation using a CO₂ laser
 - Very good selectivity (metal layers insensitive to laser light) I use of the cooper layer as an alignment mask
- Prototype-scale equipment used
 - Can manufacture prototypes from 4x4 cm² up to 21x28 cm²
 - Affordable, useful for process development.

Backside die attach with silver sintering:

- The die does not move during assembly
- Accurate positioning
- Ablation using a CO₂ laser
 - Very good selectivity (metal layers insensitive to laser light)
 - Use of the copper layer as an alignment mask
- Prototype-scale equipment used

Can manufacture prototypes from 4x4 cm² up to 21x28 cm²
 Affordable, useful for process development.

Backside die attach with silver sintering:

- The die does not move during assembly
- Accurate positioning
- Ablation using a CO₂ laser
 - Very good selectivity (metal layers insensitive to laser light)
 - Use of the copper layer as an alignment mask
- Prototype-scale equipment used
 - Can manufacture prototypes from 4x4 cm² up to 21x28 cm²
 - Affordable, useful for process development.

Standard AI topside Unsuitable

- Ti/Cu PVD with a shadow mask (50/500 nm)
- Simple process for singulated dies

- Standard AI topside Unsuitable
- Ti/Cu PVD with a shadow mask (50/500 nm)
- Simple process for singulated dies

- Standard AI topside Unsuitable
- Ti/Cu PVD with a shadow mask (50/500 nm)
- Simple process for singulated dies

- Standard AI topside Unsuitable
- Ti/Cu PVD with a shadow mask (50/500 nm)
- Simple process for singulated dies

- Standard AI topside Unsuitable
- Ti/Cu PVD with a shadow mask (50/500 nm)
- Simple process for singulated dies

 $5 \times 5 \text{ mm}^2 \text{ IGBT die}$

Cross section

- Vertical walls in epoxy layers
- Good self-alignment
- No degradation of die topside metal due to CO₂ laser
- Die contact not yet perfect

Introduction

Proposed Embedding Technique

Effect of Contact Area/Layout

Summary and Conclusion

Effect of Contact Area/Layout

- Thick topside copper foil (35 µm)
 Thin electroplated copper (10 µm)
 Many wells:
- Large well(s):

Thicker die contact metallization
 reduction of topside copper section

Effect of Contact Area/Layout

- Thick topside copper foil (35 μ m)
- Thin electroplated copper (10 μ m)
- Many wells:
 - More copper section on walls
 - Large well(s):
 - Thicker die contact metallization
 reduction of topside copper section

Effect of Contact Area/Layout

- Thick topside copper foil (35 μ m)
- Thin electroplated copper (10 μ m)
- Many wells:
 - More copper section on walls
- Large well(s):
 - Thicker die contact metallization
 - reduction of topside copper section

- ► Structure divided into 100×100µm cells
- 2-D current flow assumed
- Generation of a meshed circuit of resistors
- Solving using Modified Nodal Analysis.

Geeps

Modelling — Results

# of	Surface	Resistance
contacts	(mm²)	(msz)
1	1	3.80
1	4	2.16
1	9	1.55
1	16	1.32
4	4	1.40
4	9	1.26
9	9	1.13

Resistance decreases with:

- Contact area
- Contact distribution
- → Well spread contacts are more efficient
- → split 4 mm² contact comparable to single 16 mm²

Experimental Validation — Test Vehicles

- ► 6×6 mm² diodes embedded in PCB
- 4-point connexions for accurate resistance measurement
- ▶ high current (up to 100 A), pulsed measurement

Experimental Validation — Test Results

- Resistance value extracted from I(V) characteristic of diode
- Large scattering of experimental data (±20%)
- Same die in standard TO-247 package: 4.4 mΩ

Contact distribution is important, contact area not so much

- Experimental results show same trend as simulation
 - Resistance 4 times higher!
 - Resistance equivalent to that of (commercial) wirebonded dies

- Contact distribution is important, contact area not so much
- Experimental results show same trend as simulation
 - Resistance 4 times higher!
 - Poor quality of die/electroplated copper interface
 - Model also probably too optimistic (diode modelled as a resistance)
 - ► Resistance equivalent to that of (commercial) wirebonded dies

- Contact distribution is important, contact area not so much
- Experimental results show same trend as simulation
 - Resistance 4 times higher!
 - Poor quality of die/electroplated copper interface
 - Model also probably too optimistic (diode modelled as a resistance)
 - Resistance equivalent to that of (commercial) wirebonded dies

- Contact distribution is important, contact area not so much
- Experimental results show same trend as simulation
 - Resistance 4 times higher!
 - Poor quality of die/electroplated copper interface
 - Model also probably too optimistic (diode modelled as a resistance)
 - Resistance equivalent to that of (commercial) wirebonded dies

Introduction

Proposed Embedding Technique

Effect of Contact Area/Layout

Summary and Conclusion

Summary and Conclusion

Embedding of power devices

- Custom design at die level
- Attractive for fast, wide-bandgap devices
- Contact layout allows for better current spreading
- Simple process
 - Lab-scale process presented.
 - Low contact resistance achieved
 - Main issue: die topside finish
- Developments to come:
 - Half-bridge with gate drivers
 - Embedding of passive components
 - Work on thermal design

Summary and Conclusion

Embedding of power devices

- Custom design at die level
- Attractive for fast, wide-bandgap devices
- Contact layout allows for better current spreading
- Simple process
 - Lab-scale process presented
 - Low contact resistance achieved
 - Main issue: die topside finish
- Developments to come:
 - Half-bridge with gate drivers.
 - Embedding of passive components
 - Work on thermal design

Summary and Conclusion

Embedding of power devices

- Custom design at die level
- Attractive for fast, wide-bandgap devices
- Contact layout allows for better current spreading
- Simple process
 - Lab-scale process presented
 - Low contact resistance achieved
 - Main issue: die topside finish
- Developments to come:
 - Half-bridge with gate drivers
 - Embedding of passive components
 - Work on thermal design

E. Hoene, "Ultra Low Inductance Package for SiC," in *ECPE workshop on power boards*, ECPE, 2012.

A. Ostmann, "Leistungselektronik in der Leiterplatte," in *AT&S Technologieforum*, 2013.

A. Ostmann, L. Boettcher, D. Manessis, S. Karaszkiewicz, and K.-D. Lang, "Power modules with embedded components," in *Microelectronics Packaging Conference (EMPC)*, 2013 European, pp. 1–4, Sept. 2013.

Thank you for your attention

contact: cyril.buttay@insa-lyon.fr

This work was funded by the French National Research Agency (ANR) under the grant name ETHAER.

