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Automotive

Vehicle Location Max Temp (°C)
Drive train high temp location 177
Floor 85
Near radiator support structure 100
Back of alternator 160
Cooling circuit 120
Exhaust manifold 649

Most data: Kassakian, J. G. et al. “The Future of Electronics in Automobiles”, ISPSD, 2001, p 15-19

I Low-cost, high-volume applications;
I Moving to higher voltages (12V->300V for hybrids)
I Little cooling headroom with silicon devices (TJ=150 to

175°C)

ß dedicated cooling circuit for power electronic systems
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Aircraft

The trend:
I Hydraulic, Pneumatic and Electric

networks co-exist in current systems
I More-electric aircraft should reduce

complexity
I objective: 1 MW on-board electrical power

The environment:

I From mild to very harsh:
I Some system are located in the cabin
I Jet engine actuator will face -55°C to 225°C cycling
I Many systems are located in non-pressurised areas

I Long system life: around 30 years
I Reliability is the main concern
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Space Exploration

I NASA missions to Venus and Jupiter
I Venus surface temperature : up to 480°C
I Pressure a few kilometres inside Jupiter: 100

bars, at 400°C
I Strong thermal cycling, as temperature can drop

to 140K at night;
I Other awful conditions: winds, corrosive

gases. . .
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Deep oil/gas extraction

I Continuous operation, relatively low
cycling

I Deep drilling: high ambient temperature
(up to 225°C)

I Expected lifetime: 5 years
I Main requirement: sensors and

datalogging
I Example of new applications: downhole

gas compressor
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Maximum operating temperature
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Silicon operating temp is intrisically limited at high voltages.
I 1200 V devices rated at <200 °C junction temperature
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Test configuration

I High temperature test system
I Silver-sintered interconnects
I Ceramic substrate (DBC)
I Copper-kapton leadframe

I DUT: 490 mΩ SiC JFET from SiCED
I characterization:

I Tektronix 371A curve tracer
I Thermonics T2500-E conditionner

Source: Thermonics T-2500E Datasheet
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Static Characterization of 490 mΩ JFET

Buttay et Al. “Thermal Stability of Silicon Carbide Power JFETs” IEEE transactions on Electron Devices, 2013, 60, 4191-4198
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Power dissipation as a function of the junction temp.
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Thermal Run-away mechanism – Principle

I The device characteristic
I Its associated cooling system
I In region A, the device

dissipates more than the
cooling system can extract

I In region B, the device
dissipates less than the
cooling system can extract

I Two equilibrium points: one
stable and one unstable

I Above the unstable point,
run-away occurs
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Thermal Run-away mechanism – examples

Always stable

Always unstable Becomming unstable
with ambient

temperature rise
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Power dissipation as a function of the junction temp.
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High Temperature Thermal Management

Buttay et al. “Thermal Stability of Silicon Carbide Power JFETs”, IEEE Trans on Electron Devices, 2014
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Run-away
SiC JFET:

I 490 mΩ, 1200 V
I RThJA = 4.5 K/W
I 135 °C ambient
I On-state losses

High temperature capability 6= reduced cooling needs!
SiC JFETs must be attached to a low-RTh cooling system.
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Conclusions on high-temp. behaviour of SiC JFETs

I SiC JFETs can operate at > 200 °C
I RDSon dependent on temperature

Ü sensitive to thermal run-away
I Require efficient thermal management

I low thermal resistance (1-2 K/W)
I low or high ambient temperature

(> 200 °C possible)

Falahi et Al. “High temperature, Smart Power Module for aircraft actuators”,
HiTEN 2013
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Double Side Cooling

I Standard packaging offers cooling through one side of the
die only

I “3-D” or “Sandwich” package offers thermal management
on both sides

I Requires suitable topside metal on the die
I Requires special features for topside contact
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The proposed 3-D Structure

Vbus

OUT

GND

JH

JL

I Two ceramic substrates, in “sandwich” configuration
I Two SiC JFET dies (SiCED)
I assembled using silver sintering
I 25.4 mm×12.7 mm (1 in×0.5 in)
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Ceramic Substrates

SiC JFET

Alumina

0.2 mm 

0,3 mm 

0.16 mm 

0,15 mm 

Copper

0.15 mm Gate SourceSource

Drain0.3 mm 

Scale drawing for 2.4×2.4 mm2 die

I Si3N4 identified previously for
high temperature

I For development: use of
alumina

I Etching accuracy exceeds
standard design rules

I Double-step copper etching for
die contact

Ü Custom etching technique
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Bonding Material: Silver Sintering

Göbl, C. et al “Low temperature sinter technology Die attachment for automotive
power electronic applications” proc of APE, 2006

Silver Paste
I Based on micro-scale silver

particles (Heraeus LTS-117O2P2)
I Low temperature (240 °C) sintering
I Low pressure (2 MPa) process

No liquid phase involved:
I No movement of the die
I No bridging across terminals
I No height compensation thanks to

wetting
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Preparation of the Substrates

plain DBC board

I Final patterns within 50 µm of desired size
I Two designs, for 2.4×2.4 mm2 and 4×4 mm2 dies
I Total copper thickness 300 µm, ≈ 150 µm per step
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Preparation of the Dies

I Standard aluminium topside finish
not compatible with silver sintering

I Ti/Ag PVD on contact areas
I Need for a masking solution

Ü jig with locating pockets.

Die
Mask

PVD
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Assembly

Screen printing

I Ceramic laser-cut jigs for precise alignment of dies and
substrate

I Two sintering steps using the same temperature profile
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Some results

Size: 25×25 mm2
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Some results
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I 300 Ω Resistive load, 0.5 A current (no cooling system used)
I oscillations dues to external layout
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Conclusion

I SiC JFET able to operate continuously at high temperature(> 200 °C)
I Must be provided with efficient thermal management (RTh =1–2 K/W)
I Proposition: introduce dual-side cooling
I 3D structure using only high-temperature-rated materials

I Should be able to operate continuously at 300 °C, including passivation
(parylene HT or F)

I Proposed etching technique offers satisfying resolution
I Silver sintering used for the interconnects, reliability to be investigated

I Package for demonstration of technology, no cooling attempted yet!
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Static and Dynamic Characterization of 60 mΩ JFET

Falahi et Al. “High temperature, Smart Power Module for aircraft actuators”, HiTEN 2013
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Previous results show that SiC JFETs are attractive for
> 200 °C operation:

I rated at 1200 V (or more), several Amps
I Voltage-controlled devices
I No reliability issue related to gate oxide degradation
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Properties of some semiconductors

“Classical” wide-bandgap

Si GaAs 3C-
SiC

6H-
SiC

4H-
SiC

GaN Diamond

Bandgap Energy
Eg (eV) 1,12 1,4 2,3 2,9 3,2 3,39 5,6

Elec. mobility
µn (cm2.V−1.s−1) 1450 8500 1000 415 950 2000 4000

Hole mobility
µp (cm2.V−1.s−1) 450 400 45 90 115 350 3800

Critical elec. field
EC (V.cm−1) 3.105 4.105 2.106 2,5.106 3.106 5.106 107

Saturation velocity
vsat (cm.s−1) 107 2.107 2,5.107 2.107 2.107 2.107 3.107

Termal cond.
λ (W.cm−1.K−1) 1,3 0,54 5 5 5 1,3 20
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