High temperature operation of SiC transistors ATW on Thermal Management, Los Gatos

> Cyril BUTTAY¹, Marwan ALI², Oriol AVINO^{1,2}, Hervé MOREL¹, Bruno ALLARD¹

¹ Laboratoire Ampère, Lyon, France ² Labinal Power Systems, SAFRAN Group, France

23/9/15

Introduction

High-Temperature behaviour of SiC Devices

Packaging for high-temperature converters

Conclusion

Introduction

High-Temperature behaviour of SiC Devices

Packaging for high-temperature converters

Conclusion

Vehicle Location	Max Temp (℃)
Drive train high temp location	177
Floor	85
Near radiator support structure	100
Back of alternator	160
Cooling circuit	120
Exhaust manifold	649

Most data: Kassakian, J. G. et al. "The Future of Electronics in Automobiles", ISPSD, 2001, p 15-19

- Low-cost, high-volume applications;
- Moving to higher voltages (12V->300V for hybrids)
- ► Little cooling headroom with silicon devices (T_J=150 to 175 °C)

Vehicle Location	Max Temp (℃)
Drive train high temp location	177
Floor	85
Near radiator support structure	100
Back of alternator	160
Cooling circuit	120
Exhaust manifold	649

Most data: Kassakian, J. G. et al. "The Future of Electronics in Automobiles", ISPSD, 2001, p 15-19

- Low-cost, high-volume applications;
- Moving to higher voltages (12V->300V for hybrids)
- ► Little cooling headroom with silicon devices (T_J=150 to 175 °C)

Vehicle Location	Max Temp (℃)
Drive train high temp location	177
Floor	85
Near radiator support structure	100
Back of alternator	160
Cooling circuit	120
Exhaust manifold	649

Most data: Kassakian, J. G. et al. "The Future of Electronics in Automobiles", ISPSD, 2001, p 15-19

- Low-cost, high-volume applications;
- Moving to higher voltages (12V->300V for hybrids)
- ► Little cooling headroom with silicon devices (T_J=150 to 175 °C)
- dedicated cooling circuit for power electronic systems

Aircraft

The trend:

- Hydraulic, Pneumatic and Electric networks co-exist in current systems
- More-electric aircraft should reduce complexity
- objective: 1 MW on-board electrical power

From mild to very harsh:

- Some system are located in the cabin
- Jet engine actuator will face -55°C to 225°C cycling
- Many systems are located in non-pressurised areas
- Long system life: around 30 years
- Reliability is the main concern

- Hydraulic, Pneumatic and Electric networks co-exist in current systems
- More-electric aircraft should reduce complexity
- objective: 1 MW on-board electrical power

The environment:

- From mild to very harsh:
 - Some system are located in the cabin
 - Jet engine actuator will face -55°C to 225°C cycling
 - Many systems are located in non-pressurised areas
- Long system life: around 30 years
- Reliability is the main concern

- Hydraulic, Pneumatic and Electric networks co-exist in current systems
- More-electric aircraft should reduce complexity
- objective: 1 MW on-board electrical power

The environment:

- From mild to very harsh:
 - Some system are located in the cabin
 - ► Jet engine actuator will face -55 °C to 225 °C cycling
 - Many systems are located in non-pressurised areas
- Long system life: around 30 years

Reliability is the main concern

- Hydraulic, Pneumatic and Electric networks co-exist in current systems
- More-electric aircraft should reduce complexity
- objective: 1 MW on-board electrical power

The environment:

- From mild to very harsh:
 - Some system are located in the cabin
 - ► Jet engine actuator will face -55 °C to 225 °C cycling
 - Many systems are located in non-pressurised areas
- Long system life: around 30 years

Reliability is the main concern

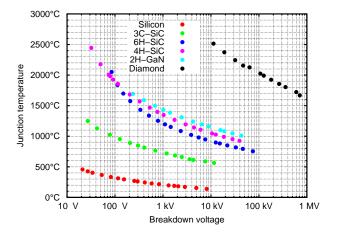
- Hydraulic, Pneumatic and Electric networks co-exist in current systems
- More-electric aircraft should reduce complexity
- objective: 1 MW on-board electrical power

The environment:

- From mild to very harsh:
 - Some system are located in the cabin
 - ► Jet engine actuator will face -55 °C to 225 °C cycling
 - Many systems are located in non-pressurised areas
- Long system life: around 30 years
- Reliability is the main concern

NASA missions to Venus and Jupiter

- ► Venus surface temperature : up to 480 °C
- ► Pressure a few kilometres inside Jupiter: 100 bars, at 400 °C
- Strong thermal cycling, as temperature can drop to 140K at night;


Deep oil/gas extraction

- Continuous operation, relatively low cycling
- Deep drilling: high ambient temperature (up to 225°C)
- Expected lifetime: 5 years
- Main requirement: sensors and datalogging
- Example of new applications: downhole gas compressor

Maximum operating temperature

Silicon operating temp is intrisically limited at high voltages.

▶ 1200 V devices rated at <200 °C junction temperature

Introduction

High-Temperature behaviour of SiC Devices

Packaging for high-temperature converters

Conclusion

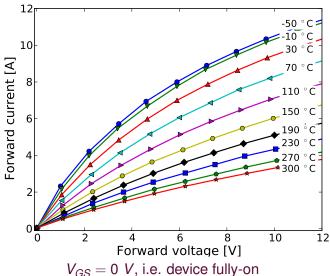
Test configuration

- High temperature test system
 - Silver-sintered interconnects
 - Ceramic substrate (DBC)
 - Copper-kapton leadframe
- DUT: 490 mΩ SiC JFET from SiCED
- characterization:
 - Tektronix 371A curve tracer
 - Thermonics T2500-E conditionner

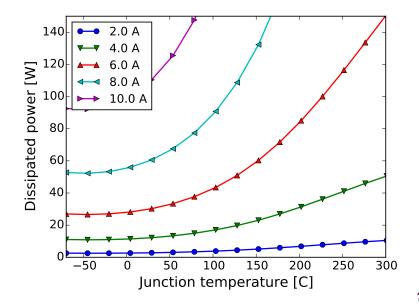
Test configuration

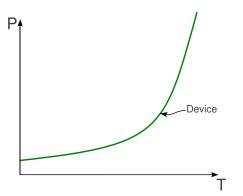
- High temperature test system
 - Silver-sintered interconnects
 - Ceramic substrate (DBC)
 - Copper-kapton leadframe
- DUT: 490 mΩ SiC JFET from SiCED
- characterization:
 - Tektronix 371A curve tracer
 - Thermonics T2500-E conditionner

Test configuration


- High temperature test system
 - Silver-sintered interconnects
 - Ceramic substrate (DBC)
 - Copper-kapton leadframe
- DUT: 490 mΩ SiC JFET from SiCED
- characterization:
 - Tektronix 371A curve tracer
 - Thermonics T2500-E conditionner

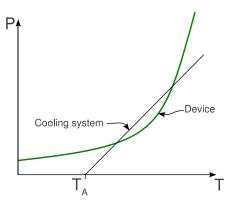
Source: Thermonics T-2500E Datasheet



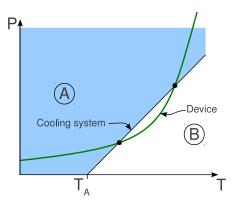

Static Characterization of 490 m Ω JFET

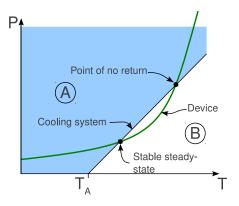
Buttay et Al. "Thermal Stability of Silicon Carbide Power JFETs" IEEE transactions on Electron Devices, 2013, 60, 4191-4198

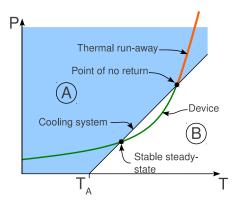
Power dissipation as a function of the junction temp.



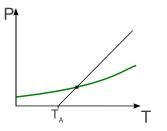
The device characteristic


- Its associated cooling system
- In region A, the device dissipates more than the cooling system can extract
- In region B, the device dissipates less than the cooling system can extract
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs


- The device characteristic
- Its associated cooling system
- In region A, the device dissipates more than the cooling system can extract
- In region B, the device dissipates less than the cooling system can extract
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

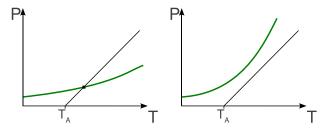

- The device characteristic
- Its associated cooling system
- In region A, the device dissipates more than the cooling system can extract
- In region B, the device dissipates less than the cooling system can extract
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

- The device characteristic
- Its associated cooling system
- In region A, the device dissipates more than the cooling system can extract
- In region B, the device dissipates less than the cooling system can extract
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs



- The device characteristic
- Its associated cooling system
- In region A, the device dissipates more than the cooling system can extract
- In region B, the device dissipates less than the cooling system can extract
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

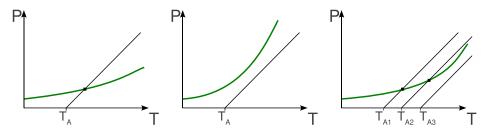
Thermal Run-away mechanism – examples



Always stable

14/32

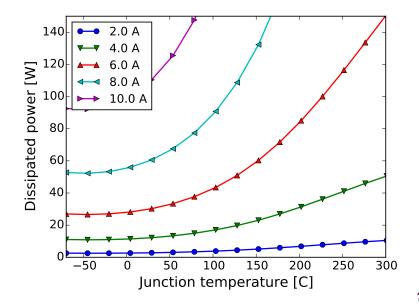
Thermal Run-away mechanism – examples


Always stable

Always unstable

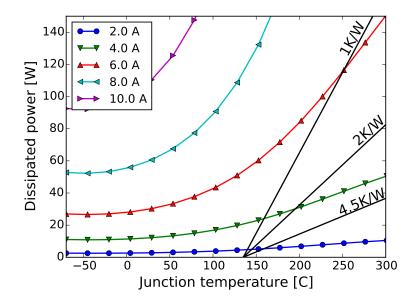
14/32

Thermal Run-away mechanism – examples

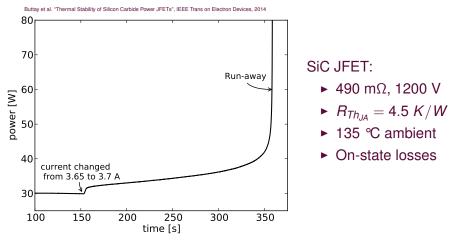

Always stable

Always unstable

Becomming unstable with ambient temperature rise



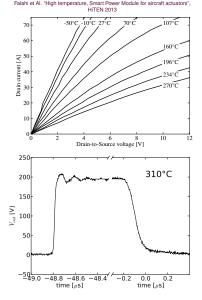
Power dissipation as a function of the junction temp.



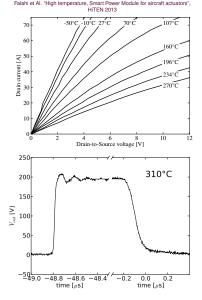
15/32

Power dissipation as a function of the junction temp.

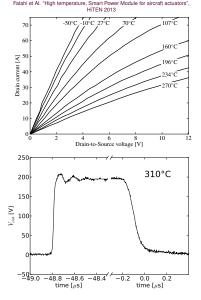
High Temperature Thermal Management

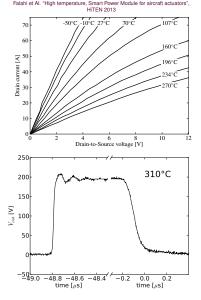


High temperature capability \neq reduced cooling needs! SiC JFETs must be attached to a low- R_{Th} cooling system.



► SiC JFETs can operate at > 200 °C

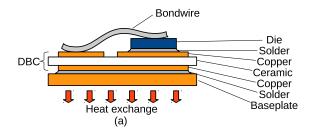

- ► *R_{DSon}* dependent on temperature
- sensitive to thermal run-away
- Require efficient thermal management
 - Iow thermal resistance (1-2 K/W)
 - low or high ambient temperature (> 200 °C possible)


- ▶ SiC JFETs can operate at > 200 °C
- ► *R_{DSon}* dependent on temperature
- sensitive to thermal run-away
- Require efficient thermal management
 - Iow thermal resistance (1-2 K/W).
 - low or high ambient temperature (> 200 °C possible)

- SiC JFETs can operate at > 200 °C
- ► *R_{DSon}* dependent on temperature
- sensitive to thermal run-away
- Require efficient thermal management
 - low mermal resistance (1-2 k/www. low or high ambient temperatures (> 200 °C possible)

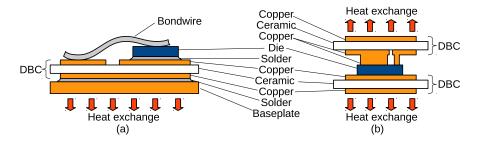
- ► SiC JFETs can operate at > 200 °C
- ► *R*_{DSon} dependent on temperature
- sensitive to thermal run-away
- Require efficient thermal management
 - low thermal resistance (1-2 K/W)
 - low or high ambient temperature (> 200 °C possible)

Introduction

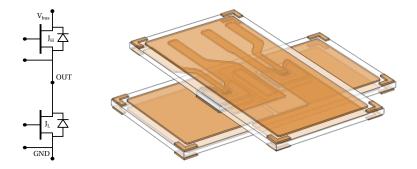

High-Temperature behaviour of SiC Devices

Packaging for high-temperature converters

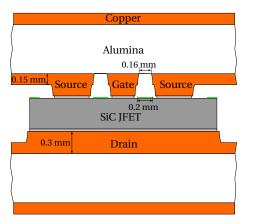
Conclusion


Double Side Cooling

- Standard packaging offers cooling through one side of the die only
- "3-D" or "Sandwich" package offers thermal management on both sides
- Requires suitable topside metal on the die
- Requires special features for topside contact


Double Side Cooling

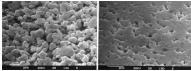
- Standard packaging offers cooling through one side of the die only
- "3-D" or "Sandwich" package offers thermal management on both sides
- Requires suitable topside metal on the die
- Requires special features for topside contact



The proposed 3-D Structure

- Two ceramic substrates, in "sandwich" configuration
- Two SiC JFET dies (SiCED)
- assembled using silver sintering
- ► 25.4 mm×12.7 mm (1 in×0.5 in)

Ceramic Substrates



Scale drawing for 2.4 $\times 2.4~\text{mm}^2$ die

- Si₃N₄ identified previously for high temperature
- For development: use of alumina
- Etching accuracy exceeds standard design rules
- Double-step copper etching for die contact
- → Custom etching technique

Bonding Material: Silver Sintering

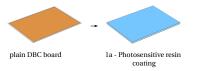
Göbl, C. et al "Low temperature sinter technology Die attachment for automotive power electronic applications" proc of APE, 2006

Silver Paste

- Based on micro-scale silver particles (Heraeus LTS-117O2P2)
- ► Low temperature (240 °C) sintering
- Low pressure (2 MPa) process

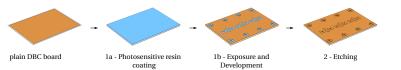
No liquid phase involved:

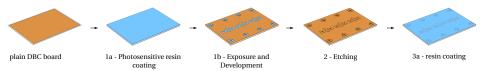
- No movement of the die
- No bridging across terminals
- No height compensation thanks to wetting

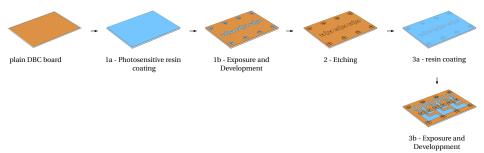


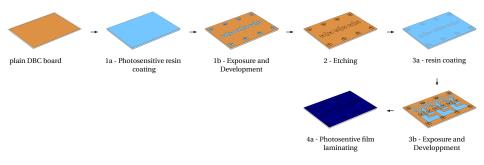
plain DBC board

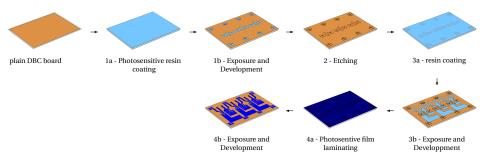
- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Total copper thickness 300 μ m, pprox 150 μ m per step

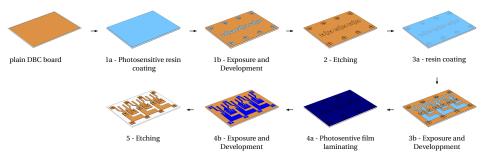

- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Total copper thickness 300 μ m, pprox 150 μ m per step

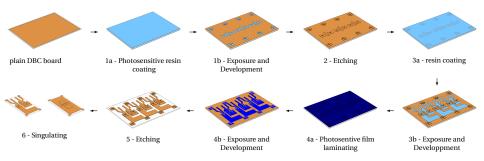

- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Total copper thickness 300 μ m, pprox 150 μ m per step


- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Total copper thickness 300 μ m, pprox 150 μ m per step


- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Fotal copper thickness 300 μ m, \approx 150 μ m per step


- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Fotal copper thickness 300 μ m, \approx 150 μ m per step


- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Fotal copper thickness 300 μ m, \approx 150 μ m per step

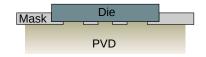

- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Fotal copper thickness 300 μ m, pprox 150 μ m per step

- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Fotal copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- Fotal copper thickness 300 μ m, pprox 150 μ m per step

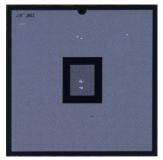
- ► Final patterns within 50 µm of desired size
- ► Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- ► Total copper thickness 300 μ m, \approx 150 μ m per step

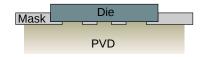

Preparation of the Dies

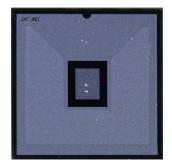

- Standard aluminium topside finish not compatible with silver sintering
- Ti/Ag PVD on contact areas
- Need for a masking solution
- ➔ jig with locating pockets.

Preparation of the Dies

- Standard aluminium topside finish not compatible with silver sintering
- Ti/Ag PVD on contact areas
- Need for a masking solution
- → jig with locating pockets.




Before PVD


Preparation of the Dies

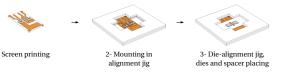
- Standard aluminium topside finish not compatible with silver sintering
- Ti/Ag PVD on contact areas
- Need for a masking solution
- → jig with locating pockets.

24/32

After Ti/Ag PVD

Screen printing

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- ► Two sintering steps using the same temperature profile



Screen printing

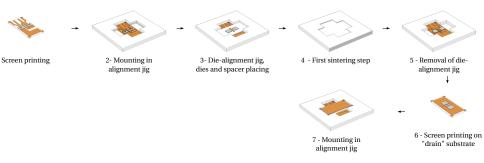
2- Mounting in alignment jig

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile

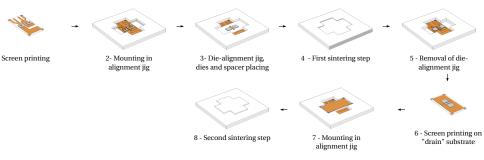
- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile

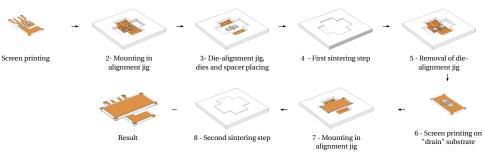
- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile

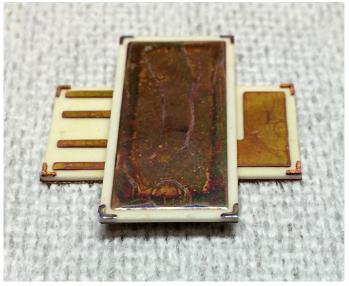


6 - Screen printing on "drain" substrate

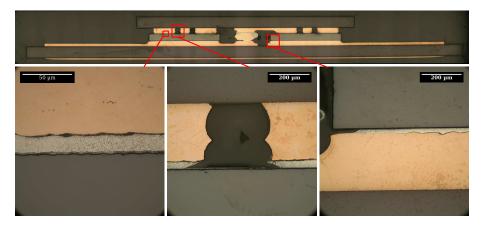

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile


- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile

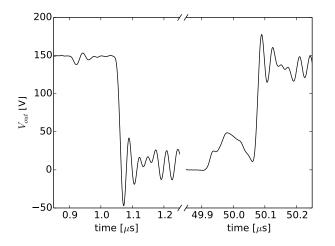
- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile



- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile



Some results



Size: 25×25 mm²

300 Ω Resistive load, 0.5 A current (no cooling system used)

oscillations dues to external layout

Introduction

High-Temperature behaviour of SiC Devices

Packaging for high-temperature converters

Conclusion

► SiC JFET able to operate continuously at high temperature(> 200 °C)

- Must be provided with efficient thermal management (R_{Th} =1-2 K/W)
- Proposition: introduce dual-side cooling
- 3D structure using only high-temperature-rated materials
 - Should be able to operate continuously at 300 °C, including passivation (parylene HT or F)
 - Proposed etching technique offers satisfying resolution
 - Silver sintering used for the interconnects, reliability to be investigated
- Package for demonstration of technology, no cooling attempted yet!

- ► SiC JFET able to operate continuously at high temperature(> 200 °C)
- ► Must be provided with efficient thermal management (R_{Th} =1-2 K/W)
- Proposition: introduce dual-side cooling
- 3D structure using only high-temperature-rated materials
 - Should be able to operate continuously at 300 °C, including passivation (parylene HT or F)
 - Proposed etching technique offers satisfying resolution
 - Silver sintering used for the interconnects, reliability to be investigated
- Package for demonstration of technology, no cooling attempted yet!

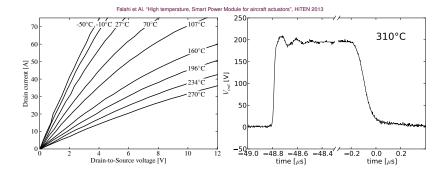
- ► SiC JFET able to operate continuously at high temperature(> 200 °C)
- Must be provided with efficient thermal management (R_{Th} =1-2 K/W)
- Proposition: introduce dual-side cooling
- 3D structure using only high-temperature-rated materials
 - Should be able to operate continuously at 300 °C, including passivation (parylene HT or F)
 - Proposed etching technique offers satisfying resolution
 - Silver sintering used for the interconnects, reliability to be investigated
- Package for demonstration of technology, no cooling attempted yet!

- ► SiC JFET able to operate continuously at high temperature(> 200 °C)
- Must be provided with efficient thermal management (R_{Th} =1-2 K/W)
- Proposition: introduce dual-side cooling
- 3D structure using only high-temperature-rated materials
 - Should be able to operate continuously at 300 °C, including passivation (parylene HT or F)
 - Proposed etching technique offers satisfying resolution
 - Silver sintering used for the interconnects, reliability to be investigated
- Package for demonstration of technology, no cooling attempted yet!

- ► SiC JFET able to operate continuously at high temperature(> 200 °C)
- ► Must be provided with efficient thermal management (R_{Th} =1-2 K/W)
- Proposition: introduce dual-side cooling
- 3D structure using only high-temperature-rated materials
 - Should be able to operate continuously at 300 °C, including passivation (parylene HT or F)
 - Proposed etching technique offers satisfying resolution
 - Silver sintering used for the interconnects, reliability to be investigated
- Package for demonstration of technology, no cooling attempted yet!

This work was funded by Euripides-Catrenes under the grant name "THOR" and FRAE under the grant name "ETHAER".

cyril.buttay@insa-lyon.fr



Credits

- picture of the Airbus A350: airbus
- picture of the thrust reverser: Hispano-Suiza http://www.hispano-suiza-sa.com/spip.php?rubrique48
- picture of the Toyota Prius: Picture by Pawel Golsztajn, CC-SA, available on Wikimedia Commons http: //commons.wikimedia.org/wiki/File:Toyota_Prius.2.JPG
- downhole gas compressor: http: //www.corac.co.uk/products/downhole-gas-compressor
- picture of Jupiter: NASA http://en.wikipedia.org/wiki/File:PIA04866_modest.jpg
- MOSFET wafers from Mitsubishi http://compoundsemiconductor.net/cws/article/fab/ 38238/1/siliconcarbidewafers

Static and Dynamic Characterization of 60 m Ω JFET

Previous results show that SiC JFETs are attractive for > 200 $^\circ\!C$ operation:

- rated at 1200 V (or more), several Amps
- Voltage-controlled devices
- No reliability issue related to gate oxide degradation

Properties of some semiconductors

	"Classical"		wide-bandgap				
	Si	GaAs	3C- SiC	6H- SiC	4H- SiC	GaN	Diamond
Bandgap Energy <i>E</i> g (eV)	1,12	1,4	2,3	2,9	3,2	3,39	5,6
Elec. mobility μ_n (cm ² .V ⁻¹ .s ⁻¹)	1450	8500	1000	415	950	2000	4000
Hole mobility μ_p (cm ² .V ⁻¹ .s ⁻¹)	450	400	45	90	115	350	3800
Critical elec. field E_C (V.cm ⁻¹)	3.10 ⁵	4.10 ⁵	2.10 ⁶	2,5.10 ⁶	3.10 ⁶	5.10 ⁶	10 ⁷
Saturation velocity v_{sat} (cm.s ⁻¹)	10 ⁷	2.10 ⁷	2,5.10 ⁷	2.10 ⁷	2.10 ⁷	2.10 ⁷	3.10 ⁷
Termal cond. λ (W.cm ⁻¹ .K ⁻¹)	1,3	0,54	5	5	5	1,3	20

Ampere