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Vehicle Location Max Temp (°C)
Drive train high temp location 177
Floor 85
Near radiator support structure 100
Back of alternator 160
Cooling circuit 120
Exhaust manifold 649

Most data: Kassakian, J. G. et al. “The Future of Electronics in Automobiles”, ISPSD, 2001, p 15-19



Vehicle Location Max Temp (°C)
Drive train high temp location 177
Floor 85
Near radiator support structure 100
Back of alternator 160
Cooling circuit 120
Exhaust manifold 649

Most data: Kassakian, J. G. et al. “The Future of Electronics in Automobiles”, ISPSD, 2001, p 15-19
» Low-cost, high-volume applications;
» Moving to higher voltages (12V->300V for hybrids)

» Little cooling headroom with silicon devices (T =150 to
175°C)
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Drive train high temp location 177
Floor 85
Near radiator support structure 100
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Exhaust manifold 649

» Low-cost, high-volume applications;

» Moving to higher voltages (12V->300V for hybrids)

» Little cooling headroom with silicon devices (T =150 to
175°C)

= dedicated cooling circuit for power electronic systems
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N The trend:
/ » Hydraulic, Pneumatic and Electric
S networks co-exist in current systems
e s 2 » More-electric aircraft should reduce
g complexity

» objective: 1 MW on-board electrical power

The environment:
» From mild to very harsh:

» Some system are located in the cabin
» Jet engine actuator will face -55°C to 225°C cycling
» Many systems are located in non-pressurised areas

» Long system life: around 30 years
» Reliability is the main concern



Space Exploration

» NASA missions to Venus and Jupiter
» Venus surface temperature : up to 480°C
» Pressure a few kilometres inside Jupiter: 100
bars, at 400°C
» Strong thermal cycling, as temperature can drop
to 140K at night;

» Other awful conditions: winds, corrosive
gases...




Deep oil/gas extraction

» Continuous operation, relatively low
cycling

» Deep drilling: high ambient temperature
(up to 225°C)

» Expected lifetime: 5 years

» Main requirement: sensors and
datalogging

» Example of new applications: downhole
gas compressor
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Maximum operating temperature
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Silicon operating temp is intrisically limited at high voltages.
» 1200 V devices rated at <200 °C junction temperature wa



High-Temperature behaviour of SiC Devices



Test configuration

» High temperature test system

» Silver-sintered interconnects
» Ceramic substrate (DBC)
» Copper-kapton leadframe
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Test configuration

» High temperature test system
» Silver-sintered interconnects
» Ceramic substrate (DBC)
» Copper-kapton leadframe

» DUT: 490 mQ2 SiC JFET from SiCED

Fonfre
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Test configuration

» High temperature test system
» Silver-sintered interconnects
» Ceramic substrate (DBC)
» Copper-kapton leadframe

» DUT: 490 mQ SiC JFET from SiCED
» characterization:

» Tektronix 371A curve tracer
» Thermonics T2500-E conditionner

Source: Thermonics T-2500E Datasheet
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Static Characterization of 490 mQ JFET

Buttay et Al. “Thermal Stability of Silicon Carbide Power JFETs" IEEE transactions on Electron Devices, 2013, 60, 4191-4198
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Power dissipation as a function of the junction temp.
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Thermal Run-away mechanism — Principle

» The device characteristic
» Its associated cooling system

» In region A, the device
dissipates more than the
cooling system can extract
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Thermal Run-away mechanism — Principle

» The device characteristic
Pa

» Its associated cooling system

» In region A, the device
dissipates more than the
cooling system can extract

Device » In region B, the device
dissipates less than the
cooling system can extract
» Two equilibrium points: one
T stable and one unstable

Thermal run-away

Point of no return
~

®

Cooling system

Stable steady-
state

» Above the unstable point,
run-away occurs



Thermal Run-away mechanism — examples

PA

\J

T, T

Always stable
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Thermal Run-away mechanism — examples
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Thermal Run-away mechanism — examples
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Power dissipation as a function of the junction temp.
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Power dissipation as a function of the junction temp.
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High Temperature Thermal Management

Buttay et al. “Thermal Stability of Silicon Carbide Power JFETs”, IEEE Trans on Electron Devices, 2014

80
70r
SiC JFET:
Run-away
s 60} S » 490 mQ, 1200 V
5 > RThJA:4.5K/W
™ > 135 °C ambient
a0l » On-state losses
current changed
from 3.65to 3.7 A
30

100 150 200 250 300 _ 350
time [s]

High temperature capability # reduced cooling needs!

SiC JFETs must be attached to a low-R7, cooling system. % =~
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Conclusions on high-temp. behaviour of SiC JFETs

Falahi et Al. “High temperature, Smart Power Module for aircraft actuators”,
HITEN 2013

7
70 -50°C,-10°C 27°C 70°C 107°C

2

o
3

» SiC JFETs can operate at > 200 °C

Drain current [A]
w s
2 5

S
S

10

0 2 4 6 3
Drain-to-Source voltage [V]

10

I~}

250

200 310°C
150

100

Vour LV1

50

0

_EQQ.O —-48.8 —48.6 —-48.4 " -0.2 0.0 0.2
time [ps] time [ps]

17/32



Conclusions on high-temp. behaviour of SiC JFETs

Falahi et Al. “High temperature, Smart Power Module for aircraft actuators”,

S

Drain current [A]

» SiC JFETs can operate at > 200 °C
» Rps,, dependent on temperature

107°C

10

o LV

v,

310°C

0.0 0.2
time [ps]

I~}

17
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Conclusions on high-temp. behaviour of SiC JFETs

» SiC JFETs can operate at > 200 °C

» Rps,, dependent on temperature
=» sensitive to thermal run-away

» Require efficient thermal management

» low thermal resistance (1-2 K/W)
» low or high ambient temperature
(> 200 °C possible)

HITEN 2013

Falahi et Al. “High temperature, Smart Power Module for aircraft actuators”,
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Packaging for high-temperature converters
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Double Side Cooling

Bondwire

b

gﬁg Die
Solder
DBCH

Copper

| ' 'sc(?ramm
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13113311 \Solder

Heat exchange Baseplate

@

» Standard packaging offers cooling through one side of the
die only



Double Side Cooling

Copper. Heat exchange

- Bondwire Cerami t Tt

Opp
Die DBC

Solder
DBC{I Copper
Ceram|c DBC
\ Copper
) A 1 1 R R Solder
Heat exchange Baseplate Heat exchange

(a) (b)

v

Standard packaging offers cooling through one side of the
die only

v

“38-D” or “Sandwich” package offers thermal management
on both sides

Requires suitable topside metal on the die
Requires special features for topside contact

v

v



The proposed 3-D Structure

Vibus

ouT

v

Two ceramic substrates, in “sandwich” configuration
Two SiC JFET dies (SiCED)
assembled using silver sintering

25.4 mmx12.7 mm (1 inx0.5 in) /
Fonporn

v

v

v
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Ceramic Substrates

» SizN4 identified previously for
high temperature

» For development: use of
alumina

» Etching accuracy exceeds
standard design rules

» Double-step copper etching for
die contact

=» Custom etching technique

Scale drawing for 2.4x2.4 mm? die
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Bonding Material: Silver Sintering

» Based on micro-scale silver
particles (Heraeus LTS-11702P2)

» Low temperature (240 °C) sintering
» Low pressure (2 MPa) process

No liquid phase involved: 2l
» No movement of the die Metallization
» No bridging across terminals
» No height compensation thanks to Die
Wetting Metallization

/.
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Preparation of the Substrates

plain DBC board



Preparation of the Substrates
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Preparation of the Substrates
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Preparation of the Substrates

plain DBC board 1a - Photosensitive resin 1b - Exposure and
coating Development

4b - Exposure and
Development

- >

2 - Etching 3a - resin coating

4a - Photosentive film 3b - Exposure and
laminating Developpment
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Preparation of the Substrates
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plain DBC board 1a - Photosensitive resin 1b - Exposure and 2 - Etching 3a - resin coating
coating Development
v
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Development laminating Developpment



Preparation of the Substrates

» Final patterns within 50 um of desired size
» Two designs, for 2.4x2.4 mm? and 4 x4 mm? dies
» Total copper thickness 300 um, ~ 150 um per step



Preparation of the Dies

» Standard aluminium topside finish
not compatible with silver sintering

» Ti/Ag PVD on contact areas
» Need for a masking solution
=» jig with locating pockets.

Fonfre
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Preparation of the Dies

» Standard aluminium topside finish
not compatible with silver sintering

» Ti/Ag PVD on contact areas
» Need for a masking solution
=» jig with locating pockets.

.
Before PVD After Ti/Ag PVD 04/32



Assembly

e

Screen printing

» Ceramic laser-cut jigs for precise alignment of dies and
substrate

» Two sintering steps using the same temperature profile
b
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alignment jig dies and spacer placing alignment jig
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6 - Screen printing on

8 - Second sintering step 7 - Mounting in "drain" substrate

alignment jig

» Ceramic laser-cut jigs for precise alignment of dies and
substrate
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Assembly

N . s . & R R .

Screen printing 2- Mounting in 3- Die-alignment jig, 4 - First sintering step 5 - Removal of die-
alignment jig dies and spacer placing alignment jig

\\//:F - = - T

6 - Screen printing on

Result 8 - Second sintering step 7 - Mounting in "drain" substrate

alignment jig

» Ceramic laser-cut jigs for precise alignment of dies and
substrate

» Two sintering steps using the same temperature profile
b
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Some results

—

g

Size: 25x25 mm? o
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Some results

50 m 200 pm 200 pm




Some results

200

150

100}

Vour LV

50}
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09 1.0 1.1 1.2 7499 500 501 502
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» 300 Q Resistive load, 0.5 A current (no cooling system used)
» oscillations dues to external layout
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Conclusion

v

SiC JFET able to operate continuously at high temperature(> 200 °C)
Must be provided with efficient thermal management (R7, =1-2 K/W)
Proposition: introduce dual-side cooling

3D structure using only high-temperature-rated materials

» Should be able to operate continuously at 300 °C, including passivation
(parylene HT or F)

» Proposed etching technique offers satisfying resolution

» Silver sintering used for the interconnects, reliability to be investigated

v
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Conclusion

v

SiC JFET able to operate continuously at high temperature(> 200 °C)
Must be provided with efficient thermal management (R7, =1-2 K/W)
Proposition: introduce dual-side cooling

3D structure using only high-temperature-rated materials

» Should be able to operate continuously at 300 °C, including passivation
(parylene HT or F)

» Proposed etching technique offers satisfying resolution

» Silver sintering used for the interconnects, reliability to be investigated

Package for demonstration of technology, no cooling attempted yet!

v

v

v

v
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» picture of the Airbus A350: airbus

» picture of the thrust reverser: Hispano-Suiza
http://www.hispano-suiza-sa.com/spip.php?rubrique48

» picture of the Toyota Prius: Picture by Pawel Golsztajn, CC-SA,
available on Wikimedia Commons http:
//commons.wikimedia.org/wiki/File:Toyota_Prius.2.JPG

» downhole gas compressor: http:
//www.corac.co.uk/products/downhole-gas-compressor

» picture of Jupiter: NASA
http://en.wikipedia.org/wiki/File:PIA04866_modest. jpg

» MOSFET wafers from Mitsubishi
http://compoundsemiconductor.net/cws/article/fab/
38238/1/siliconcarbidewafers
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Static and Dynamic Characterization of 60 mQ JFET

Falahi et Al. “High temperature, Smart Power Module for aircraft actuators”, HITEN 2013

7 250,
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0 2 4 6 8 10 12 =49.0 —48.8 —48.6 —48.4  -0.2 0.0 0.2
Drain-to-Source voltage [V] time [us] time [ps]

Previous results show that SiC JFETs are attractive for
> 200 °C operation:

» rated at 1200 V (or more), several Amps
» Voltage-controlled devices
» No reliability issue related to gate oxide degradation

Fonfre
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Properties of some semiconductors

“Classical” wide-bandgap

Si GaAs | 3C- 6H- 4H- GaN Diamond
SiC SiC SiC

Bandgap Energy

Eg (eV) 1,12 1,4 2,3 2,9 3,2 3,39 5,6
Elec. mobility

pn (cm?.V-1s=1) 1450 | 8500 | 1000 | 415 950 2000 | 4000
Hole mobility

pp (cm?.V—1s=1) 450 400 45 90 115 350 3800
Critical elec. field

Ec (Vem™1) 3.10% | 4105 | 2.108 | 2,5.108 3.108 | 5.106 | 107
Saturation velocity

Vsat (cm.s—1) 107 2107 | 2,5.107| 2.107 | 2.107 | 2.107 | 3.107
Termal cond.

A (W.em—1K-1) 1,3 0,54 5 5 5 1,3 20
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