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GaN Devices for Power Management

I Low on-state specific resistance
(100 times lower than Si)

I Fast-switching device
I Low cost (GaN-on-Si substrate) [5]

I Gan on SiC: 20 $/cm2

I Gan on Saphire: 5 $/cm2

I Gan on Si: 0.5 $/cm2

I Lateral devices (no GaN substrates
available)

Ü Specific thermal management
P. Roussel, “SiC market and industry update,” presented at the Int. SiC Power Electron. Appl.
Workshop, Kista, Sweden, 2011.
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Overview of Available GaN Devices – 1

Manufacturers:
I Panasonic (600 V, 71 mΩ)

enhancement mode
I GaN Systems (650 V, 27 mΩ)

enhancement mode
I Transphorm (600 V, 52 mΩ)

Cascode with HeMT
I EPC (30 V, 4 mΩ)

enhancement mode
Packaging options from standard
to highly specific

Source: Transphorm TPH3205WS datasheet

Source: GaNSystems GS66516T datashee
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Overview of Available GaN Devices – 2

I EPC 2015 GaN transistor chosen for this study
I 30 V, 33 A, 4 mΩ
I 4x1.6 mm2, die 685 µm thick

I Wafer-level packaging
I Land Grid Array (solder bumps on die)
I simple configuration for modelling, processing. . .

I Mounting technique: flip-chip on board, cooling via the bumps.

Lidow, A. et al. “A New Generation of Power
Semiconductor Packaging Paves the Way for
Higher Efficiency Power Conversion” (IWIPP
2015) [3]
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Packaging Requirements for GaN Devices – 1

I Most devices are very sensitive to overvoltage, no
avalanche allowed

I EPC eGaN transistors:
recommended gate voltage 5 V, absolute maximum: 6 V

I Switching frequency: 100s to 1000s of kHz
I Stray inductances of power circuit will cause large losses

I Small package size
I High power density, need to provide good thermal

management.
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Packaging Requirements for GaN Devices – 2

I Very low layout inductance
(ideally < 1 nH)

I Driver and capacitors as close as
possible to power devices

I Use of multi-layer PCB
I Short interconnexions
I Die stacking

Source: Lee, F. C. et al “A New Package of High-Voltage Cascode
Gallium Nitride Device for High-Frequency Applications” (IWIPP 2015)
[2]

Kangping, W. et al. “An Optimized Layout with Low Parasitic
Inductances for GaN HEMTs Based DC-DC Converter” (APEC 2015) [1]
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Substrates for Power Electronics – 1
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Ü Few materials are both Thermal conductors and electrical
insulators (diamond, AlN, Si3N4, Al2O3).
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Substrates for Power Electronics – 2

I (a) DBC: ceramic dielectric
(Al2O3, AlN, Si3N4)

I high thermal conductivity
(20-180 W/K.m)

I expensive
I (b) IMS: organic dielectric clad on

thick metal
I low thermal conductivity

(≈ 1–2 W/K.m [4])
I thin dielectric layer

Ü medium thermal resistance
I low cost

I (c) PCB: organic dielectric
I low thermal conductivity
I multi-layer possible
I low cost
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Overview of Prototypes

GaN device on thin PCB

GaN device on DBC

“flip-flip” GaN device DBC

I 4-point resistance measurement
I RDSon used as a temperature measurement
I GaN transistors have very low RDSon (4 mΩ)

I Interleaved pattern for LGA package
I 400 µm pitch (200 µm features)
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Manufacturing of the PCB prototype

I Ultra-thin PCB
(70 µm resin, 35 µm copper)

I Cleaning
I Mounting of GaN transistors using BGA

repair equipment (Zevac Onyx 21)
I flip-chip alignment feature
I reflow of SAC bumps (217 °C)
I no additional solder (only tacky flux)

13 / 29



Manufacturing of the DBC prototype

Plain DBC board

I Two-step etching:
I thinning of copper in high-resolution

areas (300 µm down to 50 µm)
I patterning of remaining copper

I Mounting using Zevac ONYX 21
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Manufacturing of the “Flip-Flip” Prototype – 1

I Preparation of a flex substrate
(70 µm Cu)

I Mounting of GaN transistor
I Preparation of a DBC substrate
I Deposit of silver paste, alignment
I Low-temperature sintering of

Flex-transistor assembly on DBC
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Manufacturing of The “Flip-Flip” Prototype – 2

Preparation of dies:
I Grinding of silicon substrate

I use of mounting wax
I grinding with P1200 grit paper

I ≈ 600 µm substrate ground down to
200-400 µm

I PVD plating (50 nm Ti, 150 nm Ag)
I Mounting on flex susbtrate
I Sintering

I Nano-Tach-X (NBE tech)
I 210 °C process (bump melt @ 217°C)
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Simulation – Conditions

Thermal Cond.
W/K · m

Copper 400
Alumina 27
Solder bumps 62
Silicon substrate 130
PCB prepreg 0.4
Sintered silver 200

I FEM simulation using COMSOL
I External boundaries: convection conditions (h=8 W/m2 · K )
I backside of substrate:

I TIM
I Heatsink with natural convection boundary (TA = 25 °C)

I Surface power dissipation for GaN device: 10 W.
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Simulation – Results

PCB

I TJ=206°C
I RTh=18 K/W

DBC

I TJ=76°C
I RTh=4.9 K/W

“Flip-flip”

I TJ=75°C
I RTh=4.8 K/W

I Dissipated power: 10 W
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Photograph of the Prototypes
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Experimental Characterization – Calibration

Use of RDSon as a temperature sensitive parameter
I Allow for temperature estimation during operation
I Good sensitivity to temperature
I RDSon is low
I non-linearities at low drain current
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Experimental Characterization – Identification
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I Calibration curve useable from 1 to 40 A drain current
I Voltage-drop to monitor of 50–300 mV
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Experimental Characterization – Measurement of RTh

I Test vehicle attached to a large
heatsink with TIM

I Device continuously on
I Monitoring of VDS for 20 min
I Estimation of temperature from

RDSon variation
I “Flip flip” prototype not functionnal
I Ambient: 26 °C

V
4V

ID

ID =20 A ID =30 A ID =40 A
PCB 85 °C Run-away
DBC 36 °C 49 °C 73 °C
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Measurement Results

ID Power TJ RTh
(A) (W) (°C) Experimental Simulation

PCB 25 3.9 125 25 K/W 18 K/W
DBC 40 7.46 73 6.2 K/W 4.9 K/W

I High experimental RTh for PCB might be due to bending
I Clear improvement of ceramic substrate over PCB
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Integrated Half-Bridge on DBC

I Layout: design reference from TI
I Substrate: DBC
I Thinned-down copper on

high-res areas:
I GaN devices (EPC 2015)
I Gate driver (TI 5113)
I Capacitors for driver

I Remaining copper 300 µm thick
I On par with 4 mΩ transistors
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Conclusions

I Clear advantage of ceramic substrate for thermal management
I Proposed manufacturing technique for high-resolution etching of DBC
I Electrical-based junction temperature measurement method

inaccurate, improvements needed

Future Work:
I Assemble operating “flip-flip” structures
I Investigate AlN ceramic (expected improvement ≈1 K/W in RTh)
I Improve thermal measurements, including ZTh measurement
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