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SOBOLEV-HERMITE VERSUS SOBOLEV NONPARAMETRIC DENSITY

ESTIMATION ON R

D. BELOMESTNY(1), F. COMTE(2) & V. GENON-CATALOT(3)

Abstract. In this paper, our aim is to revisit the nonparametric estimation of f assuming
that f is square integrable on R, by using projection estimators on a Hermite basis. These
estimators are defined and studied from the point of view of their mean integrated squared
error on R. A model selection method is described and proved to perform an automatic bias
variance compromise. Then, we present another collection of estimators, of deconvolution type,
for which we define another model selection strategy. Considering Sobolev and Sobolev-Hermite
spaces, the asymptotic rates of these estimators can be computed and compared: they are mainly
proved to be equivalent. However, complexity evaluations prove that the Hermite estimators
have a much lower computational cost than their deconvolution (or kernel) counterparts. These
results are illustrated through a small simulation study.
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1. Introduction

Consider X1, . . . ,Xn n i.i.d. random variables with unknown density f . The nonparametric
estimation of f has been the subject of such a huge number of contributions in the past decades
that it is difficult to make an exhaustive list of references. Roughly speaking, there are two
approaches, kernel or projection method. In the projection method which is our concern here,
for f belonging to L2(R), considering an orthonormal basis of this space, estimators are built
by estimating a finite number of coefficients of the development of f on the basis. Fourier and
wavelet bases, for instance, are commonly used. Bases of orthogonal polynomials are also used
for compactly supported densities (see e.g. Donoho et al. (1996), Birgé and Massart (2007),
and Efromovich (1999), Massart (2007), Tsybakov (2009) for reference books). For densities
with non compact support included in R+, recent contributions use bases composed of Laguerre
functions (see e.g. Comte and Genon-Catalot (2015), Belomestny et al. (2016), Mabon (2015)).

To our knowledge, for densities on R, the use of a Hermite basis is only considered in Schwarz
(1967) and Walter (1977). In this paper, our aim is to revisit the nonparametric estimation
of f assuming that f ∈ L2(R) by using projection estimators on a Hermite basis. To find
asymptotic rates of convergence and optimize the risk bound, authors generally assume that the
unknown density belongs to a function space specifying some regularity properties of f . Here,
we consider the Sobolev-Hermite spaces which are naturally associated with the Hermite basis
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and are defined in Bongioanni and Torrea (2006). It turns out that the Sobolev-Hermite space
of regularity index s is included in the classical Sobolev space with same index. Therefore, we
are led to compare the performances of the projection estimators on the Hermite basis with
those of the deconvolution estimators which are projection estimators on the sine cardinal basis.
Deconvolution estimators have been widely studied mainly for observations with additive noise
and also for direct observations (see e.g. Comte et al. (2008)). The optimal L2-risk for density
estimation on a Sobolev ball with regularity index s is of order O(n−2s/(2s+1)), see Schipper
(1996), Efromovich (2008) and Efromovich (2009) For densities having a fifth-order moment
belonging to a Sobolev Hermite ball with the same regularity index s, we obtain the same
rate. Therefore, from the asymptotic point of view, no difference can be made between these
two classes of estimators at least for non heavy tailed densities. Other examples and counter-
examples are discussed.
While most papers focus on deriving minimax convergence rates, the computational efficiency of
the proposed estimator is not often considered. This issue is especially important for densities
with non compact support. We prove that the Hermite estimators have a much lower complexity
than the deconvolution estimators, resulting in a noteworthy computational gain.
In Section 2, we present the Hermite basis, and the L2-risk of the associated projection estimators
is studied together with the possible orders for the variance term. A data-driven choice of the
dimension is proposed and the associated estimator is proved to be realize adequately the bias-
variance tradeoff. In Section 3, results on deconvolution estimators are presented. Section 4
is devoted to the study of asymptotic rates of convergence. From this point of view, the two
approaches of the previous sections are proved to be equivalent, except in some special cases.
Then, we compare the complexity of the procedures and conclude that the Hermite method has
a substantial advantage from this point of view. Section 5 is devoted to numerical simulation
results, and aims at illustrating the previous findings. Proofs are gathered in Section 6.

2. Projection estimators on the Hermite basis.

2.1. Hermite basis. Below, we denote by ‖.‖ the L2-norm on R and by 〈·, ·〉 the L2-scalar
product.

The Hermite polynomial of order j is given, for j ≥ 0, by:

Hj(x) = (−1)jex
2 dj

dxj
(e−x2

).

Hermite polynomials are orthogonal with respect to the weight function e−x2
and satisfy:∫

R
Hj(x)Hℓ(x)e

−x2
dx = 2jj!

√
πδj,ℓ (see e.g. Abramowitz and Stegun (1964)). The Hermite

function of order j is given by:

(1) hj(x) = cjHj(x)e
−x2/2, cj =

(
2jj!

√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R). The density f to be estimated can
be developed in the Hermite basis f =

∑
j≥0 aj(f)hj where aj(f) =

∫
R
f(x)hj(x)dx = 〈f, hj〉.

We define Sm = span(h0, h1, . . . , hm−1) the linear space generated by them functions h0, . . . , hm−1

and fm =
∑m−1

j=0 aj(f)hj the orthogonal projection of f on Sm.

2.2. Hermite estimator and risk bound. Consider a sample X1, . . . ,Xn of i.i.d. random
variables with density f , belonging to L2(R). We define for each m ≥ 0, f̂m =

∑m−1
j=0 âjhj

a projection estimator of f , with âj = n−1
∑n

i=1 hj(Xi), that is, an unbiased estimator of

fm =
∑m−1

j=0 aj(f)hj .
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These estimators are considered in Schwartz (1967) and then in Walter (1977). As usual, the
L2-risk is split into a variance and a square bias term. We give a more accurate rate for the
variance term than in the latter papers. Indeed, we have the classical decomposition

E(‖f̂m − f‖2) = ‖f − fm‖2 +
m−1∑

j=0

Var(âj) = ‖f − fm‖2 + 1

n

m−1∑

j=0

Var(hj(X1))

≤ ‖f − fm‖2 + Vm

n
,(2)

where

(3) Vm =

∫

R




m−1∑

j=0

h2j (x)


 f(x)dx = E(

m−1∑

j=0

h2j (X1)).

The infinite norm of hj satisfies (see Abramowitz and Stegun (1964), Szegö (1975) p.242):

(4) ‖hj‖∞ ≤ Φ0, Φ0 ≃ 1, 086435/π1/4 ≃ 0.8160.

Therefore, we have Vm ≤ Φ2
0m, as usual for projection density estimator, see Massart (2007),

Chapter 7. However, more precise properties of the Hermite functions provide refined bounds:

Proposition 2.1.

(i) There exists constant c such that, for any density f and for any integer m,

Vm ≤ cm5/6.

(ii) If E|X|5 < +∞, then there exists constant c′ such that for any integer m,

Vm ≤ c′m1/2.

(iii) Assume that there exists K > 0 with

|f(x)| ≤ g(x) := α
1

(1 + |x|)a , for |x| ≥ K and α > 0, a > 1.

Then, there exists c′′ such that, for m large enough, Vm ≤ c′′m
a+2

2(a+1) .

Proposition 2.1 (i) shows that Vm is at most of order m5/6, a property obtained in Wal-
ter (1977). However (ii)-(iii) show that this order can be improved depending on additional
assumptions on f .

In the next paragraph, we make no assumption on the regularity properties of f and propose
a data-driven choice of the dimension m leading to an estimator whose L2-risk automatically
realizes the bias-variance trade-off in a non asymptotic way.

2.3. Model selection. For model selection, we must estimate the bias and the variance term.

Define Mn = {1, . . . ,mn}, where mn is the largest integer such that m
5/6
n ≤ n/ log(n) and set

(5) m̂ = arg min
m∈Mn

{−‖f̂m‖2 + p̂en(m)}, p̂en(m) = κ
V̂m

n
, V̂m =

1

n

n∑

i=1

m−1∑

j=0

h2j (Xi),

where κ is a numerical constant. The quantity −‖f̂m‖2 estimates −‖fm‖2 = ‖f − fm‖2 − ‖f‖2,
and we can ignore the (unknown) constant term ‖f‖2. Usually, the penalty is chosen equal to
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κΦ2
0m/n, which is the known upper bound of the variance term, where Φ0 is defined by (4).

Here, the fact that the order of Vm varies according to the assumptions on f justifies that we

rather use V̂m, an unbiased estimator of Vm. We can prove the following result.

Theorem 2.1. Assume that f is bounded and that infa≤x≤b f(x) > 0 for some interval [a, b].

Then there exists κ0 such that, for κ ≥ κ0, the estimator f̂m̂ where m̂ is defined by (5) satisfies

E
(
‖f̂m̂ − f‖2

)
≤ C inf

m∈Mn

(
‖f − fm‖2 + κ

Vm

n

)
+

C ′

n
,

where C is a numerical constant(C = 4 suits) and C ′ is a constant depending on ‖f‖∞.

The estimator f̂m̂ is adaptive in the sense that its risk bound achieves automatically the
bias-variance compromise, up to a negligible term of order O(1/n). It follows from the proof
that κ0 = 8 is possible. This value of κ0 is certainly not optimal; finding the optimal theoretical
value of κ in the penalty is not an easy task, even in simple models (see for instance Birgé and
Massart (2007) in a Gaussian regression model). This is why it is standard to calibrate the value
κ in the penalty by preliminary simulations, as we do in Section 5.

Actually, the assumption infa≤x≤b f(x) > 0 is due to the fact that the proof requires the
condition

(6) ∀m ≥ m0, Vm ≥ 1, and ∀a > 0,
∑

m∈Mn

e−a
√
Vm ≤ A < +∞.

Condition (6) holds, as we can prove:

Proposition 2.2. If infa≤x≤b f(x) > 0 for some interval [a, b], then, for m large enough, Vm ≥
c′′m1/2 where c′′ is a constant.

3. Deconvolution estimators.

As we want to compare the performances of projection estimators on the Hermite basis to those
of projection estimators on the sine cardinal basis, we recall the definition of the latter estimators,
i.e. the deconvolution estimators. Let ϕ(x) = sin(πx)/(πx) which satisfies ϕ∗(t) = 1[−π,π](t),

where ϕ∗ denotes the Fourier transform of ϕ. The functions (ϕℓ,j(x) =
√
ℓϕ(ℓx − j), j ∈ Z)

constitute an orthonormal system in L2(R). The space Σℓ generated by this system is exactly
the subspace of L2(R) of functions having Fourier transforms with compact support [−πℓ, πℓ].
The orthogonal projection f̄ℓ of f on Σℓ satisfies f̄

∗
ℓ = f∗1[−πℓ,πℓ]. Therefore,

(7) ‖f − f̄ℓ‖2 =
1

2π

∫

|t|≥πℓ
|f∗(t)|2dt.

The projection estimator f̃ℓ of f is defined by:

(8) f̃ℓ(x) =
1

2π

∫ πℓ

−πℓ
e−itx 1

n

n∑

k=1

eitXkdt =
1

n

n∑

k=1

sin(πℓ(Xk − x))

π(Xk − x)
.

This expression corresponds to the fact that:

f̄ℓ =
1

2π

∫ πℓ

−πℓ
e−itxf∗(t)dt =

∑

j∈Z
aℓ,jϕℓ,j(x), aℓ,j = 〈f, ϕℓ,j〉.
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Contrary to f̂m, the estimator f̃ℓ cannot be expressed as the corresponding sum with the es-
timated coefficients ãℓ,j = 1

n

∑n
k=1 ϕℓ,j(Xk) as this sum would be infinite and not defined. To

compute it in concrete, one can use (8) or a truncated version

f̃
(n)
ℓ (x) =

∑

|j|≤Kn

ãℓ,jϕℓ,j(x), ãℓ,j =
1

n

n∑

k=1

ϕℓ,j(Xk).

which creates an additional bias but is comparable to the previous Hermite estimator. We give

the results for f̃ℓ and f̃
(n)
ℓ .

Proposition 3.1. The estimator f̃ℓ satisfies

E(‖f̃ℓ − f‖2) ≤ ‖f − f̄ℓ‖2 +
ℓ

n
.

If moreover M2 =
∫
x2f2(x)dx < +∞, then the estimator f̃

(n)
ℓ satisfies

E(‖f̃ (n)
ℓ − f‖2) ≤ 2‖f − f̄ℓ‖2 +

ℓ

n
+ 4

ℓ2(M2 + 1)

Kn
.

If ℓ ≤ n and Kn ≥ n2, the last term is of order O(ℓ/n) and can be associated to the variance
term ℓ/n. Note that condition Kn ≥ n2 implies that the computation of a large number of

coefficients is required for f̃
(n)
ℓ , for large n. In practice, we take Kn even smaller than n in order

to keep reasonable computation times.
As in the previous case, we can define a data-driven choice of the cutoff parameter ℓ and build
adaptive estimators:

(9) ℓ̃ = argmin
ℓ≤n

{−‖f̃ℓ‖2 + κ̃
ℓ

n
}, ℓ̃n = argmin

ℓ≤n
{−‖f̃ (n)

ℓ ‖2 + κ̃
ℓ

n
},

where κ̃ is a numerical constant. Note that

‖f̃ℓ‖2 =
1

n2

∑

1≤j,k≤n

sin(πℓ(Xk −Xj))

π(Xk −Xj)
, ‖f̃ (n)

ℓ ‖2 =
∑

|j|≤Kn

|ãℓ,j |2.

We give the result for f̃
(n)
ℓ only, as ‖f̃ (n)

ℓ ‖2 is faster to compute if Kn is chosen in a restricted
range, Kn ≤ n, see Section 4.4 and Section 5.

The following result holds.

Theorem 3.1. If Kn ≥ n2 and M2 =
∫
x2f2(x)dx < +∞, then there exists a numerical

constant κ̃0 such that, for κ̃ ≥ κ̃0, the estimator f̃
(n)

ℓ̃n
where ℓ̃n is defined by (9) satisfies

E
(
‖f̃ (n)

ℓ̃n
− f‖2

)
≤ C1 inf

ℓ≤n

(
‖f − fℓ‖2 + κ̃

ℓ

n
+

ℓ(M2 + 1)

n

)
+

C2

n
,

where C1 is a numerical constant and C2 is a constant depending on ‖f‖∞.

For f̃ℓ̃, an analogous risk bound may be obtained, without condition M2 < +∞ and without
the term ℓ(M2 + 1)/n in the bound.

For Theorem 3.1, we refer to Comte et al. (2008), Proposition 5.1, p.97.
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4. Comparison of rates of convergence and discussion.

In this section, we compute the rates of convergence that can be deduced from the optimization
of the upper bounds of L2-risks. This requires to assess the rate of decay of the bias terms
‖f − fm‖2 in the Hermite case, ‖f − f̄ℓ‖2 in the deconvolution framework. The latter is usually
obtained by assuming that the unknown density f belongs to a Sobolev space. For the former,
we consider the Sobolev-Hermite spaces which are naturally linked with the Hermite basis.

4.1. Sobolev and Sobolev-Hermite regularity. For s > 0, the Sobolev-Hermite space with
regularity s may be defined by:

(10) W s = {f ∈ L2(R), ‖f‖2s,sobherm =
∑

n≥0

nsa2n(f) < +∞}

where an(f) = 〈f, hn〉 is the n-th component of f in the Hermite basis. We refer to Bongioanni
and Torrea (2006) for a definition using operator theory. Let F = {∑j∈J ajhj , J ⊂ N, finite }
be the set of finite linear combinations of Hermite functions and C∞

c the set of infinitely derivable
functions with compact support. The sets C∞

c and F are dense in W s. As the Fourier transform
of hn satisfies

(11) h∗n =
√
2πinhn,

f ∈ W s if and only if f∗ ∈ W s. We now describe W s when s is integer. Let

A+f = f ′ + xf, A−f = −f ′ + xf

The following result is proved in Bongioanni and Torrea (2006). For sake of clarity, we give a
simplified proof.

Proposition 4.1. For s integer, the Sobolev-Hermite space W s is equal to:

W s = {f ∈ L2(R), f admits derivatives up to order s,

‖|f‖|s,sobherm =
∑

j1, . . . , jm ∈ {−,+},
1 ≤ m ≤ s

‖Aj1 . . . Ajmf‖+ ‖f‖ < +∞}.

Moreover, the following statements are equivalent: for s integer,

(1) f ∈ W s,

(2) f admits derivatives up to order s which satisfy f, f ′, . . . , f (s), xs−ℓf (ℓ), ℓ = 0, . . . , s − 1
belong to L2(R).

The two norms ‖f‖s,sobherm and ‖|f‖|s,sobherm are equivalent.
Now, we recall the definition of usual Sobolev spaces. The Sobolev space with regularity index
s is defined by

(12) Ws = {f ∈ L2(R), ‖f‖2s,sob =
∫

R

(1 + t2s)|f∗(t)|2dt < +∞}

If s is integer, then

Ws = {f ∈ L2(R), f admits derivatives up to order s

such that ‖|f‖|2s,sob = ‖f‖2 + ‖f ′‖2 + . . .+ ‖f (s)‖2 < +∞}.
The two norms ‖|.‖|s,sob and ‖.‖s,sob are equivalent. Therefore, for s integer, W s ⊂ Ws.
Morevover, the following properties are proved in Bongioanni and Torrea (2006): for all s > 0,

• W s  Ws. If f ∈ Ws has compact support, then f ∈ W s.
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•

(13) f ∈ W s ⇒ xsf ∈ L2(R).

4.2. Rates of convergence. Now, we look at asymptotic rates of convergence. We first con-
sider rates for Hermite projection estimators. We already studied the variance rate Vm/n (see
the bounds for Vm in Proposition 2.1). If f belongs to

W s(L) = {f ∈ L2(R),
∑

n≥0

nsa2n(f) ≤ L},

then ‖f−fm‖2 ≤ Lm−s. Plugging this and the bounds of Proposition 2.1 in Inequality (2) gives
the following rates of the L2(R)-risk.

Proposition 4.2. Assume that f ∈ W s(L) and consider the three cases (i), (ii), (iii) of Propo-
sition 2.1.
Case (i) (general case). For mopt = [n1/(s+(5/6))], E(‖f̂mopt − f‖2) . n

− s
s+(5/6) .

Case (ii). For mopt = [n1/(s+(1/2))], E(‖f̂mopt − f‖2) . n
− s

s+1/2 .

Case (iii). For mopt = [n1/(s+(a+2)/(2(a+1)) ], E(‖f̂mopt − f‖2) . n
− s

s+(a+2)/[2(a+1)] .

Case (ii) gives the best rate. Note that the rate in case (iii) is strictly better than in case
(i) as (a + 2)/(a + 1) < 5/3 as soon as a > 1/2. Cases (ii) − (iii) improve the results of
Schwarz (1967) and Walter (1977).

Now, we can compare the rates to those of projection estimators in the sine cardinal basis.
The following result is deduced from Proposition 3.1 and (7).

Proposition 4.3. If f ∈ Ws(R) = {f ∈ L2(R), ‖f‖2s,sob =
∫
R
(1 + t2s)|f∗(t)|2dt ≤ R}, and

ℓopt = n1/(2s+1), we have E(‖f̃ℓopt − f‖2) . n−2s/(2s+1).

If moreover Kn ≥ n2, E(‖f̃ (n)
ℓopt

− f‖2) . n−2s/(2s+1).

In Schipper (1996) it is proved that this rate is minimax optimal on Sobolev balls (at least for
an integer s), see also Efromovich (2002) for s < 1/2 and other references.
Let us compare results of Proposition 4.3 and of Proposition 4.2. As W s ⊂ Ws, see Section 4.1,

the comparison is relevant. In case (i), we see that the estimator f̃ℓopt has a better rate than

f̂mopt . In case (ii), the estimators have the same rate. In case (iii), the estimator f̃ℓopt is slightly

better than f̂mopt . In view of case (ii), the Hermite method is competitive. Indeed the moment
condition for (ii) is not very strong.

4.3. Rates of convergence in some special cases. When the density f belongs to W s for all
s, we must obtain directly the exact rate of decay of the bias term. This is possible for centered
Gaussian and some related densities as one can make an exact computation of the coefficients
aj(f). Let

(14) fp,σ(x) =
x2p

σ2pC2p
fσ(x) with fσ(x) =

1

σ
√
2π

exp (− x2

2σ2
) and C2p = EX2p,

for X a standard Gaussian variable. The distribution fp,σ(x)dx is equal to εG1/2 for ε a sym-
metric Bernoulli variable, G a Gamma(p+ (1/2), 1/(2σ2)) variable, independent of ε.
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Proposition 4.4. Assume that f = fσ. Then for mopt = [(log n)/λ] where λ = log
(
σ2+1
σ2−1

)2
,

we have
E(‖f̂mopt − f‖2) .

√
log n/n.

The same result folds for f = fp,σ or any finite mixture of such distributions. We can compare
the rate of Proposition 4.4 with the rate log(n)/n, which is optimal in the class of analytical
densities (see Ibragimov and Has’minskii (1980)). So the Hermite based approach outperforms
the kernel method in the case of finite normal mixtures.

For f = fσ, the estimator f̃ℓ satisfies,

E(‖f̃ℓ − f‖2) .
1

ℓ
exp (−ℓ2/2σ2) + n−1ℓ.

For ℓopt = σ
√
2 log n, the rate of f̃ℓopt is

√
log n/n. The rate is identical to the one obtained in

Proposition 4.4. The result is analogous for f = fp,σ.
Finally, the Cauchy density will provide a counter-example. Let

f(x) =
1

π(1 + x2)
.

From Proposition 2.1, case (iii), we take a = 2 and obtain for the variance term Vm . m2/3.
Using Proposition 4.1, we check that f ∈ W 1, f /∈ W 2. Moreover, by (13), xsf /∈ W s for

s ≥ 3/2. Therefore, f /∈ W 3/2, so the best rate we can obtain is n−s/s+(2/3) with s < 3/2, for
mopt = [n1/(s+(2/3))].

For the sinus cardinale method, f∗(t) = exp (−|t|), so that ‖f − fℓ‖ . exp (−2πℓ). Therefore,

for ℓopt = log n/2π, the estimator f̃ℓopt has a risk with rate log n/n. This is much better than
for the Hermite estimator.

This discussion on rates of convergence points out the interest of the adaptive method. Indeed,
it automatically realizes the bias-variance compromise and thus the previous rates are reached
without any specific knowledge on f .

4.4. Complexity. In this paragraph, we compare the Hermite and deconvolution estimators
from another point of view: the computational efficiency.

Consider an estimator f̂n of a function f whose L2-risk can be evaluated on a ball B(L) of

some functional space. Define its complexity Cf̂n(ε) as the minimal cost of computing f̂n at the

observation points X1, . . . ,Xn, given that

sup
f∈B(L)

E(‖f̂n − f‖2) ≤ ε2.

Let us compute the complexity of the estimate f̃ℓopt on the Sobolev ball Ws(L). As we need

to evaluate the function sin(πℓ·)
π· at all points (Xk − Xj), 1 ≤ k, j ≤ n, the cost of computing

f̃ℓopt is of order n2. Thus ε2 ≍ n−2s/(2s+1) yields n ≍ ε−2−1/s so that C
f̃ℓopt

(ε) ≍ ε−4−2/s as

ε → 0. So even in the case of infinitely smooth densities, the complexity of the deconvolution
estimate can not be (asymptotically) lower than ε−4. A natural question is whether one can find
an estimate with lower order of complexity. Note that the complexity would be the same for a
kernel estimator on a ball of a Nikol’ski class with regularity s, see Tsybakov (2009), at least
for kernels with a non compact support used in Ibragimov and Has’minskii (1980).

For the truncated estimator f̃
(n)
ℓopt

, the cost is of order nKn: indeed, one must compute the

ϕℓ,j(Xi) for i = 1, . . . , n and |j| ≤ Kn. Consequently, compared to the previous one, this
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estimate is competitive in term of computational cost as soon as Kn < n (however this choice
would contradict Theorem 3.1 where Kn ≥ n2).

Now, let us look at the projection estimator f̂mopt for f ∈ W s(L). The cost of computing a

projection estimator f̂m at observation points X1, . . . ,Xn corresponds to the cost of computing
hj(Xi) for i = 1, . . . , n and j = 0, . . . ,m− 1, i.e. is of order nm. Thus we derive the following
proposition.

Proposition 4.5. Assume that f ∈ W s(L) and consider the three cases (i), (ii), (iii) of

Proposition 2.1. The the complexity of the estimate f̂mopt is given by Cf̂ (ε) ∼ ε−2− 2(α+1)
s with

α = 5/6, 1/2, (a + 2)/[2(a + 1)], respectively.

Proof of Proposition 4.5. Taking ε2 ≍ n−2s/(2s+1), hence n ≍ ε−2−1/s, and the three values
of mopt given Proposition 4.2 yield the result. ✷

As can be seen, the complexity order of the Hermite-based estimate f̂mopt is lower than the

complexity order of the deconvolution estimate f̃ℓopt provided s > α. So in the case of densities
with finite fifth moment already for s > 1/2, our approach leads to estimates with much lower

complexity. The difference between the estimates f̂mopt and f̃ℓopt becomes especially pronounced

in the limiting case s → ∞, where Cf̂mopt
(ε) ≍ ε−2 while C

f̃ℓopt
(ε) ≍ ε−4 as ε → 0, resulting in a

huge computational gain.

Projection estimator Projection estimator Projection estimator Deconvolution estimator

on a compact set A on R on R+ on R
Besov ball Sobolev-Hermite Sobolev-Laguerre Sobolev ball
of B2,s,∞(A) ball W s(L) ball of index s Ws(L)

ε−2−2/s ε−2−3/s ε−2−4/s ε−4−2/s

(best case α = 1/2)

Table 1. Complexity for density estimation in different contexts.

For any projection estimator, the cost of computation if of order nmopt where mopt is the
optimal dimension. In the case of a density with compact support A, if we evaluate the L2-
risk of a projection estimator on a Besov ball of B2,s,∞(A) , we have ε2 ≍ n−2s/(2s+1) with

mopt ≍ n1/(2s+1), thus a cost of order ε−2−2/s, see Barron et al. (1999) for rates and definition
of Besov spaces.

In the case of a density of R+, the best L2-risk of a projection estimator on a Sobolev-
Laguerre ball of index s is of order n−s/(s+1) with mopt ≍ n1/(s+1), hence a cost of order ε−2−4/s,
see Belomestny et al. (2016).

All these results are summarized in Table 1.

5. Simulation results

In this Section, we propose a few illustrations of the previous theoretical findings. To that
aim, we consider several densities, fitting different assumptions of our setting.

(i) A Gaussian N (0, 1),
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Figure 1. Left: m 7→ V̂m/
√
m for 1 sample of densities (i) (blue line), (iv)

(cyan stars), (vi) (red dashed), (ix) (green x marks) and m 7→ V̂m/m5/6 for 1
sample of densities (i) (blue dashed) and (ix) (green dash-dot). Right: the same
as previously for 10 samples.

(ii) A Gaussian N (0, σ2), σ = 0.5,
(iii) A mixed Gaussian density 0.4N (−3, σ2) + 0.6N (3, σ2), σ = 0.5,
(iv) A Gamma γ(3, 0.5) density,
(v) A mixed Gamma 0.4γ(2, 1/2) + 0.6γ(16, 1/4)
(vi) A beta density β(3, 3),
(vii) A beta density β(3, 6),

(viii) Laplace density f(x) = e−|x|/2,
(ix) A Cauchy density, f(x) = 5/[π(1 + (5x)2)].

Density (i) is proportional to the first basis function h0 and should be perfectly estimated in
the Hermite procedure, densities (vi) and (vii) are compactly supported and density (ix) does
not admit any moment (in particular no fifth moment, so it does not fit case (ii) of Proposition
2.1). Hermite functions are recursively computed via (26) and with normalization (1).

We plot in Figure 1 the representation of m 7→ V̂m/
√
m for 1 and 10 samples drawn from

densities (i), (iv), (vi), (ix) (see (5)). It seems that the ratio is stable along the repetitions,
and converges to a fixed value, which is the same in the first three cases. On the contrary,

m 7→ V̂m/m5/6 given for (i) and (ix) seems to decrease and to tend to zero in any case. It is

tempting to conclude from these plots that the order of Vm is O(m1/2) in a rather general case.

We have implemented the Hermite projection estimator f̂m̂ with m̂ given in (5), f̃
(n)

ℓ̃n
with

ℓ̃n given by (9) and the kernel estimator given by the function ksdensity of Matlab. For the
model selection steps of the first two estimators, the two constants κ and κ̃ of the procedures
have been both calibrated by preliminary simulations including other densities than the ones
mentioned above (to avoid overfitting): the selected values were κ = κ̃ = 4. We considered
two sample sizes n = 250 and n = 1000, but as the sine cardinale procedure is rather slow, we
only took K250 = K1000 = 100. The theoretical value Kn = n2 is unreachable in practice (the
computing time becomes much too large), and our choice of Kn is consistent with the complexity
considerations of Section 4.4.

For mn, we should take (n/ log(n))6/5, which is of order 100 for n = 250 and 400 for n = 1000.
We took m250 = m1000 = 200 as a compromise. The cutoff ℓπ is selected among 100 equispaced
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values between 0 and 10. For each distribution, we present in Table 2 the MISE computed over
200 repetitions, together with the standard deviation. In the three cases, we provide also the
mean (and standard deviations in parenthesis) of the selected dimension (Hermite), cutoff (Sine
cardinale) or bandwidth (kernel).

n = 250 n = 1000
density Hermite Sin. Card. Kernel Hermite Sin. Card. Kernel

(i) 0.5 (1.4) 2.0 (1.8) 2.9 (2.1) 0.1 (0.4) 0.6 (0.5) 1.1 (0.6)
1.08 (0.32) 0.77 (0.08) 0.35 (0.03) 1.08 (0.53) 0.87 (0.08) 0.27 (0.01)

(ii) 4.7 (4.7) 4.7 (4.9) 6.0 (4.2) 1.4 (1.3) 1.4 (1.4) 2.1 (1.3)
8.87 (3.69) 1.46 (0.21) 0.17 (0.01) 11.6 (5.1) 1.65 (0.24) 0.13 (0.005)

(iii) 4.9 (2.6) 5.5 (2.5) 24.2 (14.5) 1.5 (0.9) 1.5 (0.9) 11.1 (3.1)
11.6 (1.5) 1.28 (0.13) 0.51 (0.12) 14.3 (2.0) 1.53 (0.10) 0.39 (0.04)

(iv) 5.6 (3.4) 5.3 (3.4) 4.6 (2.9) 1.8 (1.0) 1.8 (1.0) 1.9 (1.0)
6.28 (2.64) 1.25 (0.19) 0.27 (0.02) 11.9 (4.5) 1.7 (0.25) 0.21 (0.01)

(v) 7.2 (3.6) 6.6 (2.8) 17.1 (2.6) 2.4 (0.9) 2.7 (0.8) 10.2 (1.2)
15.1 (2.0) 1.13 (0.20) 0.74 (0.07) 18.2 (2.6) 1.67 (0.27) 0.57 (0.02)

(vi) 7.2 (7.2) 7.3 (7.4) 12.8 (8.3) 3.2 (2.6) 3.3 ( 2.7) 4.8 (2.7)
46.5 (10.5) 3.14 (0.29) 0.07 (0.005) 63.3 (27.3) 3.6 (0.65) 0.05 (0.002)

(vii) 17.2 (11.3) 19.3 (15.6) 19.4 (12.2) 5.8 (3.1) 6.3 (4.1) 7.0 ( 4.0)
104.2 (25.5) 4.77 (0.91) 0.05 (0.004) 143.3 (13.5) 5.89 (0.85) 0.04 (0.002)

(viii) 7.4 (2.0) 6.7 (3.0) 5.5 (3.2) 2.6 (0.8) 2.5 (0.8) 2.3 (1.1)
2.5 (2.96) 1.03 (0.25) 0.36 (0.04) 7.8 (4.4) 1.42 (0.32) 0.27 (0.01)

(ix) 21.6 (9.1) 21.5 (9.3) 18.6 (10.6) 6.9 (2.9) 6.9 (3.0) 7.6 (3.9)
65 (25) 3.7 (0.7) 0.10 (0.01) 97 (21) 4.71 (0.77) 0.08 (0.004)

Table 2. Results after 200 iterations of simulations of density (i) to (ix). For
each density (i)-(ix), first line: MISE× 1000 with (std × 1000) in parenthesis;
second line: mean of selected dimension (Hermite), cutoff (sinus cardinale) or
bandwidth (kernel) with std in parenthesis.

We can see from the results of Table 2 that the Hermite and sinus cardinale methods give very
similar results, except for the N (0, 1) where the Hermite projection is much better as expected,
as the procedure most of the time chooses m = 1. The kernel method seems globally less
satisfactory. The noteworthy difference between the first two methods is the computation time:
as the models are nested in the Hermite projection strategy, all coefficients can be computed
once for all, and then the dimension is selected. In the sinus cardinale strategy, each time ℓ is
changed, all the coefficients have to be recalculated. For instance, when the maximal dimension
proposed mn is 50, and Kn is 100, the elapsed times for 100 simulations is: for n = 250, around
0.5s for Hermite, 41s for sinus cardinale; for n = 1000, around 1.2s for Hermite, 137s for sinus
cardinale, all times measured on the same personal computer to give an order of the difference.
This is coherent with the lower complexity property of the Hermite method.

Table 2 also provides the selected dimensions, cutoffs and bandwidths. As could be expected,
m̂ , ℓ̃ vary in opposite way, compared to ĥ. Without surprise also, the selected dimensions and
cutoffs increase when the sample size increases. What is remarkable is the values of the selected
dimensions for β-distributions, which are very large. Globally, we can see that these values are
very different from one distribution to the other. Contrary to the theoretical result, the Cauchy
density is estimated with similar MISEs in the Hermite and sinus cardinale methods.
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Figure 2. True density f in bold blue for Model (iii) (first two lines), Model (vii) (third

line) and Model (ix) (fourth line), together with 25 estimates (green/grey) with n = 250

(lines 1 and 3) or n = 1000 (lines 2 and 4). First column: Hermite; second column:

Sinus Cardinale; third column: kernel. Above each plot: MISE× 1000 and std × 1000 in

parenthesis, followed par the mean of selected dimensions, cutoffs and bandwidths (all

means over the 25 samples).
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In Figure (2), density and 25 estimators are plotted for models (iii), (vii) and (ix). Risks
and standard deviation for the 25 curves are given above each plot, together with the mean of
the selected dimension, cutoff or bandwidth. The methods are comparable, even for the Cauchy
distribution, except for the mixtures, where the kernel method fails. The first two lines illustrate
the improvement obtained when increasing n. We note again that the selected dimensions in
the Hermite method are possibly rather high (see the beta and the Cauchy densities). However,
computation time remains very short.

6. Proofs

6.1. Proof of Propositions 2.1 and 2.2. We start by proving Proposition 2.1.
(i). The following bound comes from Szegö (1959, p.242) where an expression of C∞ is given:

(15) ∀x ∈ R, |hj(x)| ≤ C∞(j + 1)−(1/12), j = 0, 1, . . . .

Therefore,

(16) Vm ≤ C2
∞

m−1∑

j=0

(j + 1)−(1/6) ≤ 6

5
C2
∞m5/6.

(ii). Now, as in Walter (1977), we use the following expression for the Hermite function hn (see
Szegö (1959, p.248)):

(17) hj(x) = λj cos

(
(2j + 1)1/2x− jπ

2

)
+

1

(2j + 1)1/2
ξj(x)

where λj = |hj(0)| if j is even, λj = |h′

j(0)|/(2j + 1)1/2 if j is odd and

ξj(x) =

∫ x

0
sin [(2j + 1)1/2(x− t)] t2hj(t)dt.

By the Cauchy-Schwarz inequality,

ξ2j (x) ≤
∫ |x|

0
t4dt

∫ |x|

0
h2j (t)dt ≤

|x|5
5

× 1

2
.

Moreover,

λ2j =
(2j)!1/2

2jj!π1/4
, λ2j+1 = λ2j

√
2j + 1√
2j + 3/2

.

By the Stirling formula and its proof, λ2j ∼ π−1/2j−1/4, λ2j+1 ∼ π−1/2j−1/4 and for all j, there
exists constants c1, c2 such that, for all j ≥ 1,

c1
π1/2j1/4

≤ λj ≤
c2

π1/2j1/4
.

Therefore,

h2j (x) ≤ 2
c22

πj1/2
+

1

2j + 1

|x|5
5

.

This yields: ∫
h2j (x)f(x)dx ≤ 2

c22
πj1/2

+
1

5(2j + 1)
E|X|5,

which implies Vm . m1/2.
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Now we study case (iii). The following bound for hj is given in Markett (1984, p.190): There
exist positive constants C, γ, independent of x and j, such that, for J = 2j + 1,

|hj(x)| ≤ C(J1/3 + |x2 − J |)−1/4, x2 ≤ 2J,

≤ C exp (−γx2), x2 > 2J.

Consider a sequence (aj) such that aj → +∞, aj/
√
j → 0 with J = 2j + 1 large enough to

ensure aJ√
J
≤ 1/

√
2, aJ ≥ K. As

∫
h2j(x)dx = 1, aJ <

√
J , aJ ≥ K and g is decreasing,

∫
h2j(x)f(x)dx ≤ 2C‖f‖∞

∫ aJ

0
(J1/3 + J − x2)−1/2dx+ g(aJ ).

Set x = (J1/3 + J)1/2y in the integral. This yields:

∫ aJ

0
(J1/3 + J − x2)−1/2dx =

∫ aJ/(J
1/3+J)1/2

0

dy√
1− y2

= Arcsin(
aJ

(J1/3 + J)1/2
) ≤ 2

aJ√
J
.

as for 0 ≤ x ≤ 1/
√
2, Arcsinx ≤ 2x. Now we choose the sequence (aj) and consider aj =

j1/(2(a+1)) . We deduce ∫
h2j (x)f(x)dx . j−a/(2(a+1)) ,

which leads to

(18) Vm . m
a+2

2(a+1) .✷

Now we turn to the proof of Proposition 2.2 and we look at the lower bound. We have, setting
c = infa≤x≤b f(x), and using (17),

∫
h2j (x)f(x)dx ≥ c

∫ b

a
h2j (x)dx

≥ cλ2
j

∫ b

a
cos2

(
(2j + 1)1/2x− jπ

2

)
dx

+ c
2λj

(2j + 1)1/2

∫ b

a
cos

(
(2j + 1)1/2x− jπ

2

)
ξj(x)dx.

We have j−3/4c1/
√
π ≤ 2λj

(2j+1)1/2
≤ j−3/4

√
2/πc2 and

|
∫ b

a
cos

(
(2j + 1)1/2x− jπ

2

)
ξj(x)dx| ≤

∫ b

a

|x|5/2√
10

dx := C.

Thus, the second term is lower bounded by −Cj−3/4c1/
√
π. For the first term, λ2

j ≥ j−1/2c21/π
and
∫ b

a
cos2

(
(2j + 1)1/2x− jπ

2

)
dx =

1

2
(b−a)+

∫ b

a
cos
(
2(2j + 1)1/2x− jπ

)
dx =

1

2
(b−a)+O(

1

j1/2
).

Therefore,
∫

h2j (x)f(x)dx ≥ cj−1/2c21/π

[
b− a

2
+O(

1

j1/2
)

]
− Cj−3/4c1/

√
π.

Consequently, for j large enough,
∫
h2j (x)f(x)dx ≥ c′j−1/2. This implies, Vm ≥ c′′m1/2. ✷
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6.2. Proof of Theorem 2.1. Let Sm be the space spanned by {h0, . . . , hm−1} and Bm = {t ∈
Sm, ‖t‖ = 1}. We have f̂m = argmint∈Sm γn(t) where γn(t) = ‖t‖2 − 2n−1

∑n
i=1 t(Xi) and

γn(f̂m) = −‖f̂m‖2. Now, we write, for two functions t, s ∈ L2(R) ,

γn(t)− γn(s) = ‖t− f‖2 − ‖s − f‖2 − 2νn(t− s)

where

νn(t) =
1

n

n∑

i=1

[t(Xi)− 〈t, f〉].

Then, for any m ∈ Mn = {1 ≤ m ≤ mn}, mn ≤ n/ log n, and any fm ∈ Sm,

γn(f̂m̂) + p̂en(m̂) ≤ γn(fm) + p̂en(m).

This yields

‖f̂m̂ − f‖2 ≤ ‖f − fm‖2 + p̂en(m)− p̂en(m̂) + 2νn(f̂m̂ − fm).

We use that

2νn(f̂m̂ − fm) ≤ 4 sup
t∈Bm∨m̂

ν2n(t) +
1

4
‖f̂m̂ − fm‖2,

and some classical algebra to obtain:

1

2
‖f̂m̂ − f‖2 ≤ 3

2
‖f − fm‖2 + p̂en(m) + 4

(
sup

t∈Bm∨m̂

ν2n(t)− p(m ∨ m̂)

)

+(4p(m ∨ m̂)− pen(m̂)) + (pen(m̂)− p̂en(m̂)).(19)

We can choose p(m) such that

(20)
∑

m′∈Mn

E

(
sup

t∈Bm∨m′

ν2n(t)− p(m ∨m′)

)

+

≤ c

n
.

Indeed, for this, we apply the Talagrand Inequality:

E

(
sup
t∈Bm

ν2n(t)− 4H2

)

+

≤ C1

n

(
v2e−C2

nH2

v +
M1

n
e
−C3

nH
M1

)

where E
(
supt∈Bm

ν2n(t)
)
≤ Vm

n := H2, supt∈Bm
Var(t(X1)) ≤ supt∈Bm

E(t2(X1)) ≤ ‖f‖∞ := v2

and supt∈Bm
supx |t(x)| ≤

√
supx

∑m−1
j=0 h2j (x) ≤ C ′

∞m5/12 ≤ C ′
∞
√
n := M1 (see (15)). There-

fore we obtain

E

(
sup
t∈Bm

ν2n(t)− 4
Vm

n

)

+

≤ C1

n

(
‖f‖∞e−C′

2Vm +
1√
n
e−C′

3

√
Vm

)
.

Therefore, with the choice p(m) = 4Vm/n, (20) holds under condition (6) which is ensured by
Proposition 2.2.
Taking expectation in (19) yields

1

2
E(‖f̂m̂ − f‖2) ≤ 3

2
‖f − fm‖2 + pen(m) + E(4p(m ∨ m̂)− pen(m̂))

+E(pen(m̂)− p̂en(m̂))+ +
c

n
.(21)

Let us define

Y
(m)
i :=

m−1∑

j=0

h2j (Xi), V̂m =
1

n

n∑

i=1

Y
(m)
i ,
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and the set inspired by Bernstein Inequality

Ω =

{
∀m ∈ Mn,

1

n

∣∣∣∣∣
n∑

i=1

(Y
(m)
i − E(Y (m)

i ))

∣∣∣∣∣ ≤
√
2VmC ′′∞m5/6

log(n)

n
+ 4C ′′

∞m5/6 log(n)

3n

}
.

with C ′′
∞ := (C ′

∞)2 and C ′
∞ is the constant appearing in M1 above. We split the term to study

in (21) as follows:

E(pen(m̂)− p̂en(m))+ ≤ E [(pen(m̂)− p̂en(m))+1Ω] + E [(pen(m̂)− p̂en(m))+1Ωc ] .

On Ω,

|V̂m̂ − Vm̂| ≤
√

2Vm̂C ′′∞m̂5/6 log(n)/n + 4C ′′
∞m̂5/6 log(n)/(3n)

≤ 1

2
Vm̂ +

7

3
C ′′
∞
m̂5/6 log(n)

n
,

using that 2xy ≤ x2 + y2 applied to
√
2V A = 2

√
V/2

√
A ≤ V/2 + A with V = Vm̂ and

A = C”∞m̂5/6 log(n)/n.
and thus, by definition of Mn,

E [(pen(m̂)− p̂en(m̂))+1Ω] + ≤ 1

2
E(pen(m̂)) +

c

n
.

On the other hand,

E [(pen(m̂)− p̂en(m̂))+1Ωc ] ≤ 2κP(Ωc).

Now,

P(Ωc) ≤
∑

m∈Mn

2e−2 log(n) ≤ c

n

as we apply Bersntein inequality: P(|Sn/n| ≥
√

2v2x/n+ bx/(3n)) ≤ 2e−x for Sn =
∑n

i=1(Ui −
E(Ui)), Var(U1) ≤ v2, |Ui| ≤ b. In our case U=Y

(m)
i and v2 = VmC ′′

∞m5/6, b = C ′′
∞m5/6 and we

took x = 2 log(n).
So Equation (19) becomes

1

2
E(‖f̂m̂ − f‖2) ≤ 3

2
‖f − fm‖2 + pen(m) + E(4p(m ∨ m̂)− pen(m̂))(22)

+
1

2
E(pen(m̂)) +

c

n
(23)

≤ 3

2
‖f − fm‖2 + pen(m) + E(4p(m ∨ m̂)− 1

2
pen(m̂)) + c

c

n
(24)

Now we note that, for κ ≥ 8 := κ0,

4p(m ∨ m̂)− 1

2
pen(m̂) ≤ pen(m).

Finally, we get, for all m ∈ Mn,

E(‖f̂m̂ − f‖2) ≤ 3‖f − fm‖2 + 4pen(m) +
c

n
,

which ends the proof. ✷
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6.3. Proof of Proposition 3.1. The first inequality is standard. Let us study f̃
(n)
ℓ (x). We

write that

‖f̃ (n)
ℓ − f‖2 = ‖f̃ (n)

ℓ − Ef̃ (n)
ℓ ‖2 + ‖E(f̃ (n)

ℓ )− f‖2

≤ ‖f̃ (n)
ℓ − Ef̃ (n)

ℓ ‖2 + 2‖E(f̃ (n)
ℓ )− f̄ℓ‖2 + 2‖f̄ℓ − f‖2.

The term ‖f̄ℓ − f‖2 is the usual bias term. moreover

E
(
‖f̃ (n)

ℓ − Ef̃ (n)
ℓ ‖2

)
=

∑

|j|≤Kn

Var(ãℓ,j) =
1

n

∑

|j|≤Kn

Var(ϕℓ,j(X1))

≤ 1

n

∑

|j|≤Kn

E[ϕ2
ℓ,j(X1)] ≤

ℓ

n

because
∑

j∈Z |ϕℓ,j(x)|2 ≤ ℓ. This is the standard variance term order.
The new term is

(25) ‖E(f̃ (n)
ℓ )− f̄ℓ‖2 =

∑

|j|≥Kn

|aℓ,j |2 ≤ 2 sup
j

|jaℓ,j |2
∑

j>Kn

j−2 ≤ 2

Kn
sup
j

|jaℓ,j |2.

We write that jaℓ,j = j
√
ℓ
∫
ϕ(ℓx− j)f(x)dx =

√
ℓ(I1 + I2) where

I1 = ℓ

∫
xϕ(ℓx− j)f(x)dx, I2 = −

∫
(ℓx− j)ϕ(ℓx − j)f(x)dx

and we bound I1 and I2.

|I1| ≤ ℓ

√∫
|ϕ(ℓx− j)|2dx

∫
x2f2(x)dx =

√
ℓ
√

M2, where M2 =

∫
x2f2(x)dx.

On the other hand, |I2| ≤ supu∈R |uϕ(u)|
∫
f(x)dx ≤ 1. We obtain:

|jaℓ,j| ≤ ℓ
√

M2 +
√
ℓ ≤ ℓ(

√
M2 + 1).

Plugging this in (25), we find the bound: ‖E(f̃ (n)
ℓ )− f̄ℓ‖2 ≤ 4ℓ2(M2+1)/Kn. This term is O(ℓ/n)

if ℓ ≤ n and Kn ≥ n2. ✷

6.4. Proof of Proposition 4.1. Using the relations (see e.g. Abramowitz and Stegun (1964))

(26) 2xHn(x) = Hn+1(x) + 2nHn−1(x), H ′
n(x) = 2nHn−1(x), n ≥ 1.

we get:

A+hn =
√
2nhn−1, A−hn =

√
2(n + 1)hn+1.

We deduce:

(27)
√
2h′n =

√
n hn−1 −

√
n+ 1hn+1, 2x hn =

√
2(n+ 1) hn+1 +

√
2n hn−1,

Assume first that f ∈ L2(R), f admits derivatives up to order s, and for j1, . . . , jm ∈ {−,+}
and 1 ≤ m ≤ s, Aj1 . . . Ajmf ∈ L2(R). We prove that

∑
n≥0 n

sa2n(f) < +∞. We do the proof

only for f compactly supported and refer to Bongioanni and Torrea (2006) otherwise.

For the proof, set A−1 = A−, A+1 = A+ so that, for n − j ≥ 0, Ajhn =
√

2(n + dj)hn−j,
dj = 0 if j = 1, dj = 1 if j = −1 . Thus, for n− j1 − j2 − . . .− jm ≥ 0,

Aj1 . . . Ajmhn =
√

2(n + dj1)× . . .×
√

2(n+ djm)hn−j1−j2−...−jm.
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Now, for f compactly supported,

〈Ajf, hn〉 = 〈f,A−jhn〉 =
√

2(n + d−j)〈f, hn+j〉.

Iterating yields, for n+ j1 + j2 + . . . + jm ≥ 0,

〈Aj1 . . . Ajmf, hn〉 = 〈f,A−jmA−jm−1 . . . A−j1hn〉 =
∏

1≤k≤m

√
2(n+ d−jk)〈f, hn+j1+j2+...+jm〉.

Therefore,
∑

n≥0(〈Aj1 . . . Ajmf, hn〉)2 < +∞ is equivalent to

∑

n+j1+j2+...+jm≥0

nma2n+j1+j2+...+jm(f) < ∞.

Now assume that
∑

n≥0 na
2
n(f) < +∞.

We have f =
∑

n≥0 an(f)hn. We can write for n1 large enough:

|
n1+n2∑

n=n1

an(f)hn(x)| ≤
(

n1+n2∑

n=n1

n1+1/6a2n(f)h
2
n(x)

n1+n2∑

n=n1

n−(1+1/6)

)1/2

≤ C

n1+n2∑

n=n1

na2n(f).

Thus, the series for f converges uniformly, f is continuous and satisfies for all x, f(x) =∑
n≥0 an(f)hn(x). Therefore, we have:

f(y)− f(x) =
∑

n≥0

an(f)

∫ y

x
h′n(t)dt

= a0(f)(h0((x)− h0(y)) + 2−1/2
∑

n≥1

an(f)

∫ y

x
(
√
n hn−1(t)−

√
n+ 1hn+1(t))dt

Set SN (t) =
∑N

n=1 an(f)(
√
n hn−1(t) −

√
n+ 1hn+1(t)) and S(t) =

∑
n≥1 an(f)(

√
n hn−1(t) −√

n+ 1hn+1(t)). The function S(t) is well defined by assumption and SN converges to S in
L2(R). Therefore, as N tends to infinity.

∫ y

x
|SN (t)− S(t)|dt ≤ √

y − x‖SN − S‖ → 0.

We have proved that

f(y)− f(x) = a0(f)

∫ y

x
h′0(t)dt+

∫ y

x
S(t)dt.

Thus, f is absolutely continuous and f ′ = S belongs to L2(R). Analogously, we prove that xf
belongs to L2(R). Thus, A+f,A−f belong to L2(R).
Next, by the same reasoning as above, using that

∑
n n

2an(f) < +∞ the series for f ′(t) = S(t)
is uniformly convergent and f ′(t) is continuous. We proceed analogously to prove that f ′ is
absolutely continuous and that xf ′ and f ′′ belong to L2(R). Iterating the reasoning, we obtain

that f admits continuous derivatives up to s − 1 and that f (s−1) is absolutely continuous and
that f, f ′, . . . , f (s), xk−mf (k−m),m = 0, . . . , s − 1 all belong to L2(R). This shows that, for
j1, . . . , jm ∈ {−,+}, 1 ≤ m ≤ s, Aj1 . . . Ajmf belongs to L2(R). ✷
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6.5. Proof of Proposition 4.4. To prove the result, we use the following proposition.

Proposition 6.1. Recall that aj(f) =
∫
f(x)hj(x)dx. For j ≥ 0, we have:

a2j(fσ) = c2j

(
1

1 + σ2

)1/2 (2j)!

j!

(
σ2 − 1

σ2 + 1

)j

, a2j+1(fσ) = 0.

For n ≥ p, j ≥ 0,

|a2j(fp,σ)| ≤ C(p, σ2)c2j
(2j)!

(j − p)!

∣∣∣∣
σ2 − 1

σ2 + 1

∣∣∣∣
j−p

, a2j+1(fp,σ) = 0.

We can now deduce the risk of f̂m when f = fσ. We have:

a22j(fσ) ∼ π−1j−1/2 1

1 + σ2

(
σ2 − 1

σ2 + 1

)2j

.

Therefore, setting λ = log

[(
σ2+1
σ2−1

)2]
yields ‖f−fm‖2 . 1√

m
exp (−λm). Combining with Propo-

sition 2.1, we obtain E(‖f̂m − f‖2) . 1√
m
exp (−λm) + n−1√m, and thus Proposition 4.4. ✷

Proof of Proposition 6.1. We first compute the coefficients of the centered Gaussian density.
As Hermite polynomials of odd index are odd, the coefficients with odd index are null. We
compute the coefficients with even index. Let

(28) σ̄2 = (1 + σ−2)−1 =
σ2

1 + σ2
.

Note that if 2σ̄2 = 1, i.e. σ2 = 1, the coefficients are null except for n = 0.
We have

∫
x2pfσ̄(x)dx = C2pσ̄

2p with C2p = 3× 5× 7× . . .× (2p − 1) =
(2p)!

2pp!
.

Using that (see e.g. Lebedev (1972), formula (4.9.2) p.60)

H2j(x) =

j∑

k=0

(−1)k(2j)!

k!(2j − 2k)!
(2x)2j−2k,

we obtain:

a2j(fσ) = (2j)!c2j
σ̄

σ

j∑

k=0

(−1)k

k!(2j − 2k)!
22j−2kC2(j−k)σ̄

2(j−k) = c2j
σ̄

σ

(2j)!

j!
(2σ̄2 − 1)j

= c2j

(
1

1 + σ2

)1/2 (2j)!

j!

(
σ2 − 1

σ2 + 1

)j
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Note that |σ2 − 1)/(1 + σ2| < 1.
Analogously,

a2j(fp,σ) =
(2j)!

j!
c2j

( σ̄
σ

)2p+1 j∑

k=0

(−1)kj! 22j−2kσ̄2(j−k)

k!(2j − 2k)!C2p
C2(j−k+p)

=
(2j)!

j!
c2j

( σ̄
σ

)2p+1 j∑

k=0

(−1)kj!

k!(j − k)!
(2σ̄2)j−k C2(j−k+p)

C2(j−k)C2p

=
(2j)!

j!
c2j

( σ̄
σ

)2p+1 j∑

m=0

(−1)j−mj!

m!(j −m)!
(2σ̄2)m

C2(m+p)

C2mC2p
.

Now, we use the following result which is proved in Chaleyat-maurel and Genon-Catalot (2006,
Lemma 3.1, p.1459):

C2(m+p)

C2mC2p
=

p∑

r=0

m(m− 1) . . . (m− r + 1)

(
p

r

)
2r

C2r
.

After some computations, we get:

a2j(fp,σ) =
(2j)!

(j − p)!
c2j

( σ̄
σ

)2p+1

(2σ̄2 − 1)j−pSp where

Sp =

p∑

r=0

(n − p)! p! 2r

(n− r)! j!(p − r)!C2r
(2σ̄2)r(2σ̄2 − 1)p−r.

Therefore,
|Sp| ≤ c(p)

(
2σ̄2 + |2σ̄2 − 1|

)p
,

which allows to bound |a2j | and ends the proof. ✷
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