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NUMERICAL ANALYSIS OF A NONLINEARLY STABLE AND
POSITIVE CONTROL VOLUME FINITE ELEMENT SCHEME

FOR RICHARDS EQUATION WITH ANISOTROPY

AHMED AIT HAMMOU OULHAJ, CLÉMENT CANCÈS,
AND CLAIRE CHAINAIS-HILLAIRET

Abstract. We extend the nonlinear Control Volume Finite Element scheme
of [C. Cancès and C. Guichard, Math. Comp., 85(298):549-580, 2016] to the
discretization of Richards equation. This scheme ensures the preservation of
the physical bounds without any restriction on the mesh and on the anisotropy
tensor. Moreover, it does not require the introduction of the so-called Kirchhoff
transform in its definition. It also provides a control on the capillary energy.
Based on this nonlinear stability property, we show that the scheme converges
towards the unique solution to Richards equation when the discretization pa-
rameters tend to 0. Finally we present some numerical experiments to illustrate
the behavior of the method.

Keywords. Unsaturated porous media flow, Richards equation, nonlinear discretization,
nonlinear stability, convergence analysis

AMS subjects classification. 65M12, 65M08, 76S05

1. Introduction

1.1. Presentation of the continuous problem. We are interested in the nu-
merical approximation of Richards equation. It is a degenerate nonlinear parabolic
equation modeling unsaturated flow in porous media. The diffusion terms can be
anisotropic and heterogeneous. In order to ease the reading, we restrict our study
to the case of a two-dimensional porous medium. However, the extension of our
purpose to the three-dimensional framework does not lead to any theoretical diffi-
culty.

Let Ω be a polygonal connected open bounded subset of R2, and tf > 0 a finite
time horizon. We define Qtf = Ω× (0, tf ). The Richards equation writes:

(1)


∂ts(p)−∇ · (η(s(p))Λ(∇p− ρg) = 0 in Qtf ,

s(p)t=0 = s0 in Ω,

η(s(p))Λ(∇p− ρg) · n = 0 on ∂Ω× (0, tf ).

In (1), p denotes the water pressure, s the water content, η the water mobility
function, Λ the intrinsic permeability tensor, and g is the gravity. We do the
following assumptions on the data of the continuous problem (1):
(A1) The function s : R → [0, 1] is increasing on R− and takes the value 1 on

R+. We assume that there exists p? ∈ [−∞, 0) such that s(p?) = 0, and
that s ∈ L1(p?, 0). Figure 1 shows two typical profiles of the function s.
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Figure 1. Typical water content functions. Two distinct behav-
iors are allowed in our study: (on the left) either the function s
remains strictly positive on R but tends to 0 as p tends to −∞
and p? = −∞, or (on the right) there exists a finite value of p?
such that s(p?) = 0 (right) and the function s is extended into a
continuous increasing function on (−∞, p?]

(A2) The mobility function η : [0, 1] −→ R+ is assumed to be continuous, non-
decreasing, and to fulfill

(2) η(0) = 0 and η(s) > 0 if s 6= 0.

Moreover, we assume all along in this paper that

(3) ξ? :=

∫ 0

p?

√
η(s(a)) da < +∞, and p2η(s(p))→ 0, p→ −∞.

(A3) The permeability tensor Λ belongs (L∞(Ω))2×2, and it is supposed to be
symmetric and uniformly elliptic on Ω, i.e, there exists (Λ,Λ) ∈ R∗+ × R∗+
such that

Λ|v|2 ≤ Λ(x)v · v ≤ Λ|v|2, ∀v ∈ R2, for a.e. x ∈ Ω.

(A4) The initial data s0 is supposed to belong to L∞(Ω; [0, 1]), and we assume

(4) 0 < s0 :=
1

meas(Ω)

∫
Ω

s0(x) dx < 1.

Since s is continuous and increasing on [p?, 0], there exists a continuous and
increasing function s−1 : [0, 1] → [p?, 0] such that, s ◦ s−1(ζ) = ζ for all ζ ∈ [0, 1].
Simple calculations (see for instance [11]) show that

(5) ‖s−1‖L1(0,1) = ‖s‖L1(p?,0) ≤ C.
thanks to (A1). We define the function Γ : R → R+ (called capillary energy
function) by

(6) Γ(p) =

∫ p

0

as′(a) da.

The function Γ ◦ s−1 is convex on [0, 1], and it follows from the definition (6) that

(7) ∂tΓ(p) = p∂ts(p).

In order to give a proper mathematical sense to the solution of (1), we need to
introduce the Lipschitz continuous increasing function ξ : R −→ R defined by

(8) ξ(p) =

∫ p

0

√
η(s(a)) da, ∀ p ∈ R.
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We introduce the so-called hydraulic head u defined by

u(x, t) =
p(x, t)

ρg
+ z(x) for all (x, t) ∈ Qtf , for all tf > 0,

where g denotes the modulus of g and the function z(x) is the projection of the point
x on the vertical axis, oriented upward by−g/g.With a simple adimensionalization,
we can assume that ρg = 1. The system (1) then rewrites:

(9)


∂ts(p)−∇ · (η(s(p))Λ∇u) = 0 in Qtf
s(p)t=0 = s0 in Ω

η(s(p))Λ∇u · n = 0 on ∂Ω× (0, tf )

Remark 1.1. In §5.1, we will present a test case without gravity. Stricto sensu, this
case is not included in our study. But it corresponds to the simpler case p = u
(mainly carried out in [9]) for which our analysis can be straightforwardly adapted.

Multiplying (formally) the equation (9) by u and integrating on Ω yields the
classical energy/dissipation property:

(10)
d

dt

∫
Ω

(Γ(p) + s(p)z(x)) dx +

∫
Ω

η(s(p))Λ∇u · ∇udx = 0, ∀ t ∈ (0, tf ).

This allows in particular to show that the capillary energy remains bounded and
that the function ξ(p) belongs to L2((0, T );H1(Ω)), i.e.,

(11)
∫

Ω

Γ(s(p(x, t)))dx +

∫ t

0

∫
Ω

|∇ξ(p(x, τ))|2dxdτ ≤ C, ∀t ∈ (0, tf ).

Definition 1.2 (weak solution). A measurable function p : Qtf → R is said to be
a weak solution of (1) if p ≥ p? a.e. in Qtf , if ξ(p) belongs to L2((0, tf );H1(Ω)),
and if, for all ψ ∈ C∞c (Ω× [0, tf )), one has

(12)
∫∫

Qtf

s(p)∂tψ dx dt+

∫
Ω

s0ψ(., 0) dx

−
∫∫

Qtf

√
η(s(p))Λ∇ξ(p) · ∇ψ dx dt−

∫∫
Qtf

η(s(p))ρgΛ∇z · ∇ψ dx dt = 0.

The notion of weak solution is motivated by the following theorem.

Theorem 1.3. Under assumptions (A1)–(A4), there exists a unique weak solution
to the problem (1) in the sense of Definition 1.2.

The existence of a solution is a by-product of the convergence of the scheme
proved in §4. It can also be obtained by compactness arguments following the
program of Alt and Luckhaus [3]. Concerning the uniqueness, since we consider
no-flux boundary conditions, we can not directly apply Otto’s result [26], where
Dirichlet boundary conditions are imposed. However, a slight adaptation of Otto’s
proof detailed in appendix (cf. Proposition A.4) allows us to extend the uniqueness
result to our framework.



4 A. AIT HAMMOU OULHAJ, C. CANCÈS, AND C. CHAINAIS-HILLAIRET

1.2. Goal and positioning of the paper. Because of its broad interest in the
environmental studies, the Richards equation [28] has been the purpose of many
research papers, especially in the field of numerical analysis. Richards equation is
locally conservative and a particular effort was made to preserve this property in
most of the contributions.

A conservative Finite Difference scheme has been studied numerically in [30].
However, there is up to our knowledge no convergence proof for the scheme pre-
sented in [30]. Moreover, restrictive conditions have to be prescribed on the grid
and on the permeability tensor Λ. The convergence of Two-Point Flux Approxi-
mation Finite Volume schemes have been studied in [18] for a scheme that requires
the introduction of the Kirchhoff transform, and in [17] for a scheme expressed in
physical variables (saturation and pressure), but under the non-physical assumption
that the mobility function was not degenerated (i.e., η(s) ≥ η? > 0 for all s). In
both [18] and [17], it was moreover required that the porous medium was isotropic
(i.e., Λ = λId) and that the mesh satisfies the so-called orthogonality condition
(see, e.g., [15, Definition 9.1] and [14]) so that the two-point flux approximation
is consistent. Since they are naturally locally conservative, Mixed Finite Elements
have been widely used for the approximation of Richards equation. Let us for
instance mention [5, 27] where the authors managed to provide an error estimate.
Nevertheless, the schemes studied in [5, 27] rely on the introduction of the Kirchhoff
transform. Let us also mention the extension of Multi-Point Flux Approximation
Finite Volume schemes to the context of Richards equation in [24, 7]. Note that
Mixed Finite Elements and Multi-Point Flux Approximation Finite Volumes may
produce over- and undershoots on the saturation. We refer to [13] for a review of
the numerous Finite Volume methods developed in the last decades that can be
applied to the discretization of Richards equation.

The method we study here was designed on the following specifications:

(a) to handle anisotropic and heterogeneous anisotropy tensors;
(b) to avoid the introduction of non-physical quantities like, e.g., the Kirchhoff

transform;
(c) to preserve the physical bounds on the saturation;
(d) to conserve locally the mass of fluid;
(e) to converge towards the solution to the continuous problem (mathematical proof

and numerical evidence).

The scheme we propose belongs to the family of the so-called Control Volume Finite
Element schemes introduced in the context of porous media flows by Forsyth [19,
20]. Roughly speaking, it consists in an interpretation of Finite Elements with mass
lumping as a locally conservative method on dual cells. It was already noticed in [19]
that the grid had to fulfill some restrictive condition unless the transmissivities may
become negative. It results that the reconstructed numerical flux goes the opposite
sense to the physical one. More precisely, the triangular grid has to fulfill a so-
called Delaunay condition in the two-dimensional isotropic case Λ = λId. But in
the case where Λ is a spatially varying full tensor, there is no algorithm up to our
knowledge to build a triangulation such that the transmissivity remain nonnegative.
As it will be proved in the sequel, the method we propose still converges even in
the case where negative transmissivities appear. Our scheme is an extension of the
one studied in [8, 9]. It is based on a suitable upwinding of the mobility (i.e., w.r.t.
the numerical flux and not w.r.t. the physical one) that allows to preserve the
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physical bounds (but not the monotonicity as in [20]). Moreover, we show that our
method provides a control on the capillary energy and that this control is sufficient
to perform a convergence proof based on compactness arguments.

The paper is organized as follows. In Section 2, we introduce the scheme and we
state the main results of our paper. Theorem 2.4 states the existence of a solution to
scheme which preserves the physical bounds and for which the capillary energy and
the energy dissipation are bounded uniformly w.r.t. the grid. Theorem 2.5 states
the convergence of a sequence of approximate solutions given by the scheme to the
unique weak solution to (9) (its uniqueness is proved in Appendix). In Section 3,
we derive a priori estimates on the discrete solution. They allow us to prove in §3.3
the existence of a discrete solution to the nonlinear system corresponding to the
scheme. Section 4 is devoted to the convergence proof of the scheme. This proof is
based first on the compactness of the sequence of approximate solutions and then on
the identification of the limit. We finally present numerical experiments in Section
5, which confirm the theoretical results we proved. We take care to fairly present
the advantages and the drawbacks of the method from a computational point of
view.

2. The numerical scheme

2.1. Discretization of Qtf .

2.1.1. Discretizations of Ω. The CVFE method requires the introduction of two
different space discretizations of Ω: a primal triangular mesh and a dual barycentric
mesh.

The primal triangular mesh is denoted by T . It is a conformal triangular dis-
cretization of the polygonal domain Ω, consisting in open bounded separated tri-
angles satisfying

⋃
T∈T T = Ω. For T ∈ T , we denote by xT the center of gravity

of T , by hT the diameter of the triangle T , and by ρT the diameter of the largest
ball inscribed in the triangle T . Then, we define the mesh diameter h and the mesh
regularity θT by

h = max
T∈T

hT , θT = max
T∈T

hT
ρT
.

We denote by V the set of the vertices of the discretization T , located at positions
(xK)K∈V . The set E of the edges of T is made of straight segments σ joining two
vertices of V. Given T, T ′ ∈ T , we assume that T ∩ T ′ is either empty, or it is
reduced to xK for some K ∈ V, or it consists in an edge σ belonging E . For
T ∈ T , we denote by ET the set of the edges of T :

⋃
σ∈ET σ = ∂T . We assume

that E =
⋃
T∈T ET . Given two vertices K,L ∈ V of a triangle T , then the edge

joining xK and xL is denoted by σKL. For K ∈ V, one denotes by TK the subset
of T made the triangles admitting K as a vertex, by EK the set of edges having the
vertex K as an extremity, and by VK the subset of V such that, if L ∈ VK , then
[xK ,xL] is an edge of EK .

Once the primal triangular mesh has been built, we can define its dual barycentric
meshM as follows. To each K ∈ V, we associate a cell ωK whose vertices are the
isobarycenters xT of the triangles T ∈ TK and the isobarycenters xσ of the edges
σ ∈ EK . Note that Ω =

⋃
K∈V ωK . We refer to Figure 2 for an illustration of the

primary and dual barycentric meshes. The 2-dimensional Lebesgue measure of ωK
is denoted by mK .
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Let us now introduce some useful functional spaces. The space VT ⊂ C(Ω) is
made of piecewise affine functions on the primal mesh, i.e.,

VT = {f ∈ H1(Ω) | f|T is affine, ∀T ∈ T }.
For all K ∈ V, we denote by eK the unique element of VT such that eK(xK) = 1
and eK(xL) = 0 if L ∈ V \ {K}. The geometrical construction of ωK ensures that∫

Ω

eK(x) dx =

∫
ωK

dx =: mK , ∀K ∈ V.

We can also define the set of the piecewise constant functions onM, XM, by

XM = {f : Ω −→ R measurable | f|ωK
∈ R is constant, ∀K ∈ V}.

Given a vector (uK)K∈V ∈ R#V , there exists a unique uT ∈ VT and a unique
uM ∈ XM such that uT (xK) = uM(xK) = uK for all K,L ∈ V. Let us note that
uT =

∑
K∈V uKeK . Moreover, for all q ∈ [1,∞), there exist C1 and C2 depending

only on q and on θT such that

(13) C1‖uT ‖Lq(Ω) ≤ ‖uM‖Lq(Ω) ≤ C2‖uT ‖Lq(Ω), ∀ (uK)K∈V ∈ R#V .

A proof of the above inequalities can be found for instance in [10, Lemma A.6].

Figure 2. The triangular mesh T (solid line) and its correspond-
ing dual barycentric dual meshM (dashed line).

2.1.2. Space-time discretizations. In order to avoid heavier notations, we restrict
our study to the case of a uniform time discretization of (0, tf ). However, all
the results presented in this paper can be extended to general time discretizations
without any technical difficulty. In what follows, we assume that the spatial mesh
is fixed and does not change with the time step.

Let N be a nonnegative integer, then we define ∆t =
tf

N + 1
, and tn = n∆t for

all n ∈ {0, ..., N + 1}, so that t0 = 0, and tN+1 = tf .
We define the space and time discrete spaces VT ,∆t and XM,∆t as the set of

piecewise constant functions in time with values in VT and XM respectively:

VT ,∆t ={f : Qtf → R | f(x, t) = f(x, tn+1) ∈ VT , ∀t ∈ (tn, tn+1]},
XM,∆t ={f : Qtf → R | f(x, t) = f(x, tn+1) ∈ XM, ∀t ∈ (tn, tn+1]}.
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For a given (un+1
K )n∈{0,...,N},K∈V ∈ R(N+1)#V , we denote by uT ,∆t and uM,∆t the

unique elements of VT ,∆t and XM,∆t respectively such that

(14) uT ,∆t(xK , t) = uM,∆t(xK , t) = un+1
K , ∀K ∈ V, ∀t ∈ (tn, tn+1].

2.2. Finite elements. The method we propose, and more generally the CVFE
method, is based on P1-finite elements. We introduce in this section the technical
material that is needed in order to define the scheme and to perform its analysis.
We define the transmissibility coefficients

(15) aTKL = −
∫
T

Λ∇eK · ∇eL dx = aTLK , ∀T ∈ T , ∀(K,L) ∈ V2,

and

(16) aKL = aLK = −
∫

Ω

Λ∇eK · ∇eL dx =
∑
T∈T

aTKL, ∀(K,L) ∈ V2.

Note that aKL = 0 unless σKL ∈ E . Moreover, since
∑
K∈V
∇eK = 0, we have that :

(17) − aKK =
∑
L6=K

aKL > 0.

As a consequence of (16)-(17), given uT and vT two elements of VT , one has

(18)
∫

Ω

Λ∇uT · ∇vT dx =
∑

σKL∈E
aKL(uK − uL)(vK − vL)

=
∑
T∈T

∑
σKL∈ET

aTKL(uK − uL)(vK − vL).

The following lemma plays a crucial role in the numerical analysis carried out in
this paper. We refer to [9, Lemma 3.2] for its proof.

Lemma 2.1. There exists C3 depending only on θT , Λ? and Λ? such that, for all
uT ∈ VT , one has∑
σKL∈E

|aKL|(uK − uL)2 ≤
∑
T∈T

∑
σKL∈ET

|aTKL|(uK − uL)2 ≤ C3

∫
Ω

Λ∇uT · ∇uT dx.

2.3. The nonlinear CVFE scheme. In this section, we explicit the discretization
of the problem (1) we will study in this paper. The time discretization relies on
backward Euler scheme, while the space discretization relies on finite elements with
mass lumping and a suitable upwinding of the mobility.

The discretization s0
M ∈ XM of the initial data is defined by

(19) s0
K =

1

mK

∫
ωK

s0(x) dx, ∀K ∈ V.

In the sequel, we will make use of the shortened notation

zK = z(xK), ∀K ∈ V.

Let us now introduce the scheme. For all n ∈ {0, ..., N}, a solution
(
pn+1
K

)
K∈V

to the scheme at the time step n+ 1 has to satisfy the following equations: for all
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K ∈ V,

s(pn+1
K )− snK

∆t
mK +

∑
σKL∈EK

ηn+1
KL aKL(un+1

K − un+1
L ) = 0,(20a)

un+1
K = pn+1

K + ρgzK ,(20b)

sn+1
K = s(pn+1

K ),(20c)

ηn+1
KL =

{
η(sn+1

K ) if aKL(un+1
K − un+1

L ) ≥ 0,

η(sn+1
L ) if aKL(un+1

K − un+1
L ) < 0.

(20d)

Remark 2.2. It follows from the monotonicity of the mobility and water content
functions η and s that (20d) is equivalent to

(21) ηn+1
KL =


max
p∈In+1

KL

η(s(p)) if aKL(pn+1
K − pn+1

L )(un+1
K − un+1

L ) ≥ 0,

min
p∈In+1

KL

η(s(p)) if aKL(pn+1
K − pn+1

L )(un+1
K − un+1

L ) ≤ 0,

where

In+1
KL = [min(pn+1

K , pn+1
L ),max(pn+1

K , pn+1
L )].

It is then worth noticing that the monotonicity assumption on η can be bypassed if
one enforces (21) directly instead of (20d) for the definition of the upwind mobility.

This scheme, whose construction is based on finite elements via (16), can be
interpreted as a finite volume scheme. Indeed denoting by

Fn+1
KL = aKLη

n+1
KL (un+1

K − un+1
L ),

the scheme (20) can be rewritten under the locally conservative form on the dual
cells ωK :

(22)


Fn+1
KL + Fn+1

LK = 0, for all σKL ∈ EK
sn+1
K − snK

∆t
mK +

∑
σKL∈EK

Fn+1
KL = 0, for all K ∈ V.

As a straightforward consequence, we can claim that the scheme (20) is globally
conservative, i.e.,

(23)
∑
K∈V

mKs
n+1
K =

∑
K∈V

mKs
n
K =

∫
Ω

s0(x)dx, ∀n ≥ 0.

Remark 2.3. If pn+1
K = pn+1

L = −∞ for some σKL ∈ E and, n ≥ 0, we have
adopted the convention

ηn+1
KL (pn+1

K − pn+1
L ) = ηn+1

KL (pn+1
K − pn+1

L )2 = 0,

in accordance with assumption (3). However, as it will appear in Lemma 3.10, the
situation where pn+1

K = −∞ can only occur if p? = −∞ and s0 is identically equal
to 0, but this situation is prohibited by Assumption (A1).
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2.4. Main results. The scheme (20) amounts to a nonlinear system to be solved
at each time step. The existence of a solution to this system is therefore non trivial.
The first result we highlight is thus the existence of a solution to the scheme (20)
and the stability in terms of the discrete capillary energy.

Theorem 2.4. There exists (at least) one solution
(
pn+1
K

)
K∈V,n∈{0,...,N} to the

scheme (20a). Moreover, 0 ≤ snK ≤ 1 for all K ∈ V and for all n ∈ {0, . . . ,M},
and there exists C depending only on θT , Λ, Ω, tf , ‖s‖L1(p?,0), and ‖η‖∞ such that

sup
n∈{0,...,N}

∑
K∈V

mKΓ(pn+1
K ) +

N∑
n=0

∆t
∑

σKL∈E
aKL

(
ξ(pn+1

K )− ξ(pn+1
L )

)2 ≤ C.
Once we have the discrete solution

(
pn+1
K

)
K∈V,n∈{0,...,N} at hand for all meshes

and all time discretizations, then we can study the convergence of the scheme
when the discretization parameters tend to 0. More precisely, consider a sequence
(Tm)m≥1 of triangulations of Ω such that

(24) hm = max
T∈Tm

diam(T ) −→
m→∞

0,

and such that there exists θ? > 0 such that

(25) θTm ≤ θ?, ∀m ≥ 1.

A sequence of dual meshes (Mm)m≥1 corresponding to the triangular meshes
(Tm)m≥1 is built as in §2.1.1. Let (Nm)m≥1 be an increasing sequence of integers,
then we define the corresponding sequence of time steps ∆tm =

tf
Nm+1 tending to 0

as m tends to∞. To this sequence of discretizations of Qtf corresponds a sequence
of solutions

(
pn+1
K

)
K∈Vm,n∈{0,...,Nm}

to the scheme. Thanks to these solutions, we
can construct the functions sMm,∆tm ∈ XMm,∆tm and ξTm,∆tm ∈ VTm,∆tm defined
by

(26) sMm,∆tm(xK , tn+1) = s(pn+1
K ) = sn+1

K , ∀K ∈ Vm, ∀n ∈ {0, . . . , Nm},
and

(27) ξTm,∆tm(xK , tn+1) = ξ(pn+1
K ) = ξn+1

K , ∀K ∈ Vm, ∀n ∈ {0, . . . , Nm}.
Once these sequences of discrete functions at hand, we can state the second main
result of this paper, namely the convergence of the scheme (20).

Theorem 2.5. Let (Tm)m≥1 be a sequence conformal triangular discretization of
Ω such that (24) and (25) hold. Let (sMm,∆tm)m and (ξTm,∆tm)m be the func-

tions reconstructed from the solutions
((
pn+1
K

)
K,n

)
m

to the scheme (20) thanks to
formulas (26)–(27). Then

sMm,∆tm −→
m→+∞

s(p) a.e in Qtf ,

ξTm,∆tm −→
m→+∞

ξ(p) weakly in L2((0, tf );H1(Ω)) and strongly in L2(Qtf ),

where p is the unique solution to the continuous problem (1).

The proof of Theorem 2.4 is addressed in §3. The convergence of the scheme
towards a weak solution is the purpose of §4, while the uniqueness of the weak
solution is proved in appendix, cf. Proposition A.4. Numerical illustrations are
provided in §5.
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3. Discrete properties, a priori estimates and existence

In this section, we establish a priori estimates, among which the positivity of the
saturation and the stability of the capillary energy. These estimates allow to prove
the existence of a solution to the nonlinear system (20). They are also keystones
in order to perform the convergence analysis later on.

3.1. A uniform L∞-estimate on sM,∆t. In what follows, (pn+1
K )K∈V,n≥0 denotes

a solution to the scheme (20) (whose existence will be etablished later). This allows
to define the quantities sn+1

K = s(pn+1
K ) and ξn+1

K = ξ(pn+1
K ) for all K ∈ V and all

n ∈ {0, . . . , N}.

Proposition 3.1. For all K ∈ V, and all n ∈ {0, ..., N}, one has

(28) 0 ≤ snK ≤ 1.

Equivalently, one has

(29) p? ≤ pn+1
K , ∀K ∈ V, ∀n ∈ {0, . . . , N}.

Proof. First of all, note that there is nothing to prove if p? = −∞. Therefore, we
restrict our attention to the case of a finite p?. The property (28) holds for n = 0
thanks to the discretization (19) of the initial data. Assume now (28) holds at time
step n. It is equivalent to prove pn+1

K ≥ p? . Assume that

(30) pn+1
Km

= min
L∈V

pn+1
L < p? ⇔ sn+1

Km
< 0.

In view of the definition (21) of ηn+1
KmL

, and of the fact that η(s) = 0 if s < 0, it
follows from (20d) that

ηn+1
KmL

= 0 if aKmL(un+1
Km
− un+1

L ) ≥ 0.

Therefore, the scheme (20) at vertex Km rewrites

sn+1
Km

= snKm
− ∆t

mKm

∑
σKmL∈E

ηn+1
KmL

aKmL(un+1
Km
− un+1

L ) ≥ 0.

This yields a contradiction with (30). Hence, the L∞ estimate (28) holds at the
time step n+ 1, thus for all n. �

3.2. Capillary energy estimate and the control of the dissipation. The goal
of this section is to get an a priori control for the capillary energy of the discrete
solution and to derive some estimates coming from the dissipation of the energy.
We were not able to derive the discrete counterpart of the energy/dissipation es-
timate (10). However, we can prove a discrete counterpart of (11) (cf. Proposi-
tion 3.2) that appears to be sufficient to establish Theorems 2.4 and 2.5. In what
follows, we assume that (snK)K∈V is known and

(
pn+1
K

)
K∈V denotes an arbitrary

solution to the scheme (20).

Proposition 3.2. There exists C4 depending only on θT , Λ, Ω, tf , ‖s‖L1(p?,0),
and ‖η‖∞ such that

sup
n∈{0,...,N}

∑
K∈V

mKΓ(pn+1
K ) +

N∑
n=0

∆t
∑

σKL∈E
aKL

(
ξ(pn+1

K )− ξ(pn+1
L )

)2 ≤ C4.
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The proof of Proposition 3.2 is based on several Lemmas stated below. This
section also contains technical lemmas that will be useful in the convergence proof
of §4.

Lemma 3.3. There exists C5 depending only on Ω, s such that, for all ν ∈ {0, . . . , N},
one has

(31)
∑
K∈V

mKΓ(pν+1
K ) +

ν∑
n=0

∆t
∑

σKL∈E
aKLη

n+1
KL (un+1

K − un+1
L )(pn+1

K − pn+1
L ) ≤ C5.

Proof. We multiply the scheme (20a) by ∆tpn+1
K and sum on K ∈ V . This yields:

A+B = 0,

where

A =
∑
K∈V

mK(sn+1
K − snK)pn+1

K , B = ∆t
∑
K∈V

∑
σKL∈E

aKLη
n+1
KL (un+1

K − un+1
L )pn+1

K .

Since aKL = aLK and ηn+1
KL = ηn+1

LK , we can rewrite

B = ∆t
∑

σKL∈E
aKLη

n+1
KL (un+1

K − un+1
L )(pn+1

K − pn+1
L ).

By convexity of Γ ◦ s−1 one deduces this estimation

A ≥
∑
K∈V

mK(Γ(pn+1
K )− Γ ◦ s−1(snK)).

Summing over n ∈ {0, ..., ν} provides

(32)
∑
K∈V

mKΓ(pν+1
K ) +

ν∑
n=0

∆t
∑

σKL∈E
aKLη

n+1
KL (un+1

K − un+1
L )(pn+1

K − pn+1
L )

≤
∑
K∈V

mKΓ ◦ s−1(s0
K).

It remains to check that for b ∈ [0, 1],

0 ≤ Γ ◦ s−1(b) =

∫ s−1(b)

0

as′(a) da =

∫ b

1

s−1(a) da ≤ ‖s−1‖L1(0,1) < +∞,

ensuring that∑
K∈V

mKΓ ◦ s−1(s0
K) ≤

∫
Ω

Γ ◦ s−1(s0) dx ≤ |Ω|‖s−1‖L1(0,1)

thanks to Jensen’s inequality and to (5). �

From the previous lemma, we can get an estimate on the spatial variations of
the function ξT ,∆t. In order to ease the reading, we use the shortened notation

ξn+1
K = ξ(pn+1

K ), ∀K ∈ V, ∀n ∈ {0, . . . , N}.

Lemma 3.4. There exists C6 depending only on Ω, s, tf ,Λ, θT , and η such that

(33)
∫∫

Qtf

Λ∇ξT ,∆t · ∇ξT ,∆t dx dt =

N∑
n=0

∆t
∑

σKL∈E
aKL(ξn+1

K − ξn+1
L )2 ≤ C6.



12 A. AIT HAMMOU OULHAJ, C. CANCÈS, AND C. CHAINAIS-HILLAIRET

Proof. The definition (21) of the mobilities ηn+1
KL has been chosen so that

C5 ≥
N∑
n=0

∆t
∑

σKL∈E
aKLη

n+1
KL (un+1

K − un+1
L )(pn+1

K − pn+1
L )

≥
N∑
n=0

∆t
∑

σKL∈E
aKLη̃

n+1
KL (un+1

K − un+1
L )(pn+1

K − pn+1
L ),

where η̃n+1
KL = η(s(pKL)) whatever pKL ∈ In+1

KL . Therefore, using the defini-
tion (20b) of un+1

K and Young’s inequality leads to

C5 ≥
N∑
n=0

∆t
∑

σKL∈E
aKLη̃

n+1
KL

(
(pn+1
K − pn+1

L )2 + (pn+1
K − pn+1

L )(zK − zL)
)

≥
N∑
n=0

∆t
∑

σKL∈E
aKLη̃

n+1
KL (pn+1

K − pn+1
L )2

− α

2

N∑
n=0

∆t
∑

σKL∈E
|aKL|η̃n+1

KL (pn+1
K − pn+1

L )2 − ‖η‖∞
2α

N∑
n=0

∆t
∑

σKL∈E
|aKL|(zK − zL)2

where α is a positive parameter to be fixed. We choose

(34) η̃n+1
KL =


(
ξn+1
K − ξn+1

L

pn+1
K − pn+1

L

)2

if pn+1
K 6= pn+1

L ,

η(sn+1
K ) if pn+1

K = pn+1
L ,

leading to

N∑
n=0

∆t
∑

σKL∈E
aKL

(
ξn+1
K − ξn+1

L

)2 − α

2

N∑
n=0

∆t
∑

σKL∈E
|aKL|

(
ξn+1
K − ξn+1

L

)2
≤ C5 +

‖η‖∞
2α

N∑
n=0

∆t
∑

σKL∈E
|aKL| (zK − zL)

2
.

Using Lemma 2.1, we get that(
1− αC3

2

) N∑
n=0

∆t
∑

σKL∈E
aKL

(
ξn+1
K − ξn+1

L

)2 ≤ C5 +
‖η‖∞

2α
tfC3|Ω|.

We conclude the proof by setting α = 1
C3

. �

The function Γ takes non-negative values, hence so does the first term in (31).
But since aKL may become negative, we are not able to claim that the second term
is non-negative (this would end the proof of Proposition 3.2). Nevertheless, we
can prove that this term is uniformly bounded. This information, combined with
Lemma 3.4, is sufficient to conclude the proof of Proposition 3.2.

Lemma 3.5. There exists C7 depending only on Ω, s, tf ,Λ, θT , and η such that
N∑
n=0

∆t
∑

σKL∈E
|aKL|ηn+1

KL |u
n+1
K − un+1

L ||pn+1
K − pn+1

L | ≤ C7.
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Proof. Since |x| = x+ 2x−, x− = max(−x, 0), one has

(35)
N∑
n=0

∆t
∑

σKL∈E
|aKL|ηn+1

KL |u
n+1
K − un+1

L ||pn+1
K − pn+1

L |

=

N∑
n=0

∆t
∑

σKL∈E
aKLη

n+1
KL (un+1

K − un+1
L )(pn+1

K − pn+1
L )

+ 2

N∑
n=0

∆t
∑

σKL∈E
ηn+1
KL [aKL(un+1

K − un+1
L )(pn+1

K − pn+1
L )]−.

It follows from the definition (21) of ηn+1
KL that

ηn+1
KL [aKL(un+1

K −un+1
L )(pn+1

K − pn+1
L )]− ≤ η̃n+1

KL [aKL(un+1
K −un+1

L )(pn+1
K − pn+1

L )]−,

with η̃n+1
KL defined by (34). Moreover, using the definition (20b) of un+1

K together
with Young’s inequality, we obtain that

η̃n+1
KL [aKL(un+1

K − un+1
L )(pn+1

K − pn+1
L )]−

≤ η̃n+1
KL |aKL|(p

n+1
K − pn+1

L )2 + η̃n+1
KL |aKL||zK − zL||p

n+1
K − pn+1

L |

≤ |aKL|(ξn+1
K − ξn+1

L )2 +
1

2
|aKL|η̃n+1

KL (pn+1
K − pn+1

L )2 +
1

2
|aKL|η̃n+1

KL (zK − zL)2

≤ 3

2
|aKL|(ξn+1

K − ξn+1
L )2 +

‖η‖∞
2
|aKL|(zK − zL)2.

We deduce from Lemma 2.1 that

(36) 2

N∑
n=0

∆t
∑

σKL∈E
ηn+1
KL [aKL(un+1

K − un+1
L )(pn+1

K − pn+1
L )]−

≤ 3C3

N∑
n=0

∆t
∑

σKL∈E
aKL(ξn+1

K − ξn+1
L )2 + C3‖η‖∞tf |Ω|.

Then we combine (35), (36), Lemma 3.4, and Lemma 3.3 to conclude. �

The a priori estimate of Proposition 3.2 follows easily from Lemmas 3.3, 3.4, and
3.5. It is sufficient to prove the existence of a solution to the scheme (20) (see §3.3).
Nevertheless, before going to this existence proof, we still provide some additional
a priori estimates to be used later on in §4.

Lemma 3.6. There exists C8 depending only on Ω, s, tf ,Λ, θT , and η such that
N∑
n=0

∆t
∑

σKL∈E
|aKL|ηn+1

KL (pn+1
K − pn+1

L )2 ≤ C8,(37)

N∑
n=0

∆t
∑

σKL∈E
|aKL|ηn+1

KL (un+1
K − un+1

L )2 ≤ C8.(38)

Proof. The definition (20b) of un+1
K yields

N∑
n=0

∆t
∑

σ∈EKL

|aKL|ηn+1
KL (pn+1

K − pn+1
L )2 = A+B,
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where

A =

N∑
n=0

∆t
∑

σ∈EKL

|aKL|ηn+1
KL (pn+1

K − pn+1
L )(un+1

K − un+1
L ),

B =−
N∑
n=0

∆t
∑

σ∈EKL

|aKL|ηn+1
KL (pn+1

K − pn+1
L )(zn+1

K − zn+1
L ).

Thanks to Lemma 3.5, one has A ≤ C7. Moreover, combining once again Young
inequality with Lemma 2.1, we get that

B ≤ 1

2

N∑
n=0

∆t
∑

σ∈EKL

|aKL|ηn+1
KL (pn+1

K − pn+1
L )2 + C3‖η‖∞tf |Ω|,

hence (37) holds with C8 = 2C7 + 2C3‖η‖∞tf |Ω|. The proof of (38) is similar. �

The last lemma of this section is devoted to the control of the L2 norm of
ξT ,∆t. Lemma 3.4 only provides a control on the gradient of ξT ,∆t, but not on
ξT ,∆t directly. The control on ξT ,∆t is provided by an argument à la Poincaré, cf.
Appendix A.1.

Lemma 3.7. There exists C9 depending only on Ω, tf , s,Λ, θT , η, s0, and ξ? such
that

‖ξT ,∆t‖L2(Qtf
) dx dt ≤ C9,(39)

‖ξM,∆t‖L2(Qtf
) dx dt ≤ C9.(40)

Proof. Let us first etablish (40). Thanks to Assumption (4), we know that
∫

Ω
s0 dx <

meas(Ω). The global conservativity property (23) allows to claim that

∑
K∈V

sn+1
K mK = s0 =

∫
Ω

s0(x)dx < meas(Ω)

for any n ∈ {0, . . . , N}. Using that ξn+1
K < 0 if and only if sn+1

K < 1 (recall that
ξ(p) < 0 iff p < 0 iff s < 1), one gets

(41) meas {ξM,∆t(·, tn+1) < 0} ≥ meas(Ω)− s0 > 0.

Denote by ξ+,n+1
K = max(0, ξn+1

K ), and by ξ+
M,∆t and ξ

+
T ,∆t the unique elements of

XM,∆t and VT ,∆t respectively such that

ξ+
M,∆t(xK , tn+1) = ξ+

T ,∆t(xK , tn+1) = ξ+,n+1
K , ∀K ∈ V, ∀n ∈ {0, . . . , N}.
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Note that ξ+
T ,∆t 6= (ξT ,∆t)

+
= max (0, ξT ,∆t) in general, but that ξ+

M,∆t = (ξM,∆t)
+

and that ξ−M,∆t = (ξM,∆t)
−

= max (0,−ξM,∆t). Using Assumption (A3), the 1-
Lipschitz continuity of x 7→ x+, and Lemmas 2.1 and 3.4, we obtain∫∫

Qtf

|∇ξ+
T ,∆t|

2dxdt ≤ 1

Λ

N∑
n=0

∆t
∑

σKL∈E
aKL

(
ξ+,n+1
K − ξ+,n+1

L

)2

≤ 1

Λ

N∑
n=0

∆t
∑

σKL∈E
|aKL|

(
ξ+,n+1
K − ξ+,n+1

L

)2

≤ 1

Λ

N∑
n=0

∆t
∑

σKL∈E
|aKL|

(
ξn+1
K − ξn+1

L

)2 ≤ C3C6

Λ
.

Therefore, we can apply Lemma A.3 stated in appendix. This provides

(42)
∫∫

Qtf

(
ξ+
M,∆t

)2

dxdt ≤ C.

On the other hand, because of (3), we know that ξ−M,∆t ≤ ξ? a.e. in Qtf , hence

(43)
∫∫

Qtf

(
ξ−M,∆t

)2

dxdt ≤ (ξ?)
2

meas(Ω)tf .

Combining (42) with (43) provides (40). In order to recover (39), in only remains
to use (13) and (40). �

3.3. Existence of a discrete solution. In order to prove the existence of a solu-
tion (pn+1

K )K to the scheme (20), we need an additional mesh-depending estimate
on the solution. Following [9], we introduce now the notion of transmissive path.

Definition 3.8. A transmissive path w joining Ki ∈ V to Kf ∈ V consists in a list
of vertices (Kq)0≤q≤M such that Ki = K0,Kf = KM , with Kq 6= K` if q 6= `, and
such that σKqKq+1

∈ E with aKqKq+1
> 0 for all q ∈ {0, ...,M − 1}. We denote by

W(Ki,Kf ) the set of the transmissive path joining Ki ∈ V to Kf ∈ V.

We now state a result which is proved in [9, Lemma 3.5].

Lemma 3.9. For all (Ki,Kf ) ∈ V2 there exists a transmissive path w ∈ W(Ki,Kf ).

Lemma 3.10. There exists C? > −∞ depending only on T ,∆t,Ω, s, s0, tf ,Λ,
θT , η and z such that

pn+1
K ≥ C?, ∀K ∈ V, ∀n ∈ {0, ..., N}.

Proof. Let us prove that pn+1
K ≥ C?. Assume first that p? > −∞, then we can

choose C? = p? thanks to (29), so that we can focus on the case p? = −∞.
In view of the global conservation property (23), one has that∑

K∈V
(sn+1
K − s0)mK = 0.
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This ensures the existence of at least one vertex Ki such that sn+1
Ki
≥ s0 > 0. In

particular,

(44) −∞ < s−1(s0) ≤ pn+1
Ki

.

Let Kf ∈ V \ {Ki}, then thanks to Lemma 3.9, there exists a transmissive path
w ∈ W(Ki,Kf ) = (Kq)0≤q≤M of finite length in the sense of Definition 3.8. Let us
show that for all pn+1

Kq
> −∞ for all q ∈ {0, ...,M}.

First, we have checked in (44) that pn+1
K0

> −∞. Assume now that pn+1
Kq

> −∞
for some q ∈ {0, . . . ,M − 1}, then it follows from Lemma 3.5 that

N∑
n=0

∆t
∑

σKL∈E
|aKL|ηn+1

KL |u
n+1
K − un+1

L ||pn+1
K − pn+1

L | ≤ C6.

This ensures in particular that

∆taKqKq+1
ηn+1
KqKq+1

(un+1
Kq
− un+1

Kq+1
)(pn+1

Kq
− pn+1

Kq+1
) ≤ C6.

Thanks to the definition (21) of ηn+1
KqKq+1

, one has

aKqKq+1η
n+1
KqKq+1

(un+1
Kq
− un+1

Kq+1
)(pn+1

Kq
− pn+1

Kq+1
)

≥ aKqKq+1η(sn+1
Kq

)(un+1
Kq
− un+1

Kq+1
)(pn+1

Kq
− pn+1

Kq+1
).

Since aKqKq+1
> 0, we obtain that

(un+1
Kq
− un+1

Kq+1
)(pn+1

Kq
− pn+1

Kq+1
)

= (pn+1
Kq
− pn+1

Kq+1
)2 + (pn+1

Kq
− pn+1

Kq+1
)(zKq

− zKq+1
) ≤ C6

∆taKqKq+1
η(s(pn+1

Kq
))
.

Using Young inequality one has

(un+1
Kq
− un+1

Kq+1
)(pn+1

Kq
− pn+1

Kq+1
) ≥ 1

2
(pn+1
Kq
− pn+1

Kq+1
)2 − 1

2
(zKq

− zKq+1
)2,

thus

pn+1
Kq+1

≥ pn+1
Kq
−
√

(zKq
− zKq+1

)2 +
2C6

∆taKqKq+1
η(s(pn+1

Kq
))
.

This ensures that pn+1
Kq+1

> −∞.
We have proved the existence of a finite quantity (CKi,Kf ,w)Kf∈V (depending on

the data of the continuous problem Ω, s, s0, tf ,Λ, θT , η but also on the discretization
T and on ∆t) such that

s(pn+1
Ki

) ≥ s0 =⇒ pn+1
Kf
≥ −CKi,Kf ,w.

As a consequence, since there exists a finite number of transmissive paths between
two vertices, we get the estimate

pn+1
K ≥ − max

Ki∈V
max
Kf∈V

min
w∈W(Ki,Kf )

CKi,Kf ,w > −∞, ∀K ∈ V, ∀n ∈ {0, ..., N}.

�

In the previous lemma, we managed to bound the {pn+1
K } from below. The next

lemma provides a bound from above.
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Lemma 3.11. There exists p? < ∞ depending only on T ,∆t,Ω, tf , s,Λ, η, s0 and
ξ? such that

pn+1
K ≤ p? ∀K ∈ V, ∀n ∈ {0, ..., N}.

Proof. Since s(p) = 1 if p ≥ 0, one has ξ(p) = p
√
η(1) if p ≥ 0. By (40), one has

∆tmKξ(p
n+1
K )2 ≤ ‖ξM,∆t‖2L2(Qtf

) ≤ (C9)2.

Therefore, we get pn+1
K ≤ C9√

∆tmK

1

η(1)
. �

Now, one can apply the same strategy as in [9, Lemma 3.11] for proving the
existence of a solution to the scheme (20).

Proposition 3.12. Let (snK)K∈V ∈ [0, 1]#V be such that
∑
K∈V mKs

n
K = meas(Ω)s0,

there exists (at least) one solution (pn+1
K )K∈V ∈ [p?, p

?]#V of the scheme (20).
Moreover, it satisfies

∑
K∈V mKs

n+1
K = meas(Ω)s0.

The proof of Proposition 3.12 is not detailed here since it mimics the one of [9,
Lemma 3.11]. Let us just mention that it is based on a topological degree argument
[25, 12].

4. Convergence towards a weak solution

The proof of the convergence properties stated in Theorem 2.5 is based on com-
pactness arguments. As a first step, we show in §4.1 the appropriate compactness
properties on the reconstructed discrete solutions. Then we identify in §4.2 the
limit value (whose existence is ensured thanks to the compactness properties) as
the unique weak solution to the problem (1).

4.1. Compactness properties of discrete solutions. As it is classical for un-
steady problems, we need to prove some time-compactness for the approximate
solutions. Because of the degeneracy of the problem we consider, we cannot use
a strategy à la Aubin-Simon [29] (see [21] for an extension of this strategy to the
discrete setting). A classical way to circumvent this problem is to estimate the
time-translates (see [3] in the continuous setting and [15] in the discrete setting).
This strategy could have been used here, but we rather make use of the time-
compactness result for degenerate parabolic equations proposed in [4]. To this end,
we need the following lemma.

Lemma 4.1. There exists C10 depending only on Ω, s, tf ,Λ, θT , z and η such that

(45)
N∑
n=0

∑
K∈V

(sn+1
K − snK)ψ(xK , tn+1)mK ≤ C10‖∇ψ‖∞, ∀ψ ∈ C∞c (Qtf ).

Proof. For the sake of readability, we denote by ψn+1
K = ψ(xK , tn+1) for all K ∈ V

and all n ∈ {0, . . . ,M}. We multiply (20a) by ∆tψn+1
K and sum for K ∈ V, for

n ∈ {0, ..., N} . This yields
A = B,
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where

A =

N∑
n=0

∑
K∈V

mK(sn+1
K − snK)ψn+1

K ,

B =−
N∑
n=0

∆t
∑

σKL∈E
aKLη

n+1
KL (un+1

K − un+1
L )(ψn+1

K − ψn+1
L ).

Using the Cauchy-Schwarz inequality, we get

|B|2 ≤

(
N∑
n=0

∆t
∑

σKL∈E
|aKL|ηn+1

KL (un+1
K − un+1

L )2

)

×

(
N∑
n=0

∆t
∑

σKL∈E
|aKL|ηn+1

KL (ψn+1
K − ψn+1

L )2

)
.

Using Lemma 3.6, the boundedness of η and Lemma 2.1, we obtain that

|B|2 ≤ ‖η‖∞C8C3

∫∫
Qtf

Λ∇ψT ,∆t · ∇ψT ,∆t ≤ ‖η‖∞C8C3meas(Ω)tfΛ‖∇ψ‖2∞.

Therefore (45) holds with C10 =
√
‖η‖∞C8C3meas(Ω)tfΛ. �

We can now state the expected compactness properties.

Proposition 4.2. There exists a measurable function p : Qtf −→ [p?, p
?] such that,

up to an unlabeled subsequence, one has

sMm,∆tm −→
m→+∞

s(p) a.e in Qtf ,

ξTm,∆tm −→
m→+∞

ξ(p) weakly in L2((0, tf );H1(Ω)).

Proof. Thanks to (33), the sequence (∇ξTm,∆tm)m≥1 is bounded in (L2(Qtf ))2.
Moreover, it follows from (39) that (ξTm,∆tm)m≥1 is uniformly bounded in L2(Qtf ),
providing the boundedness of (ξTm,∆tm)m≥1 in L2((0, tf );H1(Ω)). Therefore, there
exists Ξ ∈ L2((0, tf );H1(Ω)) such that

ξTm,∆tm −→
m→+∞

Ξ weakly in L2((0, tf );H1(Ω)).

By (28) we obtain directly that 0 ≤ sMm,∆tm ≤ 1, ensuring the L∞-weak-?
convergence of an unlabeled subsequence towards s ∈ L∞(Qtf ; [0, 1]). Thanks to
Lemma 4.1, we can apply [4, Theorem 3.9]. It gives the existence of p : Qtf −→
[p?, p

?] such that, up to an unlabeled subsequence,

sMm,∆tm −→
m→+∞

s(p) a.e in Qtf ,

and Ξ = ξ(p). �
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4.2. Identification as a weak solution.

Proposition 4.3. Let p be as in Proposition 4.2, then p is the unique weak solution
to (1) in the sense of Definition 1.2.

Proof. Let ψ ∈ C∞c (Ω× [0, tf )), and denote by ψnK = ψ(xK , tn), for all K ∈ Vm and
all n ∈ {0, ..., Nm}. We multiply (20a) by ∆tmψ

n
K and sum over n ∈ {0, ..., Nm}

and K ∈ Vm to obtain

(46) Am +Bm + Cm +Dm = 0,

where, denoting by ξn+1
K = ξ(pn+1

K ), we have set

Am =

Nm∑
n=0

∑
K∈Vm

(sn+1
K − snK)ψnKmK ,

Bm =

Nm∑
n=0

∆tm
∑

σKL∈Em

aKL

(
ηn+1
KL (pn+1

K − pn+1
L )−

√
ηn+1
KL (ξn+1

K − ξn+1
L )

)
(ψnK − ψnL),

Cm =

Nm∑
n=0

∆tm
∑

σKL∈Em

aKL

√
ηn+1
KL

(
ξn+1
K − ξn+1

L

)
(ψnK − ψnL),

Dm =

Nm∑
n=0

∆tm
∑

σKL∈Em

aKLη
n+1
KL (zK − zL) (ψnK − ψnL).

Note that ψNm+1
K = 0 for all K ∈ Vm, then a discrete integration parts yields

Am = −
Nm∑
n=0

∆tm
∑
K∈Vm

sn+1
K

ψn+1
K − ψnK

∆tm
mK −

∑
K∈Vm

s0
Kψ

0
KmK

= −
∫∫

Qtf

sMm,∆tmδψMm,∆tm dx dt−
∫

Ω

s0
Mm

ψMm,∆tm(x, 0) dx,

where the function δψMm,∆tm of XMm,∆tm is defined by

δψMm,∆tm(x, t) =
ψn+1
K − ψnK

∆tm
if (x, t) ∈ ωK × (tn, tn+1).

Thanks to the regularity of ψ, the function δψMm,∆tm converges uniformly towards
∂tψ on Qtf . Moreover, we have

sMm,∆tm −→ s(p) in Lr(Qtf ) as m→∞,
for all r ∈ [1,∞) thanks to Proposition 4.2. Therefore,

(47)
∫∫

Qtf

sMm,∆tmδψMm,∆tm dx dt −→
∫∫

Qtf

s(p)∂tψ dx dt as m→∞.

Moreover, s0
Mm

converges strongly in L1(Ω) towards the initial data s0 and ψMm,∆tm(·, 0)
converges uniformly towards ψ(·, 0). Therefore, we get that

(48)
∫

Ω

s0
Mm

(x)ψMm,∆tm(x, 0) dx −→
∫

Ω

s0(x)ψ(x, 0) dx as m→∞.

We deduce from (47) and (48) that

(49) Am −→ −
∫∫

Qtf

s(p)∂tψ dx dt−
∫

Ω

s0ψ(., 0) dx as m→∞.
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The term Bm rewrites

Bm =

Nm∑
n=0

∆tm
∑

σKL∈Em

aKL

√
ηn+1
KL

(√
ηn+1
KL −

√
η̃n+1
KL

)
(pn+1
K − pn+1

L )(ψnK − ψnL),

where η̃n+1
KL is defined by (34). Using the Cauchy-Schwarz inequality, we get

(50) |Bm|2 ≤

(
Nm∑
n=0

∆tm
∑

σKL∈Em

|aKL|ηn+1
KL (pn+1

K − pn+1
L )2

)

×

(
Nm∑
n=0

∆tm
∑

σKL∈Em

|aKL|
(√

ηn+1
KL −

√
η̃n+1
KL

)2

(ψnK − ψnL)2

)
︸ ︷︷ ︸

:=Rm

.

The first term in the right-hand side of (50) is bounded by C8 thanks to Lemma 3.6.
Therefore, in order to prove that lim

m→∞
Bm = 0, it suffices to prove that lim

m→∞
Rm =

0. For T ∈ Tm, we denote by

ξ
n+1

T = max
x∈T

(ξTm,∆tm(x, tn+1)) , ξn+1

T
= min

x∈T
(ξTm,∆tm(x, tn+1)) ,

and we define the piecewise constant functions ξTm,∆tm and ξTm,∆tm by

ξTm,∆tm(x, t) = ξ
n+1

T and ξTm,∆tm
(x, t) = ξn+1

T
if (x, t) ∈ T × (tn, tn+1),

Since
√
η ◦ s ◦ ξ−1 is uniformly continuous, it admits a modulus of continuity µ

such that µ(0) = 0. Therefore, we can estimate

(51)
∣∣∣∣√ηn+1

KL −
√
η̃n+1
KL

∣∣∣∣ ≤ µ(ξn+1

T − ξn+1

T

)
, ∀σKL ∈ ET .

Using (51) in the definition (50) of Rm, we get

(52) 0 ≤ Rm ≤
Nm∑
n=0

∆tm
∑
T∈Tm

µ
(
ξ
n+1

T − ξn+1

T

)2 ∑
σKL∈ET

|aTKL|(ψnK − ψnL)2.

Following the proof of Lemma 2.1 (cf. [9, Lemma 3.2]), we can prove that

(53)
∑

σKL∈ET

|aTKL|(ψnK − ψnL)2 ≤ C3Λ‖∇ψ‖2∞meas(T ), ∀T ∈ T .

Therefore, we deduce from (52) that

(54) 0 ≤ Rm ≤ C
∫∫

Qtf

µ
(
ξTm,∆tm − ξTm,∆tm

)2

dx dt,

where C depends only on Λ, θ and ψ. Since µ is bounded (as η is bounded),
continuous, with µ(0) = 0, it suffices to show that ξTm,∆tm(x, t) − ξTm,∆tm(x, t)

tends to 0 almost everywhere in Qtf as m→∞ (up to an unlabeled subsequence).
Thanks to [9, Lemma A.1] and to Lebesgue’s dominated convergence theorem, one
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has

(55)
∫∫

Qtf

∣∣∣ξTm,∆tm(x, t)− ξTm,∆tm(x, t)
∣∣∣dx dt

≤ Chm
∫∫

Qtf

|∇ξTm,∆tm |dx dt −→
m→+∞

0.

As a consequence of (50), (54) and (55), and still up to the extraction of an unlabeled
subsequence, one has

(56) lim
m→∞

Bm = lim
m→∞

Rm = 0.

Let us now focus on the term Cm. We define the piecewise constant functions
ΞTm,∆tm and HTm,∆tm by

ΞTm,∆tm(x, t) = ξTm,∆tm(xT , t), ∀x ∈ T, ∀t ∈ (tn, tn+1),

xT being the center of mass of the triangle T , and byHTm,∆tm = η◦s◦ξ−1(ΞTm,∆tm).
Clearly, one has

ξTm,∆tm
≤ ΞTm,∆tm ≤ ξTm,∆tm .

It follows from (55) that both ξTm,∆tm and ξTm,∆tm converge almost everywhere to
ξ(p), hence so does ΞTm,∆tm . This provides that

(57) HTm,∆tm −→ η(s(p)) in L1(Qtf ) as m→∞.

We introduce the term

C ′m =

∫∫
Qtf

√
HTm,∆tmΛ∇ξTm,∆tm · ∇ψTm,∆tm(., t−∆tm) dx dt.

Since ∇ξTm,∆tm converges weakly in L2(Qtf ) towards ∇ξ(p), since ∇ψTm,∆tm con-
verges uniformly towards ∇ψ, and thanks to (57), we obtain that

(58) lim
m→∞

C ′m =

∫∫
Qtf

√
η(s(p))Λ∇ξ(p) · ∇ψ dx dt.

Let us now check that |Cm − C ′m| tends to 0 as m tends to ∞. We denote by

ηn+1
T = HTm,∆tm(xT , tn+1), ∀T ∈ Tm,∀n ∈ {0, ..., Nm}.

The term C ′m can be rewritten

C ′m =

Nm∑
n=0

∆tm
∑
T∈Tm

√
ηn+1
T

∑
σKL∈ET

aTKL
(
ξn+1
K − ξn+1

L

)
(ψnK − ψnL),

so that

Cm−C ′m =

Nm∑
n=0

∆tm
∑
T∈Tm

∑
σKL∈ET

aTKL

(√
ηn+1
KL −

√
ηn+1
T

)(
ξn+1
K − ξn+1

L

)
(ψnK−ψnL).

For all n ∈ {0, ..., Nm}, for all T ∈ Tm, and for all σKL ∈ ET , one has

(59)
∣∣∣∣√ηn+1

KL −
√
ηn+1
T

∣∣∣∣ ≤ µ(ξ
n+1

T − ξn+1

T
)
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where µ is the continuity modulus of
√
η ◦ s ◦ ξ−1. Then one obtains that

|Cm − C ′m| ≤
Nm∑
n=0

∆tm
∑
T∈Tm

[
µ(ξ

n+1

T − ξn+1

T
)

×
∑

σKL∈ET

|aTKL|
∣∣ξn+1
K − ξN+1

L

∣∣ |ψnK − ψnL|].
The Cauchy-Schwarz inequality provides

|Cm − C ′m|2 ≤
Nm∑
n=0

∆tm
∑
T∈Tm

µ
(
ξ
n+1

T − ξn+1

T

)2 ∑
σKL∈ET

|aTKL|(ψnK − ψnL)2

×
Nm∑
n=0

∆tm
∑
T∈Tm

∑
σKL∈ET

|aTKL|
(
ξn+1
K − ξn+1

L

)2

.

Using Lemma 2.1 and Lemma 3.4, together with (53), one deduces that

|Cm − C ′m|2 ≤ C
∫∫

Qtf

µ
(
ξTm,∆tm − ξTm,∆tm

)2

dx dt,

thus |Cm−C ′m| tends to 0 thanks to the arguments already developed to prove that
Rm tends to 0. Finally, we obtain that

(60) lim
m→∞

Cm =

∫∫
Qtf

√
η(s(p))Λ∇ξ(p) · ∇ψ dx dt.

Let us focus on the last term Dm. We introduce the term

D′m =

∫∫
Qtf

HTm,∆tmΛ∇z · ∇ψTm,∆tm(., t−∆tm) dx dt.

It follows from (57) and from the uniform convergence of ∇ψTm,∆tm towards ∇ψ
as m tends to +∞ that

lim
m→∞

D′m =

∫∫
Qtf

η(s(p))Λ∇z · ∇ψ dx dt.

We will now check that |Dm −D′m| −→ 0 as m→∞. The term D′m rewrites

D′m =

Nm∑
n=0

∆tm
∑
T∈Tm

ηn+1
T

∑
σKL∈ET

aTKL (zK − zL) (ψnK − ψnL),

so that

Dm −D′m =

Nm∑
n=0

∆tm
∑
T∈Tm

∑
σKL∈ET

aTKL
(
ηn+1
KL − η

n+1
T

)
(zK − zL) (ψnK − ψnL).

For all σKL ∈ ET , one has∣∣ηn+1
KL − η

n+1
T

∣∣ ≤ ∣∣∣∣√ηn+1
KL −

√
ηn+1
T

∣∣∣∣ (√ηn+1
KL +

√
ηn+1
T

)
≤ 2‖η‖∞µ(ξ

n+1

T − ξn+1

T
).
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Therefore, using the Cauchy-Schwarz inequality, one has

|Dm −D′m|2 ≤4‖η‖2∞
Nm∑
n=0

∆tm
∑
T∈Tm

µ
(
ξ
n+1

T − ξn+1

T

)2 ∑
σKL∈ET

|aTKL|(ψnK − ψnL)2

×
Nm∑
n=0

∆tm
∑
T∈Tm

∑
σKL∈ET

|aTKL|(zK − zL)2.

We use Lemma 2.1 to get
Nm∑
n=0

∆tm
∑
T∈Tm

∑
σKL∈ET

|aTKL|(zK − zL)2 ≤ C3

∫∫
Qtf

Λ∇z · ∇z dx dt ≤ C.

We deduce from (53) that

|Dm −D′m|2 ≤ C
∫∫

Qtf

µ
(
ξTm,∆tm − ξTm,∆tm

)2

dx dt −→
m→∞

0,

and then that

(61) lim
m→∞

Dm =

∫∫
Qtf

η(s(p))Λ∇z · ∇ψ dx dt.

Putting (49), (56), (60) and (61) together in (46) provides that p satisfies the
weak formulation (12), then it is the unique weak solution to the problem (cf.
Theorem 1.3). �

Finally, let us remark that since the weak solution p is unique, all the convergence
in functional space that were proved to occur up to the extraction of a subsequence
are valid for the whole sequences. Concerning the almost everywhere convergence,
we cannot do better than saying that it holds up to a subsequence.

5. Numerical results

Let us provide some illustrations of the behavior of the numerical scheme (20).
The scheme leads to a nonlinear system that we solve thanks to the Newton-
Raphson method with Matlab. In all our test cases, the domain is the unit square,
i.e., Ω = (0, 1)2. We use meshes coming from the 2D benchmark on anisotropic
diffusion problems [22]. An illustration of the meshes is given in Figure 3. These
triangle meshes show no symmetry which could artificially increase the convergence
rate. All angles are acute, so that, in the case of an isotropic tensor Λ, the coeffi-
cients aKL are all non-negative. This is no longer the case when Λ is chosen to be
anisotropic. To be more precise concerning the diffusion tensor, we have considered
constant diagonal tensors

Λ =

(
Λxx 0

0 Λyy

)
where Λxx and Λyy are chosen constant in Ω, and the gravity acceleration g is
defined by g = (g, 0)T for all x ∈ Ω with g ∈ R+.

The numerical analysis of the scheme was carried out for a uniform time dis-
cretization of (0, tf ) only in order to avoid heavy notations. In order to increase the
robustness of the algorithm and to ensure the convergence of the Newton-Raphson
iterative procedure, we used an adaptive time step procedure in the practical im-
plementation. More precisely, to each mesh, we associate a maximal time step ∆tk,
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Figure 3. Second and fourth meshes used in the numerical tests

k being the index of the mesh (1 for the coarsest, 7 for the finest). If the Newton-
Raphson method fails to converge after 30 iterations, the time step is divided by
two. If the Newton-Raphson method converges, the time step is multiplied by two
and projected on [0,∆tk].

In sections §5.1, §5.2 and §5.3, we give evidence of the convergence of scheme (20)
on test cases where exact analytical solutions are known. We are interested in the
convergence speed of our method when the discretization parameters h and ∆t
tend to 0. We focus on the error caused by the spatial discretization (the time
discretization is a classical first order accurate backward Euler method). As we
will see, our scheme is at most first order accurate. In order to be sure that the
error caused by the time discretization will not be of leading order, we choose
∆tk+1 = ∆tk/4 while hk+1 = hk/2, hk being the size the mesh k ∈ {1, . . . , 7}. The
first time step ∆t1 to 0.01024 in all the test cases presented below.

The test cases we chose to present here do not perfectly match with the assump-
tions presented at the beginning of the paper. They rather isolate the difficulties
of the problem and give a better view of the behavior of the scheme. More pre-
cisely, the so called Hornung-Messing problem presented in §5.1 aims to illustrate
the behavior of the scheme when an elliptic degeneracy occurs. The linear Fokker-
Planck problem of §5.2 illustrates the behavior of the scheme for a stiff problem
when p? = −∞. The porous medium equation with drift presented in §5.3 allows
to illustrate the behavior of the scheme near a hyperbolic degeneracy at s(p) = 0.
Finally, the last test case presented in §5.4 is there to illustrate numerically the
decay of the free energy. Let us stress that the numerical analysis we developed
in the paper can be adapted without any major modification to all the cases we
present here.

Let us mention that in the tests 2, 3, and 4, we considered problems without
elliptic degeneracy. The corresponding functions s are increasing on (p?,+∞).
Therefore, we can choose S = s(p) rather that p as a primary unknown in these
cases. Denoting by p = s−1, the problem solved numerically in §5.2, §5.3 and §5.4
can then be written

(62) ∂tS −∇ · (Λη(S)(∇p(S)− g)) = 0 in Qtf .
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Finally, we have set the gravity g = ex horizontal from the left to the right in the
tests 2, 3, and 4. As a consequence, the scheme we considered in §5.2, §5.3, and
§5.4 is

sn+1
K − snK

∆t
mK +

∑
σKL∈EK

ηn+1
KL aKL(un+1

K − un+1
L ) = 0,(63a)

un+1
K = pn+1

K − xK ,(63b)

pn+1
K = p(sn+1

K ),(63c)

ηn+1
KL =

{
η(sn+1

K ) if aKL(un+1
K − un+1

L ) ≥ 0,

η(sn+1
L ) if aKL(un+1

K − un+1
L ) < 0.

(63d)

5.1. Test 1: A test case with saturated zones. The first test-case we propose
here is the so-called Hornung-Messing problem [7]. In this problem, gravity is
neglected (i.e. g = 0 and un+1

K = pn+1
K for all K ∈ V and n ≥ 0). We consider the

following nonlinearities

η(p) =


2

1 + p2
if p < 0,

2 if p ≥ 0,
s(p) =


(
π2

4
− arctan2(p)

)
(Λxx + Λyy) if p < 0,

π2

4
(Λxx + Λyy) if p ≥ 0.

and the exact solution to the Richards equation

(64) pex =


−x− y − t

2
if x− y − t < 0,

− tan

(
ex−y−t − 1

ex−y−t + 1

)
if x− y − t ≥ 0,

∀(x, y) ∈ Ω, ∀t ∈ (0, tf ),

where tf was set to 0.05. This exact solution does not satisfies the no-flux boundary
conditions. Therefore, we prescribe the exact solution pex as Dirichlet boundary
conditions on ∂Ω× (0, tf ). In Tables 1 and 2, we report the errors

errLp = ‖pM,∆t − pex‖Lp(Qtf
) for p = 1, 2,∞

for 7 successively refined meshes in the Isotropic case Λ = Id and in the anisotropic
case Λ = diag(1, 10−3).

h #V errL2 rate errL1 rate errL∞ rate
0.500 12 0.343E-3 - 0.548E-4 - 0.352E-2 -
0.250 37 0.218E-3 0.651 0.472E-4 0.215 0.197E-2 0.838
0.125 129 0.141E-3 0.629 0.329E-4 0.522 0.113E-2 0.801
0.063 481 0.769E-4 0.886 0.185E-4 0.844 0.607E-3 0.907
0.031 1857 0.399E-4 0.927 0.967E-5 0.912 0.306E-3 0.966
0.016 7297 0.202E-4 1.025 0.493E-5 1.019 0.154E-3 1.041
0.008 28929 0.102E-4 0.989 0.249E-5 0.986 0.771E-4 0.996
0.004 115201 0.512E-5 0.994 0.125E-5 0.993 0.386E-4 0.997

Table 1. Test 1, isotropic case Λ = Id.

We observe that numerical order of convergence is close to 1 for the three norms
whatever the anisotropy tensor on this test case.
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h #V errL2 rate errL1 rate errL∞ rate
0.500 12 0.382E-3 - 0.581E-4 - 0.384E-2 -
0.250 37 0.368E-3 0.057 0.682E-4 -0.231 0.396E-2 -0.044
0.125 129 0.225E-3 0.710 0.475E-4 0.522 0.218E-2 0.861
0.063 481 0.120E-3 0.911 0.268E-4 0.838 0.112E-2 0.974
0.031 1857 0.621E-4 0.933 0.141E-4 0.904 0.522E-3 1.075
0.016 7297 0.315E-4 1.026 0.721E-5 1.012 0.260E-3 1.052
0.008 28929 0.159E-4 0.990 0.365E-5 0.983 0.130E-3 1.003
0.004 115201 0.796E-5 0.993 0.183E-5 0.992 0.647E-4 1.002

Table 2. Test 1, anisotropic case with Λxx = 1 and Λyy = 10−3

5.2. Test 2: Linear Fokker-Planck equation. In this test case, we study the
behavior of our scheme on the problem (1) with the choice of nonlinearities s(p) =
exp(p) and η(s) = s. The function s does not fulfill Assumption (A1) since s is not
constant on R+. Since s in injective, we can use S = s(p) as a primary unknown,
leading to the problem

(65)


∂tS −∇·(SΛ(∇ log(S)− ex)) = 0 in Qtf ,
SΛ(∇ log(S)− ex) · n = 0 on ∂Ω× (0, T ),

S|t=0
= s0 in Ω,

that turns out to be the linear convection diffusion equation

(66)


∂tS −∇·(Λ(∇S − Sex) = 0 in Qtf ,
Λ(∇S − Sex) · n = 0 on ∂Ω× (0, T ),

S|t=0
= s0 in Ω.

We compare the results obtained with the nonlinear CVFE scheme (63) with
the following linear scheme where the convection is discretized thanks to centered
fluxes:

(67)
sn+1
K − snK

∆t
mK +

∑
σKL∈EK

aKL

(
(sn+1
K − sn+1

L ) + (xK − xL)
sn+1
K + sn+1

L

2

)
= 0

for all K ∈ V and for all n ∈ {0, ..., N}.
The schemes (63) and (67) are compared on the following analytical solution

built from a 1D case:

sex(x, y, t) = exp(−αt+
x

2
)

(
π cos(πx) +

1

2
sin(πx)

)
+ π exp(x− 1

2
) in Qtf ,

where α = Λxx(π2 + 1
4 ), and where the final time has been fixed to 0.05. This

analytical solution is nonnegative and satisfies homogeneous Neumann boundary
conditions.

In Tables 3 to 6, we report the L1(Qtf ), L2(Qtf ), and L∞(Qtf ) on the variable
S, i.e.,

errLp = ‖sM,∆t − sex‖Lp(Qtf
) for p = 1, 2,∞

The numerical order of convergence of the linear scheme (67) is close to 2. How-
ever, the more the anisotropy ratio is important, the more we observe oscillations
and undershoots (see in particular Table 6). The nonlinear scheme (63) preserves
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h #V errL2 rate errL1 rate errL∞ rate Smin
0.500 12 0.328E-01 - 0.820E-02 - 0.232E+00 - 0
0.250 37 0.306E-01 0.0389 0.798E-02 -0.0389 0.239E+00 -0.0466 0
0.125 129 0.198E-01 0.6320 0.508E-02 0.6519 0.153E+00 0.6477 0
0.063 481 0.109E-01 0.8674 0.276E-02 0.8911 0.841E-01 0.8722 0
0.031 1857 0.570E-02 0.9130 0.143E-02 0.9237 0.441E-01 0.9101 0
0.016 7297 0.292E-02 1.0152 0.729E-03 1.0214 0.226E-01 1.0123 0
0.008 28929 0.147E-02 0.9845 0.368E-03 0.9893 0.114E-01 0.9831 0
0.004 115201 0.741E-03 0.9923 0.185E-03 0.9937 0.575E-02 0.9913 0

Table 3. Test 2, nonlinear scheme (63), with an isotropic tensor
Λ = Id.

h #V errL2 rate errL1 rate errL∞ rate Smin
0.500 12 0.294E-01 - 0.372E-02 - 0.484E+00 - 0
0.250 37 0.829E-02 1.8267 0.198E-02 1.6352 0.166E+00 1.5428 0
0.125 129 0.218E-02 1.9286 0.349E-03 1.8389 0.426E-01 1.9639 0
0.063 481 0.548E-03 2.0138 0.859E-04 1.9863 0.108E-01 2.0069 0
0.031 1857 0.137E-03 1.9521 0.216E-04 1.9310 0.274E-02 1.9310 0
0.016 7297 0.343E-04 2.0956 0.542E-05 2.0675 0.697E-03 2.0675 0
0.008 28929 0.858E-05 1.9998 0.135E-05 1.9994 0.178E-03 1.9720 0
0.004 115201 0.214E-05 2.0000 0.339E-06 1.9998 0.453E-04 1.9719 0

Table 4. Test 2, linear scheme (67) with an isotropic tensor Λ = Id.

h #V errL2 rate errL1 rate errL∞ rate Smin
0.500 12 0.179E+00 - 0.488E-01 - 1.022E+00 - 0
0.250 37 0.166E+00 0.1080 0.462E-01 0.0792 0.959E+00 0.0930 0
0.125 129 0.118E+00 0.4947 0.318E-01 0.5396 0.744E+00 0.3659 0
0.063 481 0.746E-01 0.6685 0.197E-01 0.7008 0.504E+00 0.5689 0
0.031 1857 0.439E-01 0.7498 0.113E-01 0.7755 0.309E+00 0.6880 0
0.016 7297 0.243E-01 0.8904 0.621E-02 0.9118 0.177E+00 0.8416 0
0.008 28929 0.130E-01 0.9087 0.327E-02 0.9229 0.964E-01 0.8793 0
0.004 115201 0.672E-02 0.9481 0.169E-02 0.9571 0.506E-01 0.9304 0

Table 5. Test 2: nonlinear scheme (63) with an anisotropic tensor
Λxx = 1 and Λyy = 20.

the positivity of the solution whatever the anisotropy, but this property has a cost.
Indeed, the numerical diffusion introduced by the nonlinear scheme (63) becomes
very important when the anisotropy ratio is large. This yields a loss of accuracy.
The method (63) seems to be first order accurate, i.e.,

(68) errLp ≤ Cp(Λ, θ)h, p ∈ {1, 2,∞},
but with constants Cp(Λ, θ) that strongly depend on the anisotropy ratio and of
the regularity of the mesh.

5.3. Test 3: Porous medium equation with drift. In this third test case, we
set s(p) = p/2 if p ≥ 0 and η(s) = s. Choosing S = s(p) as a primary variable, we
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h #V errL2 rate errL1 rate errL∞ rate Smin
0.500 12 0.566E-01 - 0.115E-01 - 0.376E+00 - 0
0.250 37 0.222E-01 1.3523 0.427E-02 1.4290 0.250E+00 0.5878 0
0.125 129 0.613E-02 1.8553 0.119E-02 1.8469 0.883E-01 1.5036 -2.1867E-03
0.063 481 0.155E-02 2.0021 0.300E-03 2.0053 0.247E-01 1.8621 -9.3704e-04
0.031 1857 0.390E-03 1.9506 0.755E-04 1.9468 0.647E-02 1.8859 -2.6687e-04
0.016 7297 0.976E-04 2.0948 0.189E-04 2.0952 0.168E-02 2.0358 -6.9729e-05
0.008 28929 0.244E-04 1.9997 0.472E-05 1.9997 0.437E-03 1.9470 -1.7741e-05
0.004 115201 0.610E-05 1.9999 0.118E-05 1.9999 0.113E-03 1.9495 -4.4696e-06

Table 6. Test 2, linear scheme (67) with an anisotropic tensor:
Λxx = 1 and Λyy = 20.

obtain the degenerate parabolic equation

∂tS −∇ · (SΛ(2S − ex)) = 0 in Qtf ,

or equivalently

(69) ∂tS −∇ · (Λ(∇S − ex)) = 0 in Qtf ,

The function sex defined by

(70) sex(x, y, t) = max(βt− x, 0), ∀((x, y), t) ∈ Qtf
with β = 2Λxx satisfies the equation (69). As in Test 1, we complement (69) by
Dirichlet boundary conditions and an initial condition prescribed by (70). The final
time tf has been set to 0.05.

The nonlinear scheme (63) is adapted to the case of Dirichlet boudary condi-
tions: (63a) is assumed to hold only for K ∈ Vint = {K ∈ V | xK /∈ ∂Ω }. The
equations (63b) and (63c) are enforced for all K ∈ V, and (63d) is enforced for
all σKL ∈ Eint = {σ ∈ E | σ 6⊂ ∂Ω }. In order to close the system, we impose
sn+1
K = sex(xK , tn+1) for all K such that xK ∈ ∂Ω.
The numerical results obtained thanks to our scheme are compared with those

obtained thanks to a so-called quasilinear scheme where (63a) has been replaced
by
(71)
sn+1
K − snK

∆t
mK +

∑
σKL∈E

aKL

(
(sn+1
K )2 − (sn+1

L )2 + (xK − xL)
sn+1
K + sn+1

L

2

)
= 0.

The analytical solution sex defined by (70) belongs to C([0, tf ), H3/2−ε(Ω)) for
all ε > 0. Therefore, we expect for the quasilinear scheme (71) a convergence order
close to 1.5 in the L2(Qtf ) norm, as observed in Tables 8 and 10.

We observe that, as expected, that the nonlinear scheme (63) has a smaller order
of convergence (less than 1) when Λ is isotropic, cf. Table 5. Here again, as in Test
2, the accuracy is strongly affected by the anisotropy. The numerical diffusion
introduced by the scheme increases with the anisotropy ratio. But the solutions to
the scheme (20) do not present undershoots, on the contrary to the solutions to the
quasilinear scheme (71), cf. 10. In order to illustrate the overdiffusive behavior of
the nonlinear scheme (63) as well as the undershoots produced by the quasilinear
scheme (71), we present in Figure 4 the snapshots of both numerical solutions at
time t = tf .
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h #V errL2 rate errL1 rate errL∞ rate Smin
0.500 12 0.174E-02 - 0.215E-03 - 0.284E-01 - 0
0.250 37 0.238E-02 -0.4509 0.224E-03 -0.0573 0.559E-01 -0.9751 0
0.125 129 0.168E-02 0.5062 0.160E-03 0.4883 0.305E-01 0.8754 0
0.063 481 0.100E-02 0.7489 0.889E-04 0.8543 0.237E-01 0.3644 -1.1092e-26
0.031 1857 0.609E-03 0.7049 0.486E-04 0.8522 0.174E-01 0.4386 -2.5862e-23
0.016 7297 0.359E-03 0.7994 0.259E-04 0.9509 0.113E-01 0.6459 -2.7142e-25
0.008 28929 0.206E-03 0.8043 0.136E-04 0.9315 0.734E-02 0.6301 -7.0895e-11
0.004 115201 0.115E-03 0.8445 0.703E-05 0.9511 0.460E-02 0.6751 -8.4650e-11

Table 7. Nonlinear scheme, with an isotropic tensor: Λxx = 1
and Λyy = 1

h #V errL2 rate errL1 rate errL∞ rate Smin
0.500 12 0.990E-03 - 0.120E-03 - 0.166E-01 - 0
0.250 37 0.148E-02 -0.5805 0.129E-03 -0.1076 0.383E-01 -1.2026 0
0.125 129 0.825E-03 0.8427 0.720E-04 0.8424 0.176E-01 1.1253 0
0.063 481 0.356E-03 1.2265 0.268E-04 1.4434 0.106E-01 0.7307 0
0.031 1857 0.151E-03 1.2052 0.998E-05 1.3912 0.582E-02 0.8507 0
0.016 7297 0.581E-04 1.4499 0.320E-05 1.7193 0.296E-02 1.0232 -1.3853e-18
0.008 28929 0.214E-04 1.4403 0.950E-06 1.7531 0.149E-02 0.9921 -6.9053e-17
0.004 115201 0.711E-05 1.4722 0.270E-06 1.8125 0.743E-03 1.0008 -2.1592e-18

Table 8. Quasilinear scheme, with an isotropic tensor: Λxx = 1
and Λyy = 1

h #V errL2 rate errL1 rate errL∞ rate Smin
0.500 12 0.672E-02 - 0.983E-03 - 0.829E-01 - 0
0.250 37 0.664E-02 0.0178 0.102E-02 -0.0551 0.101E00 -0.2802 0
0.125 129 0.552E-02 0.2663 0.862E-03 0.2439 0.831E-01 0.2774 -8.3744E-10
0.063 481 0.441E-02 0.3287 0.647E-03 0.4191 0.699E-01 0.2526 -2.3267E-11
0.031 1857 0.345E-02 0.3471 0.458E-03 0.4876 0.625E-01 0.1586 -7.8867E-11
0.016 7297 0.260E-02 0.4284 0.310E-03 0.5954 0.514E-01 0.2946 -1.6558E-10
0.008 28929 0.189E-02 0.4608 0.200E-03 0.6241 0.409E-01 0.3266 -1.4031E-07
0.004 115201 0.132E-02 0.5141 0.125E-03 0.6794 0.318E-01 0.3666 -7.8670E-07

Table 9. Nonlinear scheme, with an anisotropic tensor: Λxx = 1
and Λyy = 100

5.4. Decay of discrete free energy. Let us denote by M(Qtf ) the set of the mea-
surable functions mapping Qtf to R. The free energy functional [23] E : M(Qtf )→
R ∪ {+∞}, defined by

(72) E(p) =

∫
Ω

(
Γ(p) + s(p)g · x

)
dx, ∀p ∈M(Qtf ),

consists in the sum of the capillary energy (6), and the gravitational energy. We
have formally the classical energy/dissipation property (10), and in particular t 7−→
E(p)(t) is decreasing. The discrete counterpart of the free energy is

E(pnM) =
∑
K∈V

mK

[
Γ(pnK) + gs(pnK)xK

]
.
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h #V errL2 rate errL1 rate errL∞ rate Smin
0.500 12 0.976E-02 - 0.159E-01 - 0.111E+00 - -5.4034E-02
0.250 37 0.722E-02 0.4337 0.110E-02 0.5325 0.108E+00 0.0424 -3.5579E-02
0.125 129 0.414E-02 0.8015 0.583E-03 0.9103 0.589E-01 0.8736 -2.5825E-02
0.063 481 0.179E-02 1.2215 0.198E-03 1.5786 0.419E-01 0.4968 -1.1696E-02
0.031 1857 0.779E-03 1.1765 0.746E-03 1.3747 0.220E-01 0.9062 -5.8549E-03
0.016 7297 0.336E-02 1.2698 0.262E-04 1.5806 0.118E-01 0.9376 -2.9309E-03
0.008 28929 0.140E-03 1.2662 0.876E-05 1.5822 0.636E-02 0.8980 -1.4663E-03
0.004 115201 0.565E-04 1.3073 0.282E-05 1.6351 0.333E-02 0.9341 -7.3339E-04

Table 10. Quasilinear scheme, with an anisotropic tensor: Λxx =
1 and Λyy = 100

Figure 4. Test 3: 2nd mesh and anisotropic tensor Λxx = 1 and
Λyy = 100. Discrete solutions sM,∆t(·, tf ) and their iso-values.
Left: Quasilinear scheme (71). Right: Nonlinear scheme (63).

We have not succeeded to prove the decay of the discrete free energy contrarily to
[9]. Let us provide a numerical evidence of this energy/dissipation property. Define
the nonlinearities

s(p) =


1

1 + p2
if p < 0,

1 if p ≥ 0,
η(s) = s2,

and set g = ex, and

p0 =


−x− y

2
if x− y < 0,

− tan

(
ex−y − 1

ex−y + 1

)
if x− y ≥ 0.

We solve the scheme (20) and we remark (cf. Figure 5) that (E(pnM))n≥0 is decreas-
ing. As already noticed on the previous test cases, the scheme (20) suffers from
an excessive numerical diffusion, in particular when the anisotropy ratio is high.
The origins of faster convergence towards the equilibrium in the anisotropic case
illustrated by Figure 5 are twofold. The anisotropy favors the convergence towards
the equilibrium at the continuous level. But the additional numerical diffusion
introduced by the scheme also accelerates this convergence.
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Figure 5. Evolution of the free energy along time, for Λxx =
1,Λyy = 1 (on the left) and Λxx = 1,Λyy = 100 (on the right).

6. Conclusion

We proposed and analyzed a nonlinear energy stable scheme for solving the
Richards equation. Moreover, the definition of the scheme only rely on physical
quantities and not on artificial ones like for instance the Kirchhoff transform. We
were able to carry out a full convergence analysis based on compactness arguments.
Contrarily to classical schemes, this new nonlinear scheme produces no undershoot.
As far as we know, our scheme is the first one to ensure that the discrete solution
remains in the physical range even in the case of strong anisotropy.

However, it appears in the numerical simulations that in the case of strong
anisotropy ratio, the scheme introduces an excessive numerical diffusion that makes
its convergence very slow. This shall motivate the design of some new more robust
schemes (for instance based on [10]) that preserve the main advantages of the scheme
studied in this paper, namely the formulation in physical variables, the preservation
of the physical range, and then control of the physical energy.

Appendix A. Appendix

A.1. Some inequalities of Sobolev’s type.

Lemma A.1. Let q ≥ 1, and let u ∈W 1,q(Ω) be such that

(73) u ≥ 0 and λ ({u = 0}) ≥ α > 0,

where λ denotes the 2-dimensional Lebesgue measure. Define q? = 2q/(2 − q) if
q < 2 and q? = +∞ if q ≥ 2, then, for all r ≤ q? if q 6= 2 and r <∞ if q = 2, there
exists C depending only on Ω, r, and α such that

‖u‖Lr(Ω) ≤ C‖∇u‖Lq(Ω)2 .

Proof. Define the mean 〈u〉 value of u by

〈u〉 =
1

λ(Ω)

∫
Ω

u(x) dx ≥ 0.

Due to the properties (73) of u, one has∫
Ω

|u− 〈u〉|dx =

∫
{u=0}

〈u〉dx +

∫
{u>0}

|u− 〈u〉|dx ≥ α〈u〉.
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On the other hand, thanks to Poincaré’s inequality (see, e.g., [1]), one has∫
Ω

|u− 〈u〉|dx ≤ diam(Ω)

2

∫
Ω

|∇u|dx ≤ diam(Ω)

2
λ(Ω)

q−1
q ‖∇u‖Lq(Ω).

Therefore, we get that

〈u〉 ≤ diam(Ω)

2α
λ(Ω)

q−1
q ‖∇u‖Lq(Ω).

Combining this estimate with Sobolev’s inequality (see, e.g., [2]) yields

‖u‖Lr(Ω) ≤ ‖u− 〈u〉‖Lr(Ω) + λ(Ω)〈u〉 ≤ C‖∇u‖Lq(Ω)d

where C depends only the prescribed quantities. �

In the next Lemma, we prove a discrete Sobolev inequality. Note that the proof
takes advantage of the existence of a conformal VT , leading to a much simpler proof
than in [16] or [6].

Lemma A.2. Let T andM be a primal and a dual discretizations of Ω as prescribed
in §2.1.1. Let (uK)K∈V be an arbitrary element of R#V , and denote by

〈uM〉 =
1

λ(Ω)

∫
Ω

uM dx =
1

λ(Ω)

∫
Ω

uT dx.

Then there exists C depending only on r, q Ω, and θT such that

‖uM − 〈uM〉‖Lr(Ω) ≤ C
∫

Ω

|∇uT |q dx, ∀r ∈ [1,∞), ∀q ≥ min

(
1,

2r

2 + r

)
.

Proof. Since uT is Lipschitz continuous, the classical Sobolev inequality (cf. [2])
gives that

‖uT − 〈uM〉‖Lr(Ω) ≤ C
∫

Ω

|∇uT |q dx, ∀r ∈ [1,∞), ∀q ≥ min

(
1,

2r

2 + r

)
.

It only remains to use (13) to conclude the proof. �

With that discrete Sobolev inequality at hand (cf. Lemma A.2), we can now
easily adapt the proof of Lemma A.1 to the discrete setting, leading to the following
statement, whose proof is left to the reader.

Lemma A.3. Let (vK)K∈V , and let vM and vT the corresponding discrete func-
tions belonging to XM and VT respectively. Assume that

vM ≥ 0 and λd({vM = 0}) ≥ α > 0,

Define q? = qd/(d − q) if q < d and q? = +∞ if q ≥ d, then, for all finite r ≤ q?,
there exists C depending only on Ω, θT , r, and α such that

‖vM‖Lr(Ω) ≤ C‖∇vT ‖Lq(Ω)d .



NONLINEAR CVFE FOR RICHARDS EQUATION 33

A.2. Uniqueness of the weak solution.

Proposition A.4. Under Assumptions (A1)–(A4), there exists a unique weak
solution to the problem (1) in the sense of Definition 1.2.

Proof. First, define the full Kirchhoff transform ϕ : R→ R by

ϕ(p) =

∫ p

0

η(s(a))da, ∀p ∈ R.

It follows from Assumptions (A1) and (A2) that ϕ is Lipschitz continuous, increas-
ing, and fulfills pϕ(p) > 0 for all p 6= 0. Since η is assumed to be bounded, one
has

∇ϕ(p) =
√
η(s(p))∇ξ(p) ∈ L2(Qtf )d

for any p : Qtf → R such that ξ(p) ∈ L2((0, T );H1(Ω)) (thus in particular for any
weak solution). Therefore, any weak solution p satisfies
(74)∫∫

Qtf

s(p)∂tψdxdt+

∫
Ω

s0ψ(·, 0)dx +

∫∫
Qtf

(η(s(p))g −∇ϕ(p)) · Λ∇ψdxdt = 0

for all ψ ∈ C∞c (Ω × [0, tf )). Mimicking Otto’s uniqueness proof for degenerate
parabolic-elliptic problems [26], we obtain that, given two weak solutions p and p̂
corresponding to the same initial data s0, one has

(75)
∫

Ω

|s(p(x, t))− s(p̂(x, t))|dx ≤ 0 for a.e. t ≥ 0,

hence s(p) = s(p̂). Moreover, the mass being conserved, it follows from Assump-
tion (A4) that

0 <

∫
Ω

s(p(x, t))dx =

∫
Ω

s0(x)dx = s0 meas(Ω) < meas(Ω) for a.e. t ≥ 0.

Therefore,

(76) U(t) := meas{x ∈ Ω | s(p(·, t)) < 1} ≥ (1− s0)meas(Ω) > 0 for a.e. t ≥ 0.

Since s is increasing on [p?, 0], one gets that p(·, t) = p̂(·, t) on U(t) for a.e. t ≥ 0.
Subtracting the weak formulation (74) corresponding to p to the one for p̂ then

yields ∫∫
Qtf

∇
(
ϕ(p)− ϕ(p̂)

)
· Λ∇ψdxdt = 0, ∀ψ ∈ C∞c (Ω× [0, tf )),

and thus for all ψ in L2((0, T );H1(Ω)) thanks to a density argument. Choosing
ψ = ϕ(p)− ϕ(p̂) and using Assumption (A3) yields

‖∇
(
ϕ(p(·, t))− ϕ(p̂(·, t))

)
‖L2(Ω)d = 0 for a.e. t ≥ 0.

The function ϕ(p)−ϕ(p̂) is identically equal to 0 on U(t), we can apply Lemma A.1
to infer that

‖ϕ(p(·, t))− ϕ(p̂(·, t))‖L2(Ω) = 0 for a.e. t ≥ 0.

Since ϕ is increasing, one obtains that p = p̂ a.e. in Qtf . �
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