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Generalized Luenberger observers for fault
detection in switched systems using H- index

Ahmad Farhat1 and Damien Koenig1

Abstract—In this paper, a linear matrix inequality (LMI)
technique for the fault detection and state estimation of switched
discrete systems is proposed. This approach is employed to gen-
erate generalized Luenberger minimal order observers giving
best state estimation and sensitive fault detection. It consists
on using H− index design. Sufficient conditions of global
convergence of observers are proposed using switched Lyapunov
functions. Numerical example is given to illustrate this method.

Keywords : Fault detection, reduced order observers,
switched systems, LMI, H− .

I. INTRODUCTION

Model based techniques have been widely studied and
developed for fault detection (FD) problems [1]–[4].

On another hand, switched system modeling has been
of considerable interest, since many physical plants
show switching feature between sub-models, where multi-
controllers/observer with suitable switching rules are needed
[5], [6].

The classical observers for FD consist on generating the
residual signal. In literature, numerous methods use LMIs
techniques, such as H∞ approach, the sensitivity of fault
approach, H∞/H− approach [7]–[9].

Only few works have extended the H− fault detection tech-
nique by adding weighting filters (analogue to the standard
H∞ control problem) [8], [10]. It greatly improves the fault
sensitivity specially when the spectral frequency of the faults
is known (zeros- frequencies for offset or Boolean faults, low
frequencies for low varying faults...) .

In this paper the H− approach is adopted, coupled with
a minimal order observer strategy. The motivation for the
reduced order state observer stems from the fact that only p
of n states are directly available from measurement , and only
the other n−p states are unavailable, hence it suffices to build
an observer that estimates at least the unmeasured states.
Numerous technique have been studied based on algebraic
equation from generalized Luenberger observers [11], [12].

The main contributions of this paper are:
• To give sufficient conditions for existence of generalized

Luenberger minimal order observer for state estimation
and fault detection.

• To give a general scheme to insure fault sensitivity, by
solving an optimization problem using LMIs formulated
by multi-objectives H−/stability design.
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To the best of our knowledge, the problem of the minimal
order observers design for state estimation and fault detection
for switched systems has not been investigated yet. The H−
switched observer design uses switched Lyapunov functions
(SLF) in order to avoid conservatism introduced by one
common Lyapunov function.

The outline of this paper is as follows. After the introduc-
tion, general structure of the observer is given in Section II.
In section III, preliminaries and sufficient conditions on the
existence and parametrization of the observer are stated. The
synthesis is discussed in Section IV with the use of LMI to
satisfy H− and stability objectives. A general design scheme
is given in Section V, then followed by results illustrated in
a numerical example in Section VI. Finally, the last section
shows the concluding remarks and the possible future work.

Notations: The notation used in this paper is standard.
XT is the transposed of matrix X , the star symbol (?)
in a symmetric matrix denotes the transposed block in the
symmetric position; The notation P > (<,≤) 0 means P is
real symmetric positive (negative, semi) definite matrix; A+

is the generalized inverse matrix of A satisfying AA+A = A;
0 and I denote zeros and identity matrix of appropriate
dimensions.

II. PROBLEM FORMULATION

Consider the following class of linear discrete-time
switched system with faults and disturbances:{

xk+1 = Aα(k)xk +Bα(k)uk + Ef,α(k)fk
yk = Cα(k)xk + Ff,α(k)fk

(1)

where x ∈ Rn, y ∈ Rp, u ∈ Rm and f ∈ Rnf denote
respectively the state vector, the measurement output vector,
the input vector and the vector of faults to be detected.

The switching rule takes values in the finite index set S =
{1, 2, .., Nα}. It means that the switched signal is a piecewise
constant function, where Nα is the number of subsystems.
When α(k) = i, it means that the ith subsystem is activated.
Moreover, at the switching time k: i = α(k) 6= α(k+1) = j.

Then (1) can be transformed to:{
xk+1 = Aixk +Biuk + Ef,ifk
yk = Cixk + Ff,ifk

(2)

The aim is to design a generalized observer in the form:{
zk+1 = Fizk +Giyk + Jiuk
x̂k = Mizk +Niyk

(3)



where z ∈ Rq is the state vector of the observer, x̂ ∈ Rn
is the estimation of x, Matrices Fi, Gi, Ji, Mi and Ni are
unknown to be determined and of appropriate dimensions.

In order to find the unknown matrices, an error variable is
introduced: εk = zk−Tixk, where Ti ∈ Rq×n is an arbitrary
matrix.

Remark 1: Assume that rank(Ci) = p, if q = n − p,
a minimal order observer is obtained; if q = n, a reduced
order observer is obtained, the full-order observer is obtained
if n − p < q < n. The minimal order observer problem is
investigated in this study.
Assumptions: In the sequel it is assumed that:

A. 1: The pairs (Ai, Ci) are observable, or without loss
of generality are detectable. This is a standard for all fault
detection problems in the free unknown inputs (IU) case.
This could be written as:

rank
(
zIn −Ai

Ci

)
= n (4)

A. 2: rank
(
Ti
Ci

)
= n, and that there exist matrices Ei ∈

Rq×n such that:

rank

(
Ei
Ci

)
= rank

(
Ti
Ci

)
= n (5)

A. 3: The switching signal α(t) is not known a priori, but
it is measured and its value is real time available.

A. 4: Faults occur in low frequencies, it is the region where
most faults are spectraly located (offsets...).

III. OBSERVER PARAMETRIZATION

Lemma 1: For fk = 0, (3) is a generalized observer for
system (1) if there exists arbitrary matrices Ti and Tj such
that (s.t.) the following constraints are satisfied:

FiTi +GiCi − TjAi = 0 (6a)
Ji − TjBi = 0 (6b)

MiTi +NiCi = In (6c)

and the matrices Fi are Hurwitz.
Proof 1: By definition, the state estimate is:

x̂k = Mizk +Niyk = Miεk + (MiTi +NiCi)xk (7)

If εk → 0 then x̂k → xk; it follows

x̂k = Miεk + xk (8)

which is true if (6c) holds.
Secondly, from the definition of the error ε:

εk+1 = zk+1 − Tjxk+1

= Fizk +Giyk + Jiuk − TjAixk − TjBiuk
= Fiεk + (FiTi +GiCi − TjAi)xk + (Ji − TjBi)uk

(9)

The dynamics of the error is independent of x and u if the
constraints (6a)-(6b) are satisfied.

Now, if the constraints in (6a)-(6c) are fulfilled, and
defining the estimation error e = x − x̂, the following
autonomous system is deduced:{

εk+1 = Fiεk
ek = Miεk

(10)

It is then obvious that the estimation error ek → 0 if εk →
0, and εk → 0 if and only if (iff) Fi is Hurwitz. �

In this part, the observer design problem in the
fault/disturbance free case is reduced to the stabilization
problem in (10).

The equation (6c) can be put on the form:[
Mi Ni

] [Ti
Ci

]
= In (11)

which has a solution according to [13] iff :

rank

TiCi
In

 = rank
(
Ti
Ci

)
= n. (12)

Since Ti are unknown, there always exists matrices Ti and
Ki such that: [

Ti
Ci

]
=

[
Iq −Ki

0 Ip

] [
Ei
Ci

]
(13a)

⇐⇒ Ti = Ei −KiCi (13b)

⇐⇒
[
Ti Ki

] [In
Ci

]
= Ei (13c)

Again, (13) has a solution iff [13] :

rank

InCi
Ei

 = rank
(
In
Ci

)
= n (14)

Under (A.2), (12) and (14) are satisfied, then one solution
for Ti and Ki is:

Ti = Ei

[
In
Ci

]+ [
In
0

]
and Ki = Ei

[
In
Ci

]+ [
0
Ip

]
(15)

And (11) becomes:[
Mi Ni

] [Iq −Ki

0 Ip

] [
Ei
Ci

]
= In (16)

Denote:
Γi =

[
Ei
Ci

]
, Γ⊥i = [Ip+q − ΓiΓ

+
i ],

Π1,i =

[
Iq
0

]
, Π2,i =

[
Ki

Ip

]
, Π3,i =

[
0
Ip

] (17)

Then (16) has the generalized solution using the pseudo-
inverse [13]:[

Mi Ni
]

=
(
Γ+
i − L1,iΓ

⊥
i

) [Iq Ki

0 Ip

]
(18)

or equivalently:

Mi = Γ+
i Π1,i − L1,iΓ

⊥
i Π1,i, (19a)

Ni = Γ+
i Π2,i − L1,iΓ

⊥
i Π2,i (19b)



where L1,i is arbitrary matrix.
Next, in order to compute Fi and Gi, equation (6a) can

be put in the form using (13b):

Fi(Ei −KiCi) +GiCi = TjAi (20a)

⇐⇒
[
Fi Gi − FiKi

]
Γi = TjAi (20b)

This has a solution if the rank condition is satisfied [13]:

rank
(

Γi
TjAi

)
= rank(Γi) = rank

(
Ei
Ci

)
= n (21)

Which is true under (A.2). Then a generalized solution for
the above equation is:[

Fi Gi − FiKi

]
= TjAiΓ

+
i − L2,iΓ

⊥
i (22)

Or equivalently:

Fi = TjAiΓ
+
i Π1,i − L2,iΓ

⊥
i Π1,i, (23a)

Gi = TjAiΓ
+
i Π3,i − L2,iΓ

⊥
i Π3,i + FiKi

= TjAiΓ
+
i (Π3,i + Π1,iKi)− L2,iΓ

⊥
i (Π3,i + Π1,iKi)

= TjAiΓ
+
i Π2,i − L2,iΓ

⊥
i Π2,i (23b)

Denote:

A1,i = TjAiΓ
+
i Π1,i, A2,i = Γ⊥i Π1,i (24a)

G1,i = TjAiΓ
+
i Π2,i, G2,i = Γ⊥i Π2,i (24b)

Then the autonomous system (10) becomes:{
εk+1 = (A1,i − L2,iA2,i)εk
ek = Miεk

(25)

Lemma 2: The pair (Ai, Ci) is detectable is equivalent to
the detectability of the pair (A1,i,A2,i).

Proof 2: See appendix
Theorem 1: Considering the system (25), necessary and

sufficient condition to the stability of (25) is to find matrices
Ui and positive symmetric matrices Pi and Pj , ∀i, j ∈ S
satisfying:[

−Pi AT1,iPj + AT2,iUTj
PjA1,i + UiA2,i −Pj

]
< 0 (26)

where L2,i = −P−1j Uj is a stabilizing gain.
Proof 3: Consider the Switched Lyapunov Functions (SLF)

Vα(k) = εTk Pα(k)εk, where Pα(k) > 0 is a positive definite
matrix. If such a Lyapunov function exists, and its difference
∆V = Vα(k+1) − Vα(k) is negative definite along system
trajectories of (25), then the origin of the system (25) is
globally asymptotically stable. By computing the difference
∆V along the solution of (25), ∆V is given by:

∆V =εTk+1Pα(k+1)εk+1 − εTk Pα(k)εk < 0 (27)

⇔ εTk (A1,α(k) − L2,α(k)A2,α(k))
TPα(k+1)(A1,α(k)

− L2,α(k)A2,α(k))εk − εTk Pα(k)εk < 0 (28)

That holds ∀εk 6= 0, and by Schur complement with Uα(k) =
L2,α(k)Pα(k):[
−Pα(k) AT1,α(k)Pα(k+1) − AT2,α(k)U

T
α(k+1)

? −Pα(k+1)

]
< 0 (29)

As this inequality has to be satisfied under the arbitrary
switching law, it follows that it should hold for special
configuration α(k + 1) = j and α(k) = i, ∀i, j ∈ S. �

Remark 2: Switched Lyapunov Functions (SLF) are used
to avoid the conservatism generated when using a unique
Lyapunov function for all sub-models. For each state i,
different values of Pi and L2,i are calculated. The condition
on the edges between consecutive switches is guaranteed by
the inclusion of Pj in the LMIs.

To summarize, the algorithm for the proposed observer in
fault/disturbances free case is:

1) Choose free matrices Ei according to (5);
2) Compute Ti and Ki from (15) ;
3) Compute Γ+

i , Γ⊥i , Π1,i, Π2,i, Π3,i, from (17), then Ni,
Mi and Ji from (19) and (6b);

4) Compute the gain L2,i solution of (26);
5) Deduce the matrices Fi and Gi according to (23a) and

(23b).
In the following section, the step 4) is detailed and a

procedure to compute the gain L2,i is given such that the
designed observer meets the H−/stability performances.

Remark 3: Since L1,i in (19) have no affect the system’s
dynamics, they could be chosen equal to 0. This simplifies
the calculations without altering the optimization problem in
the following sections.

IV. H− FAULT DETECTION OBSERVER (FDO) DESIGN

In this section, the observer design problem is studied as
a fault detection problem. The aim of the observer design is
to find a residual signal rk that is sensitive to faults at some
rate βi. This is expressed by:

‖ri‖2 > βi ‖f‖2 (30a)

The objective of the H− switched FD observer is resumed
by the following condition:

‖Trfi‖− > βi (31a)

where Trfi(z) denotes the transfer function of the residual
sensitivities faults .

Now when considering fk 6= 0, and using the same
constraints in (6a),(6c), while substituting (6b) by:

Ji − TiBi = 0 (32)

The state estimation becomes:

x̂k = Miεk + xk +NiFf,ifk (33)

The residuals signal that is defined by r = y− ŷ becomes:

rk = Cixk + Ff,ifk − (Cix̂k)

= Ci(xk − x̂k) + Ff,ifk

= CiMiεk + (CiNi + I)Ff,ifk (34)

And the dynamic of the error variable ε becomes:

εk+1 = Fiεk + (GiFf,i − TiEf,i)fk (35)



Then the residuals generator has the following state space
representation:{

εk+1 = Fiεk + (GiFf,i − TiEf,i)fk
rk = CiMiεk + (CiNi + I)Ff,ifk

(36)

It can be put in the generic form:{
εk+1 = Aiεk + Bf,ifk
rk = Ciεk + Df,ifk

(37)

where: Ai = A1,i − LiA2,i, Bf,i = B1f,i − LiB2f,i

B1f,i = G1,iFf,i − TiEf,i, B2f,i = G2,iFf,i
Ci = CiMi, Df,i = (CiNi + I)Ff,i, Li = L2,i

(38)

A. H− fault sensitivity observer design

The H− observer design problem in the presence of faults
is expressed as an optimization problem by finding the gain
matrix Li such that the H− norm ‖Trfi‖− is maximized
subject to βi

Theorem 2: For a given switched LTI system with faults as
defined in (37), there exist gain vectors Li that satisfy theH−
observer design problem if there exits for i, j ∈ S, symmetric
positive matrices Pi and Pj , matrices Ui and positive scalars
βi, such that the following LMIs are satisfied:−Pj − CTi Ci −CTi Dd,i AT1,iPi + AT2,iUi

? −DTf,iDf,i + β2
i I BT1,iPi + BT2,iUi

? ? −Pi

 < 0

(39)

Proof 4: Consider the switched Lyapunov function Vk =
εTk Pα(k)εk where Pα(k) > 0. If such a function exist, and the
following equality hold, then the The H− fault sensitivity is
guaranteed.

εTk+1Pα(k+1)εk+1 − εTk Pα(k)εk − rTk rk + β2
i f

T
k fk < 0

(40)

The rest of the proof is omitted here for lack of space, where
steps of calculations are very similar to the bounded real
lemma.

B. H− synthesis problem

As it has been proposed in [14], if Df,i = 0 then H−
index is always zero, and the LMI (39) is infeasible (diagonal
element is positive), and for Df,i 6= 0, the optimization
problem would give βi = ‖Df,i‖

To avoid this restriction, solutions have been presented in
[14] and [10], it consists on adding fictive weighting filters
to the design: by adding an auxiliary direct channel to the
system, and then multiply by a high pass filter FH as it is
shown in figure (1)

For Df,i =

[
D1f,i

0

]
, a suitable matrix is Dadd,i =

[
0
εiI

]
.

The high pass filter FH is a weighting filter that is used
to raise up the high-frequency response, so that minimum

f - Σob -

- Dadd

6

y − ŷ = r m -r̃ FH -r
′

Fig. 1. H− Loop Shaping with Additive filter weighting

singular value of the whole system occurs near the low-
frequency region. FH has the following transfer function:

FH,i(s) =

(
s/ω1,i + 1

s/ω2,i + 1

)mi

(41)

where ω1,i < ω2,i and mi the order of the filter.
The parameters ω1,i, ω2,i and mi are chosen such that

the transfer function Trfi(s) has the desired shape. This
procedure is analog to the loop shaping method in the
standard H∞ problem.

The observer with the additive filter becomes:
εk+1 = Aiεk + Bd,iwk + Bf,ifk
rk = yk − ŷk = Ciεk + Dd,iwk + Df,ifk
r̃k = (y − ŷ) + Dadd,if
xhk+1 = Ah,ix

h
k +Bh,ir̃k

r′k = Ch,ix
h
k +Dh,ir̃k

(42)

where FH,i(q
−1) :=

[
Ah,i Bh,i

Ch,i Dh,i

]
is a discrete time

realization of the high pass filter FHi .
From equations (42), an augmented residual is deduced:

[
εk+1

xhk+1

]
=

[
A1,i − LiA2,i 0

Bh,iCi Ah,i

] [
εk
xhk

]
+

[
B1f,i − LiB2f,i

Bh,i(Df,i + Dadd,i)

]
fk

r′k =
[
Dhi

A2,i Chi

] [εk
xhk

]
+
[
Dh,i(Df,i + Dadd,i)

]
fk

(43)

Theorem (2) is then applied to (43), which yields to the
following theorem:

Theorem 3: The H−/stable FDO for the augmented system
in (43) is guaranteed, if there exist for i, j ∈ S and given
positive reel scalars βi, matrices Uai and symmetric positive
matrices P ai and P aj s.t. the following LMIs hold:


−P aj − CTaiCai −CTaiDafi AT0iP

a
i + CT0iU

T
ai

?
−DT

afi
Dafi

+β2
i I

BTf0iP
a
i

+FTf0iU
T
ai

? ? −P ai

 < 0

(44a)−P aj 0 AT0iP
a
i + CT0iU

T
ai

? 0 BTf0iP
a
i + FTf0iU

T
ai

? ? −P ai

 ≤ 0

(44b)



where the filters gain are Li = IT0 P
−1
ai Uai , and the matrices

A0i , Bf0i , C0i , Ff0i and I0 are:

A0i =

[
A1,i 0
Bh,iCi Ah,i

]
, I0 =

[
−I
0

]
, C0i =

[
A2,i 0

]
,

Bf0i =

[
B1f,i

Bh,i(Df,i + Dadd,i)

]
, Ff0i =

[
B2f,i 0

]
(44c)

Proof 5: Let xak be the augmented state of the augmented
system, xak =

[
εTk xhTk

]T
. The corresponding augmented

switched Lyapunov function V ak = εTk P
a
α(k)εk is considered.

The H− objective for the FDO design are guaranteed by the
inequalities:

xaTk+1P
a
α(k+1)x

a
k+1 − xaTk P aα(k)x

a
k − rTk rk + β2

i f
T
k fk < 0

(45)

and with similar steps of calculations as in the proof of
Theorem (1), the LMIs in (44a) are the deduced.

On the other hand, in order to guaranty the stability of the
observer, the SLF must be positive and decreasing, which is
expressed by the following inequality:

xaTk+1P
a
α(k+1)x

a
k+1 − xaTk P aα(k)x

a
k < 0 (46)

which yields to the LMI (44b). �
Following the steps 1), 2) and 3) of the algorithm given

in section III, the observer gain in step 4) is then computed
using numerical optimization tool by maximizing the LMIS
in (44) subject to βi. And finally compute the unknown
matrices of the observer as in step 5).

Remark 4: The P aα(k) matrices in the inequality (45) are
not required to be sign definite (positive definite), in the sens
of the H− index for the fault detection.

However, these matrices should be positive definite and
this is a necessary condition in order to get positive Switched
Lyapunov Functions, and hence proofing the stability of the
observer (in fault free case) and the FDO.

V. EXAMPLE

Consider the LTI switched MIMO system of the form (1)
with the following matrices:

A1 =

 0.96 0.04 0.02
0.012 0.60 0.64
−0.06 0.08 0.94

 , Ef1 =

0.06
1.2
0.18

 ,
A2 =

 0.96 0.04 0.02
0.012 0.60 0.14
−0.02 0.08 0.94

 , Ef2 =

0.07
1.4
0.49

 ,
C1,2 =

[
0.4 0 0
0 .12 0

]
; Ff1,2 =

[
0.01

]
.

The initial conditions are x(0) =
[
1 2 3

]T
.

The system is observable. A stable H− FD minimal order
observer can be designed.

First, define the matrices Ei, and compute Ti and Ki:

E1 = E2 =

[
10 10 4
−200 1 −10

]
; rank

(
E1&2

C1&2

)
= 3
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Fig. 2. State estimation errors in fault-free case
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Fig. 3. Sensitivity plots Trf1 (jω)(right) and Trf2 (jω) (left)

Then define the loop shaping matrices and weighting filter:
suitable Dadd,i matrices are chosen for the additive filter. Let

Dadd,1 = Dadd,2 =
[
0.046 0.04

]T
,

and FH,1(s) = FH,2(s) =

(
s/.095 + 1

s/8 + 1

)2

Using Matlab optimization tools such YALMIP or Se-
DuMi, the set of LMIs can be numerically solved.

The plots in figure (2) show that the state estimation error
converge to zero in the fault free case.

Finally, the faults or residuals sensitivity are plot in figure
(3). It could be noticed that the fault sensitivity with the
FDO in low frequencies has been enhanced, compared to
the simple stability observer design SO. In addition, this
was done locally on low frequencies, while noticing that
the global minima of the sensitivity functions are located in
high frequencies. These results prove the utility of the loop
shaping method applied in the proposed method.

VI. CONCLUSION AND FURTHER WORK

In this paper, LMI conditions have been proposed to design
a reduced order state estimator and a fault detection observer
for LTI switched systems.

First the condition of existence of the generalized observer
are stated and proved. Then two design objectives are formu-
lated using LMIs: 1) stabilize the observer and 2) maximize
the H−-index from the faults to the residuals. The results
are obtained using switched Lyapunov functions in order to
avoid conservatism introduced by single quadratic Lyapunov
functions.

Possible extensions should concern robust observation,
fault tolerant control and robust control.



APPENDIX

Denote:

V1 =

Iq −TiAiΓ+
i

0q Γ⊥i
0 ΓiΓ

+
i

 , V2 =

[
Iq 0

−Γ+
i Π1,i In

]

V3 =

Iq −sIq 0
0 Iq 0
0 0 Ip

 , V4 =

−Ti −sKi

−Ci sIp −Xi

0 Ip


Xi =

Ip + CiAiC
+
i

(or CiAiC+
i )

, Ĕi = Tj −KiCi

(47)

V1 is of rank n+q and V4 is of rank n+p from (A.2), V2 and
V3 are regular matrices of rank n+q and p+2q respectively.

Consider two matrices A : n × m and B : m × p, the
Sylvester’s inequality states:

rank(A) + rank(B)−m ≤ rank(AB)

≤ min (rank(A), rank(B)) (48)

Then under assumptions (A.1) and (A.2), the following
equalities hold:

n = rank
(
zIn −Ai

Ci

)
= rank

(
V4

(
zIn −Ai

Ci

))

= rank

TiAi − zTi − zKiCi
CiAi −XiCi

Ci


= rank

TiAi − zEiCi (or 0)
Ci

 = rank
(
TiAi − zEi

Ci

)
(49a)

rank

zIq TiAi
Iq Ei
0 Ci

 = rank

V3
zIq TiAi
Iq Ei
0 Ci


= rank

 0 TiAi − zEi
Iq E
0 Ci

 = rank
(
TiAi − zEi

Ci

)
+ q

(49b)

rank

zIq TiAi
Iq Ei
0 Ci

 = rank

V1
zIq TiAi
Iq Ei
0 Ci

V2


= rank

zIq − TiAiΓ+
i Π1,i 0

Γ⊥i Π1,i 0
0 Γi


= rank

(
zIq − TiAiΓ+

i Π1,i

Γ⊥i Π1,i

)
+ n

= rank
(
zIq − A1,i

A2,i

)
+ n (49c)

Finally, using (49a) in (49b), then (49c), the following
equivalence holds:

rank
(
zIn −Ai

Ci

)
= n⇔ rank

(
zIq − A1,i

A2,i

)
= q (50)

�
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