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1. Introduction. Let D be a bounded domain (open, connected set) in R d , d ≥ 2. We assume throughout the paper that, at a minimum, D is Lipschitz. We define the set of scalar diffusion coefficients (1.1)

A := {a ∈ L ∞ (D) : λ ≤ a ≤ Λ} ,
where λ, Λ are fixed positive constants. For f ∈ H -1 (D) (the dual of H 1 0 (D)) and a ∈ A, we consider the elliptic problem (1.2) -div(a∇u a ) = f on D, u a = 0 on ∂D, written in the usual weak form: u a ∈ H 1 0 (D) is such that

(1.3) D a∇u a • ∇v = f, v H -1 (D),H 1 0 (D) , v ∈ H 1 0 (D).
Here H 1 0 (D) is equipped with the norm v H 1 0 (D) = ∇v L2(D) . The Lax-Milgram theory guarantees that there is a unique solution u a ∈ H 1 0 (D) of the above problem. The main interest of the present paper is to understand, for a given f , the conditions under which the diffusion coefficient a is uniquely determined from the solution u a to (1.3), and if so, whether a can be stably recovered if u a is known. After having fixed f , we systematically denote by u a the solution of (1.3). We are therefore interested in the stable inversion of the map (1.4) a → u a which acts from A to H 1 0 (D). By stability, we mean that when u b is close to u a , say in the H 1 0 (D) norm, then it follows that b is close to a in some appropriate L p (D)

norm. The results of this paper will prove such stable inversion but only when certain restrictions are placed on the right side f and further only when the map (1.4) is restricted to certain subclasses of A.

Problems of this type are referred to as parameter estimation, or the identifiability problem in the inverse problems literature, see e.g. [START_REF] Calderón | On an inverse boundary value problem[END_REF][START_REF] Acar | Identification of the coefficient in elliptic equations[END_REF][START_REF] Kunisch | Inherent identifiability of parameters in Elliptic Differential Equations[END_REF][START_REF] Kohn | A variational method for parameter identification[END_REF][START_REF] Knowles | Parameter identification for elliptic problems[END_REF] and the references therein. Parameter estimation/identification for elliptic partial differential equations and their numerical recovery from the (partial) knowledge of u a is an extensively studied subject that has been formulated in several settings. Examples of such settings are the identifiability of the diffusion coefficient a in the problem -div(a∇u) = 0 from the Neumann boundary data g on ∂D, see [START_REF] Kohn | Determining conductivity from boundary measurements[END_REF], or the recovery of a from the solution u to equation (1.2) supplemented by Dirichlet boundary data, see [START_REF] Knowles | Parameter identification for elliptic problems[END_REF].

Let us make a few elementary remarks about the Dirichlet boundary data setting studied here. These remarks extend to other settings as well. For a ∈ A, we denote by T a the elliptic operator u → -div(a∇u) which is an isomorphism from H 1 0 (D) to H -1 (D), and by S a its inverse. Then, it is not difficult to check, see Lemma 2.1 in §2, that the map a → S a is bi-Lipschitz from L ∞ (D) to L(H -1 (D), H 1 0 (D)), with bounds (1.5)

λ 2 S a -S b L(H -1 (D),H 1 0 (D)) ≤ a-b L∞(D) ≤ Λ 2 S a -S b L(H -1 (D),H 1 0 (D)) , a, b ∈ A.
Therefore, any a ∈ A can be stably identified in the L ∞ norm from the inverse operator S a , that is, if we knew the solution to (1.3) for all possible right sides then a is uniquely determined. Note that (1.5) also means that, for any a, b ∈ A, there exists a right side f = f (a, b), with f H -1 (D) = 1, for which we have the Lipschitz bound

(1.6) a -b L∞(D) ≤ Λ 2 u a -u b H 1 0 (D) .
The f for which (1.6) holds depends on a and b. Our objective is to fix one right side f and study the stable identifiability of a from u a . It is well known that identifiabiliy cannot hold for an arbitrary right side f , even when f is smooth. For example, if u is any function in H 1 0 (D) such that ∇u is identically 0 on an open set D 0 ⊂ D, then setting f = -div(a∇u) for some fixed a ∈ A, we find that u = u a = u b for any b ∈ A which agrees with a on D \ D 0 . The above example can be avoided by assuming that f is strictly positive. However, even in the case that f is strictly positive, we do not know a proof of identifiabilty under the general assumption that a ∈ A, except in the univariate setting.

In this paper, we show that for strictly positive f ∈ L ∞ (D), identifiability and stability hold, for a certain range of s > 0, in the restricted classes A s ⊂ A , where

(1.7) A s := A s,M := {a ∈ A : a H s (D) ≤ M }.
Here, M > 0 is arbitrary but enters in the value of the stability constants. Under such conditions, we establish results of the form (see for example 4.5)

(1.8) a -b L2(D) ≤ C u a -u b α H 1 0 (D) , a, b ∈ A s ,
where the exponent 0 < α < 1 depends on s and the constant C depends on λ, Λ, α, M, D, f . Some elementary observations in the univariate case, see §6, show that when f = 1 and A s includes discontinuous functions, the exponent α cannot be larger than 1/3.

There are several existing approaches to establish identifiability. For the most part, they are developed for the Neumann problem -div(a∇u a ) = f on D, a ∂u a ∂n = g on ∂D, (1.9)

where n denotes the outward pointing normal to ∂D. Some approaches use singular perturbation arguments, see [START_REF] Alessandrini | An identification problem for an elliptic equation in two variables[END_REF], or the long time behavior of the corresponding unsteady equations, see [START_REF] Hoffman | On the identification of coefficients of elliptic problems by asymptotic regularization[END_REF]. Some results rely on the observation that once u = u a is given, (1.9) may be viewed as a transport equation for the diffusion a, see [START_REF] Richter | Numerical identification of a spatially varying diffusion coefficient[END_REF][START_REF] Richter | An inverse problem for the steady-state equation[END_REF], and the identifiability of a from u a is proven under the assumptions that a is prescribed on the inflow boundary (the portion of the boundary where ∂ua ∂n < 0) and

(1.10) inf D max{|∇u a |, ∆u a } > 0.
Other approaches to identifiability use variational methods, see [START_REF] Kohn | A variational method for parameter identification[END_REF], or leastsquares techniques, see [START_REF] Frind | Galerkin solution of the inverse problem for aquifer transmissivity[END_REF][START_REF] Kravaris | Identification of parameters in distributed parameter systems by regularization[END_REF][START_REF] Kunisch | Identifiability under approximation for an elliptic boundary value problem[END_REF][START_REF] Falk | Error Estimates for the Numerical Identification of a Variable Coefficient[END_REF]. These approaches impose strong regularity assumptions on a and u a as well as the assumption

(1.11) ∇u a • τ > 0,
for a given τ ∈ R d , or the less restrictive condition (1.10). Rather than directly proving a stability estimate, they derive numerical methods for actually finding the diffusion coefficient a from the solution u a over triangulation T h of D with mesh size h. One typical reconstruction estimate, see Theorem 1 in [START_REF] Falk | Error Estimates for the Numerical Identification of a Variable Coefficient[END_REF], is the following. Let r ≥ 1 and let A h and V h be the sets of continuous piecewise polynomials on T h of degree r and r + 1, respectively. If (1.11) holds, and if u a ∈ W r+3 (L ∞ (D)) and a ∈ H r+1 (D), then

(1.12) a -a h L2(D) ≤ C h r + u a -u ob L2(D) h -2 ,
where u ob ∈ L 2 (D) is an observation of u a , and a h ∈ A h is a numerical reconstruction of a via least squares type approach from the observation u ob . As shown in Remark 4.1, the inequality (1.12) leads to a stability estimate of the form

(1.13) a -b L2(D) ≤ C u a -u b α L2(D) , α := r r + 2 , a, b ∈ A r+1 , whenever in addition u a , u b ∈ W r+3 (L ∞ (D)
) and condition (1.11) holds. Note that α approaches 1 as r → ∞. In summary, the majority of the existing stability estimates are derived for solutions to the Neumann problem (1.9). As illustrated by (1.13), they rely on strong regularity assumptions on the diffusion coefficients a and on the solutions u a , as well as conditions on u a such as (1.11) or (1.10). However, one should note that high order smoothness of u a generally does not hold, even for smooth a and f , when the domain D does not have a smooth boundary.

In this paper, we pursue a variational approach, where we use appropriate test functions v in (1.3) to derive continuous dependence estimates. We combine these with known elliptic regularity results and obtain direct comparison between ab L2(D) and ∇u a -∇u b L2(D) under milder smoothness assumptions for the diffusion coefficient a, the domain D, and on the right side f , and with no additional smoothness assumptions on u a and no conditions such as (1.10) or (1.11).

We mention two special cases of our results. The first, see Corollary 3.8, says that if D is an arbitrary Lipschitz domain, then for any f ∈ L ∞ (D) satisfying f ≥ c f > 0 on D, we have the stability bound

(1.14) a -b L2(D) ≤ C u a -u b 1/6 H 1 0 (D) , a, b ∈ A 1 .
We can weaken the smoothness assumption to the classes A s , for s < 1. We have two types of results. In Corollary 4.4, we prove estimates of the form

(1.15) a -b L2(D) ≤ C u a -u b α H 1 0 (D)
, a, b ∈ A s , with α depending on s, for all 1/2 < s < 1 under the additional assumption that the diffusion coefficients are in VMO and the domain D is C 1 . In Corollary 4.5, we prove for a general Lipschitz domain D, that (1.15) holds for a certain range of s * < s < 1 where we do not require the diffusion coefficients are in VMO but now s * depends on properties of the domain D.

Estimates like (1.13) have a weaker norm on the right side then those in our results. However, let us remark that any such estimate can be transformed into an estimate between a -b L2(D) and u a -u b L2(D) , if the solutions u a and u b have more regularity such as the condition u a and u b belong to H 1+t (D) for some t > 0. For this, one uses the interpolation inequality

(1.16) v H 1 (D) ≤ C 0 v θ L2(D) v 1-θ H 1+t (D) , v ∈ H 1+t (D),
where θ := t 1+t and C 0 depends only on D and t. Hence, under the assumption that

u a , u b ∈ H 1+t (D), taking v = u a -u b , we obtain (1.17) u a -u b H 1 0 (D) ≤ C 0 max{ u a H 1+t (D) , u b H 1+t (D) } 1-θ u a -u b θ L2(D) ,
which combined with (1.15) leads to

(1.18) a -b L2(D) ≤ C u a -u b αθ L2(D) .
Here C depends on the constant in (1.15), C 0 , and max{ u a H 1+t (D) , u b H 1+t (D) } α 1+t . Let us additionally note that as r → ∞, the result in (1.13) leads to better exponents then in our results. This is caused, at least in part, by the fact that our starting point is (1.14) which does not use higher smoothness than a, b ∈ H 1 (D).

Our paper is organized as follows. In §2, we use a variational approach to establish a weighted L 2 estimate

(1.19) a -b L2(w,D) ≤ C u a -u b 1/2 H 1 0 (D) , a, b ∈ A 1 ,
where the weight is given by w = a|∇u a | 2 + f u a . In order to remove the weight in the above estimate, in §3, we introduce the positivity condition

(1.20) PC(β): a|∇u a (x)| 2 + f (x)u a (x) ≥ c dist(x, ∂D) β , a.e on D,
for some β ≥ 0 and c > 0, see Definition 3.1. Under this condition, we prove the stability estimate

(1.21) a -b L2(D) ≤ C u a -u b α H 1 0 (D) , α = 1 2(β + 1) , a, b ∈ A 1 .
Notice that the smaller the β, the stronger the stability estimate. We go further in §3 and investigate which regularity assumptions guarantee that the positivity condition PC(β) holds, and thereby obtain results in which this condition is not assumed but rather implied by the regularity assumptions on a. In particular, we prove that condition PC(2) is valid for the entire class a ∈ A, provided f ∈ L 2 (D) with f ≥ c f > 0. We also show that certain smoothness conditions on the diffusion coefficient a, the right side f , and the domain D imply the positivity condition PC(0). However, as discussed in §3.1.2, PC(β) does not generally hold for β < 2 without additional regularity assumptions on the domain D.

In §4, we use interpolation arguments to obtain results under weaker assumptions than a, b ∈ A 1 . In §5, we provide stability estimates in the case when a is piecewise constant which is not covered by our general stability results. Finally, in §6, we provide stability estimates in the one dimensional case for f = 1 and general a, b ∈ A. In this simple case, we also establish converse estimates which show that the Hölder exponent α in (1.8) cannot be above the value 1 3 when a and b have low smoothness. We conclude this introduction by stating some natural open problems in relation with this paper:

(i) While the identifiability problem is solved in this paper under mild regularity assumptions, it is still not known whether there exists an f for which the mapping a → u a is injective from A to H 1 0 (D) for a general multivariate Lipschitz domain D. (ii) The best possible value α * = α * (s) of the exponent α in (1.8) is generally unknown. In particular, we do not know if there exists some finite s 0 such that α * (s) = 1 when s ≥ s 0 . (iii) All our results are confined to the case of scalar diffusion coefficients. Similar stability estimates for matricial coefficients would require considering the solutions u a and u b for more than one right side f . However we are not aware of results that solve this question.

2. First estimates. We begin by briefly discussing the stability properties of the maps a → T a and a → S a .

Lemma 2.1. For any a, b ∈ A, we have

(2.1) T a -T b L(H 1 0 (D),H -1 (D)) = a -b L∞(D) , and 
(2.2) λ 2 S a -S b L(H -1 (D),H 1 0 (D)) ≤ a -b L∞(D) ≤ Λ 2 S a -S b L(H -1 (D),H 1 0 (D))
. Proof: For the proof of (2.1), we observe on the one hand that (2.3)

| (T a -T b )u, v H -1 (D),H 1 0 (D) | ≤ a -b L∞(D) u H 1 0 (D) v H 1 0 (D) , u, v ∈ H 1 0 (D)
, which shows that the right quantity dominates the left one in (2.1). On the other hand, for any x ∈ D and ε > 0 small enough so that the open ball B(x, ε) of radius ε centered at x is a subset of D, we consider the function u = u x,ε defined by

(2.4) u(y) = max{0, 1 -ε -1 |x -y|}.
For such a function, we find that (2.5)

(T a -T b )u, u H -1 (D),H 1 0 (D) = C x,ε u 2 H 1 0 (D) , C x,ε := |B(x, ε)| -1 B(x,ε) (a(y)-b(y))dy.
By Lebesgue theorem, this shows that

(2.6) T a -T b L(H 1 0 (D),H -1 (D)) ≥ a(x) -b(x), a.e.
x ∈ D. Since we can interchange the role of a and b, this shows that the left quantity dominates the right one in (2.1). For the proof of (2.2), we observe that

T a (S a -S b )T b = T b -T a , which yields (2.7) λ 2 S a -S b L(H -1 (D),H 1 0 (D)) ≤ T a -T b L(H 1 0 (D),H -1 (D)) ≤ Λ 2 S a -S b L(H -1 (D),H 1 0 (D)) , a, b ∈ A. Combined with (2.1), this gives (2.2).
As observed in the introduction, the above result does not meet our objective, since we want to fix the right side f ∈ H -1 (D) and then study the stable identifiability of a from u a for all a ∈ A. For such an f , let u a , u b be the two corresponding solutions to (1.3), for a, b ∈ A. We use the notation

δ := a -b, E := u a -u b
throughout the paper and we define the linear functional L :

H 1 0 (D) → R, L(v) := D δ∇u a • ∇v, v ∈ H 1 0 (D).
By subtracting the two weak equations (1.3) for a and b, we derive another representation of L,

(2.8) L(v) = - D b∇E • ∇v, v ∈ H 1 0 (D).
The following theorem gives two basic estimates for bounding the difference δ = a -b.

The first one illustrates that difficulties arise when a-b changes sign, while the second puts forward the role of the weight w = a|∇u a | 2 + f u a .

Theorem 2.2. Let D be a Lipschitz domain. Consider equation (1.3) with diffusion coefficients a and b. The following two inequalities hold for δ := a -b.

(i) For any a, b ∈ A and f ∈ H -1 (D), we have D δ|∇u a | 2 ≤ Λ f H -1 (D) E H 1 0 (D) . (ii) For any a, b ∈ A 1 and f ∈ L ∞ (D), we have (2.9) D δ 2 a 2 a|∇u a | 2 + f u a ≤ C 0 E H 1 0 (D) ,
where

(2.10) C 0 := C f L∞(D) (1 + max{ ∇a L2(D) , ∇b L2(D) }),
and C is a constant depending only on D, d, λ, Λ.

Proof: To prove (i), we take v = u a ∈ H 1 0 (D) and obtain

L(u a ) = D δ|∇u a | 2 .
Using this in (2.8) yields

(2.11)

D δ|∇u a | 2 = - D b∇E • ∇u a ≤ Λ u a H 1 0 (D) E H 1 0 (D) .
If we take v = -u a , we derive the same estimate for the negative of the left side of (2.11) which yields (i).

To prove (ii), we define δ := δ/a which belongs to H 1 (D) since a, b ∈ A 1 . Integrating by parts, we have for any v ∈ H 1 0 (D),

(2.12)

L(v) = D δa∇u a • ∇v = - D ∇ δ • ∇u a av - D δdiv(a∇u a )v. Since f = -div(a∇u a ), this gives (2.13) L(v) = 1 2 D δa∇u a • ∇v - 1 2 D ∇ δ • ∇u a av + 1 2 D δf v, v ∈ H 1 0 (D). Now, we chose v = δu a ∈ H 1 0 (D) to obtain (2.14) L( δu a ) = 1 2 D δ2 a|∇u a | 2 + 1 2 D δ2 f u a . Inserting (2.14) into (2.8) results in (2.15) 1 2 D δ2 a|∇u a | 2 + 1 2 D δ2 f u a = - D b∇E • ∇( δu a ) ≤ Λ ∇( δu a ) L2(D) E H 1 0 (D) .
Now, we resort to the estimate (see e.g. Chapter 8 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF])

u a L∞(D) ≤ C f L∞(D) ,
where C depends only on λ, Λ and D (throughout the rest of this proof C > 0 will be a generic constant that depends on at most d, D, λ, Λ). We use this result together with the energy estimate

∇u a L2(D) ≤ f H -1 (D) ≤ C f L∞(D)
to obtain the bound

∇( δu a ) L2(D) ≤ δ a L∞(D) ∇u a L2(D) + u a a L∞(D) ∇δ L2(D) + δ a 2 L∞(D) u a L∞(D) ∇a L2(D) ≤ 2Λλ -1 ∇u a L2(D) + λ -1 u a L∞(D) ∇δ L2(D) + 2Λλ -2 u a L∞(D) ∇a L2(D) ≤ C f L∞(D) (1 + max{ ∇a L2(D) , ∇b L2(D) }). (2.16)
Finally, plugging this estimate into (2.15), we derive that

D δ 2 a |∇u a | 2 + D δ 2 a 2 f u a = D δ2 a|∇u a | 2 + D δ2 f u a ≤ 2Λ ∇( δu a ) L2(D) E H 1 0 (D) ≤ C f L∞(D) (1 + max{ ∇a L2(D) , ∇b L2(D) }) E H 1 0 (D)
, and the proof is completed.

Note that when a ≤ b or b ≤ a a.e. on D and condition (1.11) holds in the sense that ∇u a • τ ≥ c > 0, then part (i) gives the stability estimate

a -b L1(D) ≤ C f H -1 (D) u a -u b H 1 0 (D)
. However, we can not claim such a result if the difference (a -b) changes sign on a subset of D with a positive measure. In the sequel of the paper, we will not use (i), and instead rely only on (ii).

3. Improvements of Theorem 2.2. Theorem 2.2 is not satisfactory as it stands, since we want to replace the left side of (2.9), by a -b 2 L2(D) . Obviously, this is possible when there exists a constant c > 0 such that the weight satisfies

(3.1) a|∇u a | 2 + f u a ≥ c a.e. on D.
In order to understand this condition, suppose that f does not change sign. In that case, the weak maximum principle [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] guarantees that u a has the same sign as f and therefore the product u a f ≥ 0. Hence, (3.1) requires that u a and |∇u a | do not vanish simultaneously. We prove in §3.1 that such a constant c exists provided certain (strong) smoothness assumptions for the diffusion coefficient a, the right side f , and the domain D hold. However, in order to allow milder regularity assumptions, we introduce the following weaker positivity condition.

Definition 3.1 (Positivity Condition). We say that (D, f, a) satisfy the positivity condition PC(β) if there exists a constant c > 0 such that

(3.2) a(x)|∇u a (x)| 2 + f (x)u a (x) ≥ c dist(x, ∂D) β , a.e. x ∈ D.
Notice the positivity condition PC(0) is (3.1). In Lemma 3.7, we show that for every Lipschitz domain D and a ∈ A, we have that (D, a, f ) satisfies the positivity condition PC(2) provided f is strictly positive and in L 2 (D). In fact, in this case, the constant c in (3.2) is uniform over the class A. In addition, we provide examples which show that additional regularity assumptions are required for (D, a, f ) to satisfy the positivity condition PC(β) if β < 2. For now, we prove the following theorem which shows how a positivity condition PC(β) guarantees a stability estimate of the type we want.

Theorem 3.2. Let D be a Lipschitz domain. Assume that a, b ∈ A 1 , f ∈ L ∞ (D)
and denote by u a , u b the corresponding solutions to (1.3). If (D, a, f ) satisfies the positivity condition PC(β) for β ≥ 0, then we have

(3.3) a -b L2(D) ≤ C 1 + C 0 u a -u b 1 2(β+1) H 1 0 (D)
, where C 0 is the constant from (2.10) and C is a constant depending only on D, d, λ, Λ, and c the constant in (3.2).

Proof: We recall the notation δ = a -b, E = u a -u b , and start with the weighted L 2 estimate (2.9) provided in Theorem 2.2, namely

(3.4) D δ 2 a 2 w ≤ C 0 E H 1 0 (D) , w := a|∇u a | 2 + f u a ,
where C 0 is the constant in (2.10). This proves the result in the case E H 1 0 (D) = 0 since w > 0 on D. Therefore, in going further, we assume E H 1 0 (D) > 0. The presence of the non-negative weight w is handled by decomposing the domain D into two sets

D ρ := {x ∈ D : dist(x, ∂D) ≥ ρ} and D c ρ := D \ D ρ ,
where ρ > 0 is to be chosen later. The triplet (D, a, f ) satisfies the positivity condition PC(β), which guarantees that w ≥ cρ β on D ρ . Hence, we deduce that

(3.5) Dρ δ 2 ≤ Λ 2 c -1 ρ -β D δ 2 a 2 w ≤ Λ 2 c -1 C 0 ρ -β E H 1 0 (D) .
On D c ρ , the Lipschitz regularity assumption on ∂D implies the existence of a constant B such that |D c ρ | ≤ Bρ. As a consequence, we obtain

(3.6) D c ρ δ 2 ≤ 4Λ 2 |D c ρ | ≤ 4Λ 2 Bρ.
Combining the last two estimates with the choice ρ = E 3.1. The positivity condition PC(0). In view of the exponent in (3.3), the strongest stability occurs when β = 0. In this section, we show that if (D, a, f ) are sufficiently smooth then PC(0) is satisfied. We denote by C k,α (D), k ∈ N 0 , 0 < α ≤ 1, the Hölder spaces equipped with the semi-norms

|f | C k,α (D) := sup |γ|=k sup x,y∈D, x =y |∂ γ f (x) -∂ γ f (y)| |x -y| α ,
and norms

f C k,α (D) := sup |γ|≤k ∂ γ f L∞(D) + |f | C k,α (D) .
3.1.1. Sufficient conditions. The following lemma gives a sufficient condition for (D, a, f ) to satisfy the positivity condition PC(0). Lemma 3.3. Assume that for some α > 0, D is a C 2,α domain and f ∈ C 0,α (D) with f ≥ c f > 0. Furthermore, assume that the diffusion coefficient a belongs to A ∩ C 1,α (D), with

(3.7) a C 1,α (D) ≤ A.
Then, the triplet (D, a, f ) satisfies the positivity condition PC(0), with constant c depending on D, λ, Λ, f C 0,α , c f and A.

Proof: We have that

a(x)|∇u a (x)| 2 + f (x)u a (x) ≥ min{λ, c f } |∇u a (x)| 2 + u a (x) ,
since u a ≥ 0 according to the weak maximum principle [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]. We proceed by showing that |∇u a | 2 + u a ≥ c, a.e. on D. We do this by contradiction. Assume that there exists a sequence {a n } n≥0 of diffusion coefficients a n ∈ A with a n C 1,α (D) ≤ A such that, for each n ≥ 0, there exists x n ∈ D with

(3.8) |∇u an (x n )| 2 + u an (x n ) ≤ 1 n .
Note that the assumptions of the theorem imply that the equation (1.3) holds in the strong sense. Then, the classical Schauder estimates, see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF], tell us that (3.9)

u an C 2,α (D) ≤ C,
where C depends on A, D, α, λ and Λ. Then by compactness, up to a triple subsequence extraction, we may assume that (i) a n converge in C 1 towards a limit a * , (ii) u an converges in C 2 towards a limit u * , (iii) x n converges in D towards a limit x * . Therefore, the equation The first equality shows that x * lies on the boundary, due to the strong maximum principle, and therefore the second equality contradicts the Hopf lemma, see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF].

We have the following corollary.

Corollary 3.4. Assume that for some α > 0, D is a C 2,α domain, f ∈ C 0,α (D) with f ≥ c f > 0 and the diffusion coefficient a ∈ A ∩ C 1,α (D), with a C 1,α (D) ≤ A . Furthermore, assume that b ∈ A 1 . Let u a and u b be the corresponding solutions to (1.3), then

(3.12) a -b L2(D) ≤ C 0 u a -u b 1/2 H 1 0 (D) ,
where

C 0 = C f 1/2 L∞(D) (1 + max{ ∇a L2(D) , ∇b L2(D) }) 1/2
and C is a constant depending only on D, d, λ, Λ, c f , f C 0,α , and A. In particular, under the same assumptions on D, f , and b, we have the estimate

(3.13) a -b L2(D) ≤ C s u a -u b 1/2 H 1 0 (D) , a ∈ A s ,
for all s > 1 + d 2 . Proof: The inequality (3.12) follows from Theorem 3.2 and Lemma 3.3, while (3.13) follows by the Sobolev embedding of H s into the relevant Hölder spaces. Proof: The solution u can be expanded in the eigenfunction basis

(3.15) u(x) = n∈N d c n s n (x), s n (x) := d i=1 sin πn i x i , x = (x 1 , . . . , x d ),
with coefficients c n , n = (n 1 , . . . , n d ), given by the formula

c n =      4 d π 2+d (n 2 1 +•••+n 2 d )n1...n d , if all n i are odd, 0, otherwise. 
To prove the stated smoothness for the partial derivative ∂u ∂x1 , we first show that (3.16)

n∈N d 1 (n 2 1 + • • • + n 2 d )n 2 . . . n d < ∞.
For this, we use the fact that, for any A > 0,

k≥1 (A + k 2 ) -1 ≤ ∞ 0 (A + t 2 ) -1 dt = π 2 √ A ,
and thus

n∈N d 1 (n 2 1 + • • • + n 2 d )n 2 . . . n d ≤ π 2 (n2,...,n d )∈N d-1 1 n 2 . . . n d n 2 2 + • • • + n 2 d ≤ π 2(d -1) 1 2 (n2,...,n d )∈N d-1 1 (n 2 . . . n d ) 1+ 1 d-1 = π 2(d -1) 1 2 k≥1 k -1-1 d-1 d-1 < ∞,
where we have used the inequality between the arithmetic and geometric mean of n 2 2 , . . . , n 2 d . From (3.16), we can differentiate u termwise and obtain that ∂u ∂x1 is continuous. The same holds for all other partial derivatives, and thus u ∈ C 1 (D). In order to prove that u belongs to the Hölder space C 1,α (D) for sufficiently small α > 0, it suffices to check in addition that

n∈N d n α i (n 2 1 + • • • + n 2 d )n 2 . . . n d < ∞, i = 1, . . . , d.
Each term in this series is less than

1 (n 2 1 +•••+n 2 d ) 1-α 2 n2...n d
. We thus proceed to a similar computation using the fact that k≥1

(A + k 2 ) -1+ α 2 ≤ C ( √ A) 1-α ,
and derive that

n∈N d n α i (n 2 1 + • • • + n 2 d )n 2 . . . n d ≤ C k≥1 k -1-1-α d-1 d-1 < ∞, since α < 1.
The above lemma allows us to show that the positivity condition PC(β) does not hold for β < 2, and in particular when β = 0 when D = (0, 1) d . Proposition 3.6. Let D = (0, 1) d and a = f = 1, with d ≥ 2. Then the triplet (D, a, f ) does not satisfy the positivity condition PC(β) if β < 2.

Proof: As shown in Lemma 3.5, the solution u to (3.14) is in the class C 1,α (D) for all 0 < α < 1, and therefore ∇u can be continuously extended up to the boundary ∂D. Since the tangential derivatives of u vanish on the boundary, it follows that when x * is a corner of the cube [0, 1] d , then ∇u(x * ) = 0. By Hölder regularity, we find that (3.17 

(3.18) a(x)|∇u a (x)| 2 + f (x)u a (x) ≤ Cdist(x, x * ) 2α , x ∈ D,
for all 0 < α < 1. Thus, PC(β) cannot hold for any β < 2.

The positivity condition PC(2).

In this section, we show that the triplet (D, a, f ) satisfies the positivity condition PC(2) for any Lipschitz domain D, any a ∈ A, and any f ∈ L 2 (D), with f ≥ c f > 0. For this, we use the lower bounds on the Green functions established in [START_REF] Grüter | The Green's function for uniformly elliptic equations[END_REF]. Proof: In this proof, C denotes a generic constant only depending on D, λ, Λ, d, c f . We recall that for every y ∈ D, there exists a unique Green's function

G a (•, y) ∈ W 1 0 (L 1 (D)), such that D ∇G a (x, y)∇v(x) dx = v(y), v ∈ C ∞ 0 (D).
One can show that

G a (x, y) ≥ C|x -y| -(d-2) , for |x -y| ≤ 1 2 ρ(x), d ≥ 2,
where ρ(x) := dist(x, ∂D). A proof of this fact in the case d ≥ 3 can be found in [13, Theorem 1.1]. The same proof holds also in the case d = 2, utilizing the regularity properties of the two dimensional Green's function discussed in [START_REF] Dong | Green's matrices of second order elliptic systems with measurable coefficients in two dimensional domains[END_REF]. Now, given any x ∈ D, let B(x, ρ(x)/2) ⊂ D be the ball centered at x with radius ρ(x)/2. Since G a (x, y) ≥ 0, x, y ∈ D, we have

u a (x) = D f (y)G a (x, y) dy ≥ B f (y)G a (x, y) dy ≥ C B(x,ρ(x)/2) |x -y| -(d-2) dy ≥ Cρ 2 (x) = C[dist(x, ∂D)] 2 ,
and the desired result follows.

We have the following corollary.

Corollary 3.8. Let D be a Lipschitz domain, a, b ∈ A 1 , f ∈ L ∞ (D) with f ≥ c f > 0, and u a , u b ∈ H 1 0 (D)
be the corresponding solutions to (1.3), then we have

(3.19) a -b L2(D) ≤ C 1 + C 0 u a -u b 1/6 H 1 0 (D) ,
where C 0 is the constant in (2.10) and C is a constant depending only on D, d, λ, Λ and the minimum c f of f .

Proof:

The proof follows from Theorem 3.2 and Lemma 3.7.

4. Finer estimates for parameter recovery. We have proved Corollary 3.8 for Lipschitz domains D under the assumptions that a, b ∈ A 1 and f ∈ L ∞ (D), with f ≥ c f > 0. In this section, we shall weaken the smoothness assumption on a and b at the expense of decreasing the exponent 1/6 appearing on the right side of (3.19).

4.1. Finer estimates. Our method for reducing the smoothness assumptions on the diffusion coefficients in the stability Theorem 3.2 will be based on interpolation. We recall that if a ∈ H s (D), where D ⊂ R d is a bounded Lipschitz domain, then for each t > 0, there is a function a t ∈ H 1 (D) satisfying the inequality

(4.1) a -a t L2(D) + t ∇a t L2(D) ≤ Ct s a H s (D) ,
where the constant C depends only on D. Note that the standard construction of a t is a local mollification of a, and therefore a t ∈ A whenever a ∈ A.

Our stability estimate relies on the following result which can be derived from Theorem 2.1 in [START_REF] Bonito | Adaptive finite element methods for elliptic problems with discontinuous coefficients[END_REF]:

Lemma 4.1. Given a, b ∈ A, assume that for some 0 < θ ≤ 1 there exists a constant M such that ∇u a L 2/(1-θ) (D) ≤ M.
Then,

(4.2) u a -u b H 1 0 (D) ≤ λ -1 (2Λ) 1-θ M a -b θ L2(D) .
Proof: We take p = 2 1-θ in Theorem 2.1 of [START_REF] Bonito | Adaptive finite element methods for elliptic problems with discontinuous coefficients[END_REF], then for q = 2 θ , we have from (2.2) of [START_REF] Bonito | Adaptive finite element methods for elliptic problems with discontinuous coefficients[END_REF] 

(4.3) u a -u b H 1 0 (D) ≤ λ -1 M a -b θ Lq(D) . Since a -b Lq(D) ≤ a -b 2/q L2(D) (2Λ) 1-2/q
, the lemma follows. This motivates the following definition. Definition 4.2 (Gradient Condition). We say that a function u ∈ H 1 0 (D) satisfies the gradient condition GC(θ, M ), 0 < θ ≤ 1, if

(4.4) ∇u L 2/(1-θ) (D) ≤ M.
We now prove our main result regarding stable recovery of parameters provided that u a satisfies the gradient condition GC(θ, M ). Later, in §4.2, we elaborate on what classical smoothness conditions on the diffusion coefficient a ∈ A guarantees that this gradient condition holds.

Theorem 4.3. Let D be a Lipschitz domain, f ∈ L ∞ (D) with f ≥ c f > 0, and a, b ∈ A s for some 1/2 < s ≤ 1. Let u a , u b ∈ H 1 0 (D)
be the corresponding solutions to (1.3). If u a , u b both satisfy the gradient condition GC(θ, M ) for some 1-s s < θ ≤ 1, then we have

(4.5) a -b L2(D) ≤ C 1 + ( a H s (D) + b H s (D) ) 1 3s u a -u b 1 6 -1-s 6sθ H 1 0 (D)
, where C is a constant depending only on D, d, θ, λ, Λ, the minimum c f of f , f L∞(D) , and M .

Proof: We use the notation

E := u a -u b , E t := u at -u bt , δ := a -b, δ t := a t -b t ,
where a t , b t ∈ A 1 are the functions satisfying (4.1). Throughout the proof C > 0 will be a generic constant that depends on at most D, d, θ, λ, Λ, M , f L∞(D) , and the minimum c f of f . In what follows, the value of C may change at each appearance. We denote by (4.6)

M 0 := a H s (D) + b H s (D) ≥ a L2(D) + b L2(D) ≥ 2λ|D| 1/2 .
It follows from (4.1) that

(4.7) δ -δ t L2(D) ≤ CM 0 t s .
We want to bound δ L2(D) . For this, we define the set D ρ := {x ∈ D : dist(x, ∂D) ≥ ρ}, with the value of ρ > 0 to be chosen shortly. Using (4.7), we find that

δ 2 L2(D) = δ 2 L2(D c ρ ) + δ 2 L2(Dρ) ≤ δ 2 L2(D c ρ ) + 2 δ -δ t 2 L2(D) + 2 δ t 2 L2(Dρ) ≤ δ 2 L2(D c ρ ) + CM 2 0 t 2s + 2 δ t 2 L2(Dρ) . (4.8)
To estimate the two norms above, we proceed as in the proof of Theorem 3.2. First, for a, b ∈ A and a Lipschitz domain D we have (4.9)

δ 2 L2(D c ρ ) = D c ρ δ 2 ≤ 4Λ 2 |D c ρ | ≤ Cρ;
see (3.6). Since a t and b t are in A 1 , according to Lemma 3.7, (D, a t , f ) and (D, b t , f ) satisfiy the positivity condition PC(2) with a constant c only depending on λ, Λ, D, d. Hence (3.5) holds with β = 2 and therefore, we have

δ t 2 L2(Dρ) = Dρ δ 2 t ≤ Cρ -2 (1 + max{ ∇a t L2(D) , ∇b t L2(D) }) E t H 1 0 (D) .
This, together with (4.1) implies that (4.10)

δ t 2 L2(Dρ) ≤ Cρ -2 (1 + M 0 t s-1 ) E t H 1 0 (D)
. We substitute (4.9) and (4.10) into (4.8) to arrive at

(4.11) δ 2 L2(D) ≤ Cρ + CM 2 0 t 2s + Cρ -2 (1 + M 0 t s-1 ) E t H 1 0 (D)
. We now proceed to estimate E t H 1 0 (D) by taking advantage of the gradient condition GC(θ, M ) satisfied by u a and u b . Since u a satisfies the gradient condition GC(θ, M ) and a t ∈ A, it follows from the stability estimate (4.2) that (4.12)

u a -u at H 1 0 (D) ≤ C a -a t θ L2(D) ≤ C(M 0 t s ) θ .
The same estimate holds with a replaced by b, and therefore (4.13)

E t H 1 0 (D) ≤ u at -u a H 1 0 (D) + u a -u b H 1 0 (D) + u b -u bt H 1 0 (D) ≤ C(M 0 t s ) θ + E H 1 0 (D) . Placing this estimate into (4.11) gives (4.14) δ 2 L2(D) ≤ Cρ + CM 2 0 t 2s + Cρ -2 (1 + M 0 t s-1 )(M θ 0 t sθ + E H 1 0 (D)
). To finish the proof, we consider two cases. Case 1: E H 1 0 (D) > 0. First, we choose t so that M θ 0 t sθ = E H 1 0 (D) , i.e. t := E 1 ≤ CM 0 t s-1 .

Next, we choose ρ such that

ρ 3 = M 0 t s-1 E H 1 0 (D) = M 1/s 0 E sθ+s-1 sθ H 1 0 (D)
. This choice balances the first and last terms on the right side of (4.14) and therefore gives (4.17)

δ 2 L2(D) ≤ CM 1 3s 0 E sθ+s-1 3sθ H 1 0 (D) + C E 2 θ H 1 0 (D) .
Since sθ+s-1 3s ≤ 2, the inequalities (4.15) and (4.16) show that the first term in the sum on the right can be absorbed into the second, and the theorem follows. Case 2: E H 1 0 (D) = 0. For any sufficiently small t > 0, we choose ρ such that ρ 3 = M 1+θ 0 t sθ+s-1 so that the first and last terms in (4.14) balance. Then, (4.14) gives

δ 2 L2(D) ≤ CM 1+θ 3 0 t sθ+s-1 3 + CM 2 0 t 2s .
Since by assumption, θ > 1-s s , we have t sθ+s-1 → 0 as t → 0, and therefore (4.5) holds in this case as well.

Note that the proof of the above theorem relies on the fact that (D, a t , f ) and (D, b t , f ) both satisfy the positivity condition PC(2) for a uniform constant c. The proof can be easily modified to cover the case where (D, a t , f ) and (D, b t , f ) satisfy the positivity condition PC(β) with a uniform constant c for any given 0 ≤ β < 2.

Remark 4.1. As noted in the introduction, a typical result based on least squares or variational techniques for finding the diffusion coefficient a is estimate (1.12). For clarity, we focus here on the results from [START_REF] Kohn | A variational method for parameter identification[END_REF][START_REF] Falk | Error Estimates for the Numerical Identification of a Variable Coefficient[END_REF], where the approximation a h ∈ A h is computed solely based on the knowledge of u ob . Therefore any two diffusion coefficients a and b with the same observed u ob will have the same approximant a h , generated by the above process. If we take u ob = u a in (1.12), we obtain the bound

(4.18) a -a h L2(D) ≤ Ch r .
On the other hand, we can view u a = u ob as an observation of u b and in this case obtain from (1.12), the bound

(4.19) b -a h L2(D) ≤ C(h r + h -2 u a -u b L2(D) ).
Hence,

(4.20) b -a L2(D) ≤ Ch r + C(h r + h -2 u a -u b L2(D) ). If we chose h, such that h r = h -2 u a -u b L2(D)
, we obtain the estimate 

The gradient condition GC(θ, M

). The statement of Theorem 4.3 relies on the assumption that the solutions u a and u b satisfy the gradient condition GC(θ, M ). Finding sufficient conditions that ensure GC(θ, M ) is a well studied question in harmonic analysis and partial differential equations. We recall, two classes of diffusion coefficient for which such condition holds. Recall that the VMO modulus ν(a, •) of a is defined by ν(a, t) := sup

|Q|≤t 1 |Q| Q |a -a Q |, a Q := 1 |Q| Q a, t > 0,
where the supremum is taken over all cubes Q with measure at most t. In order to show that u a satisfies the gradient condition GC(θ, M ), we need to consider a subclass of diffusion coefficients a, for which the estimate (4.22) is uniform for all functions in this class. For this, we consider a non-decreasing continuous function Φ(t), t ≥ 0, with Φ(0) = 0, and introduce the class A Φ defined as (4.23)

A Φ := {a ∈ A : ν(a, t) ≤ Φ(t), t > 0}.
Likewise, for s > 0, we define the class (4.24) A s,Φ := A s ∩ A Φ .

An examination of the proofs in [START_REF] Auscher | Observations on W 1,p estimates for divergence elliptic equations with VMO coefficients[END_REF] and [START_REF] Fazio | Lp estimates for divergence form elliptic equations with discontinuous coefficients[END_REF] shows that for all a ∈ A Φ the constant in (4.22) is uniformly bounded, with a bound, depending on Φ, D, d, λ, Λ. Therefore, according to the estimate (4.22), for each 0 < θ < 1, the solution u a satisfies the gradient condition GC(θ, M ) with M only depending on θ, D, d, λ, Λ, Φ, and f . As a consequence, we deduce the following corollary of Theorem 4.3. for every r < 2s-1 6s .

4.2.2. General diffusion coefficients. Again, we start with the following gradient estimate.

Result 2 (see [START_REF] Meyers | An Lp-estimate for the gradient of solutions of second order elliptic divergence equations[END_REF][START_REF] Bonito | Adaptive finite element methods for elliptic problems with discontinuous coefficients[END_REF]). If D is any Lipschitz domain, then there is a value P > 2, depending on D, such that whenever a ∈ A and f ∈ W -1 (L p (D)), with 2 ≤ p < P , then

∇u a Lp(D) ≤ C f W -1 (Lp(D)) ,
with C depending only on d, D, λ, Λ, p.

It follows from the above result that u a satisfies condition GC(θ, M ) for 0 < θ < P -2 P , where M depends on d, D, λ, Λ, and f . Therefore, Result 2 and Theorem 4.3 lead to the following corollary. 

4.26) a -b L2(D) ≤ C 1 + ( a H s (D) + b H s (D) ) 1 3s u a -u b r H 1 0 (D) ,
for every r < 1 6 -P (1-s) 6(P -2)s .

5. Piecewise constant diffusion coefficients. Piecewise constant diffusion coefficients are often used in numerical simulation. This case is not covered by the discussions in the preceding sections because such diffusion coefficients do not satisfy the regularity assumptions considered there. In this section, we derive some elementary results for piecewise constant parameters a, subordinate to a fixed partition. We assume for simplicity that the domain D = (0, 1) d and P n is the partition of D into n d disjoint cubes of side length 1/n. The derivations that follow can be generalized to other settings. We denote by A n the set of all diffusion coefficients a defined on D that are piecewise constant functions subordinate to P n . We continue to make the assumption that each a ∈ A n satisfies λ ≤ a ≤ Λ for fixed 0 < λ < Λ, and therefore can be written as

(5.1) a := Q∈Pn a Q χ Q ,
where a Q ∈ [λ, Λ], and χ Q is the characteristic function of the cube Q.

Lemma 5.1. Let D = (0, 1) d and f ∈ L 2 (D). If the diffusion coefficient a ∈ A n is given by (5.1), then for each cube Q ∈ P n , the solution u a to (1.3) satisfies the equation

(5.2) -a Q ∆u a (x) = f (x), a.e. x ∈ Q.
Proof: Let a ∈ A n and Q ∈ P n . Following the proof of the interior regularity theorem, see [START_REF] Evans | Partial Differential Equations[END_REF], one can show that

u a ∈ W 2 (L 2 (O)) on each open set O strictly contained in Q. If in (1.
3), we take v smooth and compactly supported on Q and integrate by parts, we find

(5.3) -a Q Q ∆u a v = Q f v.
It follows that -a Q ∆u a = f at every point x in the interior of Q which is a Lebesgue point of both f and ∆u a . In particular, this holds almost everywhere on Q.

Theorem 5.2. Let D = (0, 1) d and f ∈ L 2 (D) with f ≥ c f > 0 on D. Let a, b ∈ A n be diffusion coefficients and u a , u b be the corresponding solutions to (1.3) on D. Then for each Q ∈ P n , we have

(5.4) |a Q -b Q | ≤ Cn d+2 2 ∇u a -∇u b L2(Q) ,
where C depends only on c f and Λ. Therefore,

(5.5) a -b L2(D) ≤ Cn u a -u b H 1 0 (D)
. Proof: From Lemma 5.1, we know that for each Q ∈ P n , we have

(5.6) a Q -b Q = ∆(u a -u b ) a Q b Q f , a.e. on Q.
We now assume without loss of generality that a

Q > b Q . Therefore, we have that ∆(u a -u b ) > 0 on Q since f > 0. Recall that there exist functions ϕ Q ∈ C ∞ c (Q) (for example the standard mollifier supported in Q), such that Q ϕ Q = 1 and (5.7) ∇ϕ Q L2(Q) ≤ C 0 n d+2 2 ,
with C 0 an absolute constant. Then multiplying (5.6) by such a ϕ Q and integrating over Q yields

a Q -b Q = Q ∆(u a -u b ) a Q b Q f ϕ Q ≤ a Q b Q c f Q ∆(u a -u b )ϕ Q = - a Q b Q c f Q ∇(u a -u b )∇ϕ Q ,
where we used integration by parts to get the last equality. The boundedness of a and b yields

a Q -b Q ≤ C ∇(u a -u b ) L2(Q) ∇ϕ Q L2(Q) (5.8) ≤ Cn d+2 2 ∇(u a -u b ) L2(Q) .
This proves (5.4). To prove (5.5), we square (5.4) integrate over Q to find (5.9)

Q |a -b| 2 ≤ Cn d+2 ∇(u a -u b ) 2 L2(Q) n -d = Cn 2 ∇(u a -u b ) 2 L2(Q) .
If we add these estimates up over all Q ∈ P n and take a square root, we arrive at (5.5).

6. The univariate case. In the univariate case, several stability results, mainly for the Neumann problem, are available, see for example, [START_REF] Kunisch | Inherent identifiability of parameters in Elliptic Differential Equations[END_REF]. Here, we will discuss the one dimensional Dirichlet problem with diffusion coefficients a ∈ A and the domain D = (0, 1). In this case, under certain assumptions on f , we will be able to improve the Lipschitz exponent in the inverse parameter estimate and also provide limits to how large this Lipschitz exponent can be.

Notice that in this case, one needs some assumptions on f to guarantee that a is uniquely determined from the solution u a , as the following example, taken from [START_REF] Kunisch | Inherent identifiability of parameters in Elliptic Differential Equations[END_REF], shows. The function

u(x) = x, x ∈ [0, 1 2 ], 1 -x, x ∈ ( 1 2 , 1], is a solution on D to the problem -(au ) = 2δ 1/2 , u(0) = u(1) = 0, with diffusion coefficient a ≡ 1 or any a of the form a = q, on [0, 1 2 ], 2 -q, on ( 1 2 , 1],
where 0 < q < 2. Here δ 1/2 is the delta distribution with weight 1 at 1/2. In going further, we consider the case f = 1, noting that the derivations below can be generalized to other settings. We determine the solution u a and show that estimate (3.19) This gives (6.3) -A(x)(x -γ a ) = u a (x).

6.1. An upper bound. To bound a-b L2(0,1) in terms of u a -u b L2(0,1) , it is sufficient to bound A-B L2(0,1) . Let us set η := γ a -γ b , and E (x) := u a (x)-u b (x). Without loss of generality, we may assume that η ≥ 0, since otherwise we can reverse the roles of a and b. The following lemma gives an estimate for η. Lemma 6.1. We have (6.4) η ≤ c 0 E 2/3 L2(0,1) ,

where the constant c 0 depends only on λ and Λ.

Proof: The estimate obviously holds if η = 0, so we assume that η > 0. We consider an interval I of length 2cη centered at γ a with c := The following lemma gives an upper bound for the norm A -B L2(0,1) . Lemma 6.2. For every ρ > 0, we have We now consider an interval J of length 2ρ centered at γ a . Then, using (6.6) on J c , where J c is the complement of J in (0, 1) (which might be empty), we have We integrate the latter inequality over J c to obtain (6.7)

A -B 2 L2(J c ) ≤ 2 ρ 2 E 2 L2(0,1) + 2λ -2 ρ 2 η 2 .
Meanwhile, for x ∈ J ∩ (0, 1), we have |A(x) -B(x)| ≤ 2λ -1 and therefore (6.8) A -B 2 L2(J∩(0,1)) ≤ 8λ -2 ρ.

Combining this with (6.7), we obtain where C depends only on λ and Λ. This proves the first part of the lemma. When E L2(0,1) = 0, A -B 2 L2(0,1) ≤ 8λ -2 ρ, for all ρ > 0 and so A = B a.e. in (0, 1).

A -B 2 L2(0,1) ≤ 2 ρ 2 E 2 L2(0,1) + 2λ -2 ρ 2 η 2 + 8λ -2 ρ ≤ 2 ρ 2 E 2 L2(0,
We can now prove the following stability estimate in the one dimensional case. , where C depends only on λ and Λ. In particular, if u a = u b on (0, 1), then a = b a.e in (0, 1).

Proof: If u a -u b H 1 0 (0,1) = 0, it follows from Lemma 6.2 that a = b, a.e. on (0, 1), and therefore (6.9) holds. When E L2(0,1) = u a -u b L2(0,1) > 0, we choose ρ = E 4/9 L2(0,1) in Lemma 6.2 to derive the desired estimate. 6.2. A lower bound. In this section, we show that the exponent in estimates of the form (6.9) cannot be greater than 1/3. 

1 0

 1 (D) proves (3.3) and ends the proof.

(3. 10 )

 10 -a * ∇u * -∇a * • ∇u * = f, is satisfied on D, with homogeneous boundary conditions, and we have (3.11) u * (x * ) = 0 and ∇u * (x * ) = 0.
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 1235 The condition PC(β), β < 2, requires smooth domains . In this section, we show that we cannot expect the triplet (D, a, f ) to satisfy a positivity condition PC(β), β < 2, without additional regularity assumptions on the domain D. We consider the problem, -∆u = 1, on D = (0, 1) d , (3.14) u = 0, on ∂D, corresponding to the case a = 1, f = 1, D = (0, 1) d . We begin with the following lemma. The solution u to (3.14) is in the Hölder space C 1,α (D) for all 0 < α < 1.

  ) |∇u(x)| ≤ Cdist(x, x * ) α and |u(x)| ≤ Cdist(x, x * ) 1+α , x ∈ D, and therefore

Lemma 3 . 7 .

 37 Let D be a Lipschitz domain, a ∈ A, and f ∈ L 2 (D) with f ≥ c f > 0. Then the triplet (D, a, f ) satisfies the positivity condition PC(2) with a constant c only depending on λ, Λ, d, D, c f .

,

  so that the two terms in the last bracketed sum of (4.14) are equal. Since(4.15) E H 1 0 (D) ≤ C, and M 0 ≥ C (because of (4.6)), this choice of t satisfies(4.16) 

( 4 .

 4 21) b -a L2(D) ≤ C u a -u b r r+2 L2(D) . Besides working with Neumann boundary conditions, there are two major distinctions between (4.21) and our results. The first is the L 2 (D) norm that appears on the right side in place of our H 1 0 (D) norm. Recall that we have already mentioned (see (1.18)) how one can derive bounds of the form (4.21) from our results. The second distinction is the much more demanding regularity assumption placed on a, b as well as on u a , u b . Namely, (4.21) is proved in the above references under the regularity requirements a, b ∈ H r+1 (D) and u a , u b ∈ W r+3 (L ∞ (D)) with r ≥ 1. Whereas, in our treatment, stability estimates are available solely under the much weaker stability assumption a, b ∈ H s (D), s * < s ≤ 1, where s * < 1.

4. 2 . 1 .

 21 VMO diffusion coefficients. We start with the following result from[START_REF] Auscher | Observations on W 1,p estimates for divergence elliptic equations with VMO coefficients[END_REF].Result 1. If D is a C 1 domain, the diffusion coefficient a is in VMO ∩ A,and the right side f = div(g), with g ∈ L p (D), then there exists a unique weak solution u a to (1.3) such that ∇u a ∈ L p (D), 1 < p < ∞, and (4.22) ∇u a Lp(D) ≤ C g Lp(D) , with C depending only on D, d, p, λ, Λ and the VMO modulus of a.

Corollary 4 . 4 .

 44 Let D be a C 1 domain, f ∈ L ∞ (D) with f ≥ c f > 0 and Φ(t),t ≥ 0, be a non-decreasing continuous function with Φ(0) = 0. Furthermore, assume that a, b ∈ A s,Φ for some1 2 < s ≤ 1. Then there exists a constant C only depending on D, d, λ, Λ, f , and Φ such that

( 4 .

 4 25) a -b L2(D) ≤ C 1 + ( a H s (D) + b H s (D) )

Corollary 4 . 5 .

 45 Let D be a Lipschitz domain, f ∈ L ∞ (D) with f ≥ c f > 0 and let P > 2 be the constant in Result 2. Assume that a, b ∈ A s with P 2(P -1) < s ≤ 1. Then, there exists a constant C only depending on D, d, s, λ, Λ, and f such that

(

  

1 0au a v = 1 0 0 A

 110 in Corollary 3.8 can be improved. We use the notation A := 1/a, B := 1/b, where a, b ∈ A. Now, (1.3) becomes (6.1) v, v ∈ H 1 0 (0, 1), and one checks that the solution to (6.1) is (6.2) u a (x) = -x (t)(t -γ a ) dt, where γ a :=

λ 2 (≥ 1 2 4Λ 2 2 L2(0, 1 )

 212221 λ+Λ) < 1/2. We have for x ∈ I ∩ (0, 1)|u a (x) -u b (x)| = |(x -γ b )B(x) -(x -γ a )A(x)| ≥ (1 -c)B(x)η -cA(x)ηSquaring this estimate and integrating over I ∩ (0, 1) givesη |I ∩ (0, 1)| ≤ u a -u b = E 2 L2(0,1) ,and since |I ∩ (0, 1)| ≥ cη, the proof is completed.

3 L2(0, 1 )

 31 + 8λ -2 ρ,where C depends only on λ and Λ. In particular, if E L2(0,1) = 0, then A = B a.e in (0, 1).Proof: First, let us observe that (6.6)(A(x)-B(x))(x-γ a ) = A(x)(x-γ a )-B(x)(x-γ b )+B(x)(γ a -γ b ) = -E (x)+B(x)(γ a -γ b ).

  ρ|(A(x) -B(x)| ≤ |E (x)| + λ -1 η, x ∈ J c ,and thereforeρ 2 |(A(x) -B(x)| 2 ≤ 2|E (x)| 2 + 2λ -2 η 2 , x ∈ J c .

1 )

 1 1) + 8λ -2 ρ, where we have used Lemma 6.1. Since |u a(x)-u b (x)| = |(x-γ b )B(x)-(x-γ a )A(x)| ≤ 2λ -1, we have that E L2(0,1) ≤ 2λ -1 , and the first term of the above inequality is absorbed by the second term. Hence, we get A -+ 8λ -2 ρ,

Theorem 6 . 3 .

 63 For any a, b ∈ A, the solutions u a , u b to (1.3) with f = 1 satisfy the estimate (6.9) a -b L2(0,1) ≤ C u a -u b

Theorem 6 . 4 . 3 H 1 0

 6431 Consider equation (1.3) with domain D = (0, 1) and right side f = 1. There are diffusion coefficients a, b ∈ A, such that the corresponding solutions u a , u b , satisfy the inequality (6.10) a -b L2(D) ≥ c u a -u b 1/(D) , where c is a constant, depending only on λ and Λ.

* This research was supported by the ONR Contracts N00014-15-1-2181 and N0014-16-2706; the NSF Grants DMS 1521067 and DMS 1254618; the DARPA Grant HR0011619523 through Oak Ridge National Laboratory,

Proof: We define the following diffusion coefficients 1 a(x) := A(x) = 1, for 0 < x ≤ α, 2, for α < x < 1,

where α, β ∈ (0, 1), and compute (6.11)

Let g(t) := 1-t 2 /2 2-t . Then, a simple calculation gives (6.12)

where γ a and γ b are defined by (6.2). We denote by α 0 the point where g achieves its minimum in (0, 1). Then, we have

We fix α as α 0 . Since g(α 0 ) = α 0 , we have γ a = α 0 . We now bound η := γ a -γ b = α 0 -γ b from above. In fact, using (6.11) and (6.13), we have

Recall that (6.15)

Therefore, using (6.11) and (6.14) , we have

L2(0,1) ≤ C A -B 6 L2(0,1) , (6. [START_REF] Kohn | A variational method for parameter identification[END_REF] where C depends only on λ, Λ. This completes the proof.