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Abstract. Phloem transport is the process by which carbohydrates produced by photosynthesis in the leaves

get distributed in a plant. According to Münch, the osmotically generated hydrostatic phloem pressure is the

force driving the long-distance transport of photoassimilates. Following Thompson and Holbrook[32]’s approach,

we develop a mathematical model of coupled water-carbohydrate transport. It is first proven that the model

presented here is well posed and preserves the positivity. The model is then applied to simulate the flow of

phloem sap for an organic tree shape, on a 3D surface and in a channel with orthotropic hydraulic properties.

Those features represent an significant advance in modelling the pathway for carbohydrate transport in trees.
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Introduction

Expanded knowledge of the carbohydrate pathway in trees is critical in agriculture, forestry and
ecology. Improving on our understanding of translocation is particularly important in a climate
change context so as to anticipate the effects of future environmental conditions on tree growth
and carbon sequestration. Phloem transport is the process by which carbohydrates produced by
photosynthesis in the leaves get distributed within a plant. Efficient transport ensures that the
carbohydrate requirements of living tissues (respiration, growth) are met throughout the organism.
In most trees, the phloem is a tissue layer located under the bark. Phloem is very thin (typically
from 0.5 to 5 mm), i.e. at least 2 orders of magnitude less than its other dimensions. Because
of that, it can be described as a three-dimensional manifold with a shape closely matching tree’s
external shape (minus the offset of bark’s thickness). In a schematic view, sap flows in the phloem
from leaves (sources) to roots (sinks). In reality, sinks are not only located at one end but also
distributed all along the pathway. Even leaves can act as carbohydrate sinks when deciduous trees
initiate new leaf growth at the beginning of the growing season. Phloem sap mostly consists in water
carrying photosynthates by bulk. Inside the phloem, the sap moves through a network of elongated
and interconnected cells. Those cells are referred to as sieve tube elements in angiosperms and
as sieve cells in conifers. According to Münch [19, 20, 21], the osmotically generated hydrostatic
phloem pressure is the force driving the long-distance transport of photoassimilates. Most recent
works consider Münch’s hypothesis to be sufficient for describing phloem transport [1, 2, 3, 4, 6,
7, 5, 8, 10, 13, 12, 16, 17, 22, 23, 25, 26, 27, 30, 32, 33, 34, 36].
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We present the mathematical foundations and an implementation for a surface dynamic, anisotropic
model of phloem transport. The purpose of this model is not to elaborate on the finer points of the
physical process underlying phloem sap flow such as the contribution of diffusion [35], the radial
leakage of solutes [36] or the presence of a relay mechanism [37]. Those aspects can be investigated
individually. We adopt a state-of-the-art mathematical model of coupled water-solute transport
that is similar to Thomson and Holbrook’s [32]. In this study, it is the geometry, the scale and
the material characteristics of the phloem that are the objects of main concern. In previous mod-
elling attempts, phloem transport is treated as a one-dimensional process with sap flowing though
a uniserial file of sieve-tube elements. Because plant stems appear to be tubes or pipes, the 1D
approach has also been employed to simulate transport at the scale of the entire organism [44, 15].
Any 1D model implicitly assumes that carbohydrates are in a common pool at any position along
the conduit. In trees, that assumption may not be valid.

Carbohydrates produced by a single branch are translocated along a downward, helicoidal
pathway on the stem surface [45, 46]. That singular trajectory highlights two key points: i)
carbohydrates predominantly follow the orientation of sieve elements with little lateral dispersion
and ii) the direction of translocation does not correspond to the long axis of shoots and roots.
In that context, most of the carbohydrates produced by a source are only available to sinks with
a direct hydraulic connection to the source. Therefore, the difference in hydraulic properties
along and across sieve elements as well as the lateral positioning of sources and sinks are essential
to understand phloem transport in trees. Taking those features into account can be achieved
by describing transport as a two-dimensional process [28]. The model we present is a surface
model in that the flow of water and solute is neglected within the thickness of the phloem (i.e.
intra-phloem radial transport). In mathematical terms, it does not present additional difficulty
to extend the current model to the full 3D case. However, there are several reasons not to do
so. Firstly, the macroscopic approach used here may not be applicable to a tissue less than a
dozen cells wide [47]. Secondly, the fact that width is several orders of magnitude less than other
conduit dimensions and that the computational domain must be defined for its smaller dimension
would make the problem numerically untractable. Thirdly and more importantly, radial transport
appears to follows a different cellular pathway, through ray parenchyma[49, 50], and Münch’s
hypothesis may not apply. On the other hand, using a surface model is not incompatible with
simulating transport for three-dimensional surfaces and describing radial flow to adjacent tissues
(as boundary conditions).

Simulating phloem transport in trees presents other particularities that have influenced the
design of this model. The model is based on the finite element method. Transport equations
are integrated and solved numerically. The numerical approach provides the capability to carry
out large-scale, long-time simulations. Any characteristic of the conduit (i.e. phloem’s thickness
or hydraulic conductivity) is defined on an element-by-element basis. In that manner, spatial
heterogeneity can be easily represented. Finite elements also make it possible to solve transport
equations for non-idealised geometries. Common geometrical irregularities such as nodal swelling,
scars, burls, fluting and buttresses can be included in the model provided the biological shape can
be characterized in the first place. Finally, carbohydrate unloading in the model can be represented
as being time- and concentration-dependent, which allows combining the effects of sink dynamics
on the patterns of carbon allocation in trees [48] with the effects associated to pathway’s structure.

The paper is organised as follows. The first section is devoted to the analysis and qualitative
properties of the model. The well-posedness is proven as well as the positivity conservation and the
growth of the carbohydrate mass. Although theoretical, this phase is necessary to ensure that the
numerical approximated solutions preserve the properties of the biophysical process of transport.
In the second section, we present numerical schemes to solve the highly nonlinear system of partial
differential equations coupling carbohydrate transport and hydrostatic pressure in the phloem.
Numerical simulations are presented in a the third section in order to evaluate the model and
illustrate some of its capabilities. Those simulations include: a comparison and validation with an
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existing model [32] for the one-dimensional case; a parametric study; the application of the model
to an existing tree; a preliminary investigation of the role played by sieve element orientation on
carbohydrate distribution; simulating phloem transport on a branched, three-dimensional manifold.

1 Model description

In this section, we describe the model studied throughout the paper. The model is composed of a
reaction-diffusion equation, coupled with a convection-reaction term. A schematic representation
of a tree and of a phloem surface element are shown in figure 1.

1.1 Equations statement

The transport of a volume θ of water in a surface Ω, a bounded domain of R2 of thickness e, is
defined by the mass balance conservation

∂tθ +∇ · Jθ +Hθ = 0,

where J , the water flux, is given by Darcy’s law

J = − e
µ

(k∇P ) .

Here P is phloem’s pressure in Pa, µ is the sap viscosity in Pa s and depends on the concentration
C in solute, and k in m2 is the orthotropic permeability matrix

k =

(
kx 0
0 ky

)
.

Hθ denotes the radial water flux at the boundary between phloem and xylem. Here, the radial
flux is function of the differential of water potential between phloem and xylem [32, 44]:

Hθ = −LR(ψ − P +RTC)− VsU,

and LR the radial hydraulic conductivity in m Pa−1 s−1, ψ the xylem hydrostatic pressure, R the
gas constant (in J mol−1 K−1), T the temperature in K, Vs the partial molal volume of sucrose
in m3 mol−1 and U the sucrose unloading (radial). It translates boundary conditions on entrance
and exit as source and sink terms as follows

U =


Ũ in Ωl the loading area (source)

− Ũ
C∗C in Ωu the unloading area (sink)

0 elsewhere.

Here Ũ denotes a constant loading rate (mol m2 s−1) and C∗ a reference sucrose concentration
(mol m−3). On the other hand, the variation of the volume θ depends on the pressure via the
phloem thickness (e in m) and phloem Young’s modulus (E in Pa) as

∂tθ =
e

E
∂tP.

In other terms, the phloem is deformable and thickness depends on P . Concerning the amount of
sucrose, the concentration C is governed by

e∂tC +∇ · JC +HC = 0,
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where HC = U and JC = CJθ. To sum up, the mass balance conservation is written, for x ∈ Ω
and t > 0

e

E
∂tP −∇ ·

(
e

µ
(k∇P )

)
− LR (ψ − P +RTC)− VsU = 0 (1.1)

e∂tC −∇ ·
(
e

µ
C (k∇P )

)
− U = 0, (1.2)

with initial data
P (0, x) = P0(x) and C(0, x) = C0(x). (1.3)

We impose Neumann boundary conditions along the vertical sides of the domain

∂nP (t, x) = ∂nC(t, x) = 0. (1.4)

Figure 1: Schematic representation of a tree and the layered organisation of its secondary tissues:
phloem, vascular cambium and xylem (bark not shown). Flows of water/solute in a phloem element
also shown.

1.2 Theoretical qualitative study

Since the sap viscosity and the phloem thickness can depend on the concentration of sucrose we
assume in the following that there exist four positive constants µ1, µ2, e1, e2 such that

0 < µ1 < µ(C) < µ2 and 0 < e1 < e(C) < e2.

Theorem 1.1 Let s ≥ 2 and (P0, C0) ∈ Hs(Ω)×Hs(Ω) be positive initial datum. Then there exists
T > 0 and a unique weak solution (P,C) ∈ C(0, T ;Hs(Ω)) × C(0, T ;Hs(Ω)) of initial-boundary
values problem (1.1)-(1.2)-(1.4)-(1.3).

Proof. The weak solution is written, for ϕ1, ϕ2 test functions in Hs(Ω)×Hs(Ω), as:
d

dt
〈P,ϕ1〉+ 〈E

µ
(k∇P ) ,∇ϕ1〉 −

∫
∂Ω

E

µ
(k∂nP )ϕ1 − 〈

ELR
e

(ψ − P +RTC) +
VsU

e
, ϕ1〉 = 0

d

dt
〈C,ϕ2〉+ 〈 1

µ
C (k∇P ) ,∇ϕ2〉+

∫
∂Ω

1

µ
C (k∂nP )ϕ2 − 〈

U

e
, ϕ2〉 = 0.

Then by the Lax-Milgram lemma, there exists a unique weak solution. �

4



Remark 1.2 It seems not possible to use the classical parabolic regularization, the main difficulty
being the lack of regularizing effect in the mixed parabolic-hyperbolic system for the second variable
C [14]. Indeed, for ε > 0, we can consider

∂tP − κ∆P + ηP = f(∇P,C) (1.5)

∂tC − ε∆C + γC = g(∇P,C,∇C), (1.6)

where

f(∇P,C) = ∇
(
kE

µ

)
· ∇P +

ELR
e

(ψ +RTC) +
EVsU

e

g(∇P,C,∇C) = ∇ ·
(

1

µ
C (k∇P )

)
+
U

e
.

From Theorem 6.19 of [24], G the kernel of the heat equation with homogeneous Neumann
boundary conditions defined by

∂tG(t, x, y)− κ∆G(t, x, y) + ηG(t, x, y) = 0

∂nG(t, x, y) = 0 for x ∈ ∂Ω,

and
∀(x, y) ∈ Ω2, lim

t→0+
G(t, x, y) = δy(x)

satisfies for all y ∈ Ω, there exists a constant cΩ > 0, depending on Ω, such that for 0 < t < T

||G(t, ., y)||L2(Ω) ≤ cΩ, ||∇xG(t, ., y)||L2(Ω) ≤ cΩ, ||∇yG(t, ., y)||L2(Ω) ≤ cΩ.

We deduce for u ∈ Hs(Ω)∣∣∣∣∣∣∣∣∫
Ω

G(t, x, y)u(y)dy

∣∣∣∣∣∣∣∣
Hs

≤ cΩ||u||Hs(Ω)∣∣∣∣∣∣∣∣∫
Ω

G(t− s, x, y)∇u(y)dy

∣∣∣∣∣∣∣∣
Hs(Ω)

=

∣∣∣∣∣∣∣∣∫
Ω

∇yG(t, x, y)u(y)dy

∣∣∣∣∣∣∣∣
Hs(Ω)

≤ cΩ||u||Hs(Ω).

According to the Duhamel formula, we can find a time T > 0, depending on Ω, (P0, C0) and ε,
such that

Φ(P,C)(t, x) :=

(∫
Ω

G(t, x, y)P0(y)dy +

∫ t

0

∫
Ω

G(t− s, x, y)f(s, y)dyds,∫
Ω

Gε(t, x, y)C0(y)dy +

∫ t

0

∫
Ω

Gε(t− s, x, y)g(s, y)dyds

)
is a contraction mapping. However, it seems difficult to obtain uniform Hs−estimates independent
of ε to evaluate the limit as ε→ 0.

The conservation of the positivity is needed.

Proposition 1.3 Let (P0, C0) ∈ H4(Ω)×H4(Ω) be positive initial datum. Parameters E, e, LR, T, ψ,Vs,

Ũ , C∗ are positive and chosen such that

LRRT −
VsŨ

C∗
> 0.

Then, for all time t ≥ 0 and a.e. x ∈ Ω,

P (t, x) ≥ 0 and C(t, x) ≥ 0.
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Proof. Let C− := max(0,−C). On one hand, multiplying (1.2) by C− and integrating over Ω,
we obtain

1

2

d

dt

∫
Ω

(C−)2dx = −
∫

Ω

(C−∇C−).

(
1

µ
(k∇P )

)
dx+

∫
Ωl

Ũ

e
C−dx−

∫
Ωu

Ũ

eC∗
(C−)2dx

≤

(
1

2
sup

t∈(0,T )

||∇ ·
(

1

µ
(k∇P )(t, .)

)
||L∞(Ω) +

Ũ

eC∗

)∫
Ω

(C−)2dx

+
Ũ

e
V(Ωl)

1/2

(∫
Ω

(C−)2dx

)1/2

,

because ∫
Ω

(C−∇C−) ·
(

1

µ
(k∇P )

)
dx =

∫
Ω

∇
(

(C−)2

2

)
·
(

1

µ
(k∇P )

)
dx

and, thanks to the Cauchy-Schwarz inequality,∫
Ωl

Ũ

e
C−dx ≤ Ũ

e
V(Ωl)

1/2

(∫
Ω

(C−)2dx

)1/2

.

Then it comes from the Sobolev embedding

d

dt

∫
Ω

(C−)2dx ≤ c0

∫
Ω

(C−)2dx+ c1

(∫
Ω

(C−)2dx

)1/2

.

Gronwall’s inequality provides

||C−||2L2(Ω) ≤ ||C
−
0 ||2L2(Ω)(exp(c0t) + t2c1/4).

Since ||C−0 ||2L2(Ω) = 0, then C− = 0 almost everywhere.
On the other hand, we have

∂tP −∇ ·
(
E

µ
(k∇P )

)
= f(P,C),

with

f(P,C) :=
ELR
e

(ψ − P +RTC) +
EVsU

e

= (f(P,C)− f(0, C)) + f(0, C) =
∂f

∂P
(θP,C) + f(0, C),

where 0 ≤ θ ≤ 1. Consider Q = exp(λt)P , the equation becomes

∂tQ−∇ ·
(
E

µ
(k∇Q)

)
−
(
λ+

∂f

∂P
(θP,C)

)
Q = exp(−λt)f(0, C). (1.7)

If there exists (x∗, t∗) such that Q(t∗, x∗) = mint,xQ(t, x) < 0, then

∂tQ(x∗, t∗) = 0, ∇Q(x∗, t∗) = 0, ∆Q(x∗, t∗) ≥ 0,

and λ can be chosen such that the left-hand size of (1.7) becomes negative whereas the right-hand

size is positive if LRRT − VsŨ/C∗ > 0, since C ≥ 0. �

The phloem tube fills up and empties with respect to time. More precisely, if V(Ωl) = V(Ωu),
then the total amount of sucrose

∫
Ω
C(t, x)dx is increasing, respectively decreasing, as soon as

C < C∗ in Ωu, respectively C > C∗ in Ωu:
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Proposition 1.4 For all time t ≥ 0

d

dt

∫
Ω

C(t, x)dx =
Ũ

e

(
V(Ωl)−

∫
Ωu

C(t, x)

C∗
dx

)
.

Proof. Integrating (1.2) over Ω gives

d

dt

∫
Ω

Cdx =

∫
Ω

∇ ·
(

1

µ
C (k∇P )

)
+
U

e
dx

=

∫
Ω

U

e
dx =

Ũ

e

(
V(Ωl)−

∫
Ωu

C

C∗
dx

)
.

�

Remark 1.5 Let C∗ > 0 be a given unloading strength. Then the steady state solution C satisfies∫
Ωu

C(x)dx = C∗V(Ωl).

2 Algorithm framework

We describe the numerical discretization used to approximate the pressure and the carbohydrate
concentration given by the equations (1.1)-(1.2). To simulate large-time and large-space scales for
realistic multi-dimensional phloem trees, the stability of the proposed scheme should not be too
restrictive.

2.1 Splitting

To deal with the nonlinearity, the equation (1.2) is split with a first order in time as [11], for x ∈ Ω
and t ∈ [0, T ]

∂tC̃ −
(
k

µ
∇P

)
· ∇C̃ − U

e
= 0 and ∂tC − C∇ ·

(
k

µ
∇P

)
= 0,

with C(x, 0) = C̃(x, T ). Since C(x, t) > 0 as soon as C0(x) > 0, the change of variables C̆ = log(C)
is applied to the second equation to obtain

∂tC̆ −∇ ·
(
k

µ
∇P

)
= 0.

Finally, the transformation C = exp(C̆) enforces the positivity.

2.2 Space and time discretization

Let n ∈ N∗. Pn, respectively Cn, denotes the approximation at time tn = n∆t of the pressure
P , respectively the carbohydrate concentration C. Let ϕ1, ϕ2, ϕ3 be test functions, with ϕi,∇ϕi
in L2, for 1 ≤ i ≤ 3. Finite elements method in space is used, while the time discretization is
obtained with a semi-implicit scheme.

This scheme is implemented using the software FreeFem++ [9]. In particular, the pure convection
terms are solved using the Characteristic-Galerkin method.
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Algorithm 1 Semi-implicit scheme

Given P0, C0 and N ∈ N∗.
for n = 1 to N do

〈C
n+1/2 − Cn

∆t
, ϕ1〉 − 〈

(
k

µ
∇Pn

)
· ∇Cn, ϕ1〉 − 〈

Un

e
, ϕ1〉 = 0

C̆n+1/2 = log(Cn+1/2)

〈 C̆
n+1 − C̆n+1/2

∆t
, ϕ2〉+ 〈k

µ
∇Pn+1,∇ϕ2〉+

∫
∂Ω

k

µ
∂nP

n+1ϕ2 = 0

〈P
n+1 − Pn

∆t
, ϕ3〉+ 〈E

µ
k∇Pn+1,∇ϕ3〉 −

∫
∂Ω

E

µ
k∂nP

n+1ϕ3

−〈ELR
e

(ψ − Pn +RTCn, ϕ3〉 − 〈
VsU

n

e
, ϕ3〉 = 0

Cn+1 = exp(C̆n+1).

3 Numerical simulations

We present some numerical results obtained using Algorithm 1. The objective of the simulations
is to illustrate the domain of applicability of the model. Geometries and parametrisation are
case-specific; they are not properties of the model itself.

3.1 Validation and comparison with an existing model

With no other 2D dynamic model of phloem transport available, we consider a case analogous
to a 1D system so as to compare with the results of [32], a reference implementation of coupled
water-solute transport. We simulate phloem transport in a 5 m-long, 10 cm-wide domain with
a spatial step ∆x = 5 mm. A 24-hour period is simulated with a time step ∆t = 1 s. The
simulation starts with initial pressure and carbohydrate concentration set to zero. Sap viscosity is
a function of local solute concentration as a 15th order polynomial fitted on experimental viscosity
for sucrose solutions at T = 293K [31]. Parameter values are given in Table 1. They are chosen to
be equivalent to those used in [32].

Figure 2 shows the predicted profiles of sucrose concentration (C), hydrostatic pressure (P)
and axial water flux (J). All profiles are qualitatively very similar to those predicted in [32]. Peak
positions, gradients magnitude and transitions over time are well reproduced. The profiles are also
quantitatively comparable: the difference is within a few percent. It is only near steady-state, at
t = 24 h, that the variation becomes significant for C (less than 10% underestimation) and P (less
than 20% underestimation). The observed differences with [32] may result from a slightly different
parameterisation and resolution or from the pressure time derivative term in [32]’s C equation. We
do not consider P and C at t = 24 h to be a cause of major concern for several reasons. Firstly,
it is a magnification issue only and the qualitative behaviour is the same. Secondly, steady-state
is not physical as carbohydrate loading is periodic with a day-nigh cycle in plants [39]. Thirdly,
the P values predicted by both models twice as high as the highest P value measured in a plant
(2.4 GPa, see [38]) and irrealistic in the first place. Overall, the differences between both models
are marginal if compared to the errors associated to the uncertainty in determining the transport
parameters for a real system.
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Figure 2: Sucrose concentration (C), hydrostatic pressure (P) and water flux (J) in the phloem as
simulated with the model of [32] (solid line) and with the proposed model (dashed line)
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Symbol Description Value Units

LR Radial hydraulic conductivity 1.57× 10−13 m Pa−1 s−1

ψ Xylem hydrostatic pressure 0 Pa
R Gas constant 8.31 J mol−1 K−1

T Temperature 293 K
Vs Partial molal volume of sucrose 2.15× 10−4 m3 mol−1

kl Longitudinal permeability 9.28× 10−12 m2

kt Tangential permeability 9.28× 10−13 m2

e Phloem thickness 7.5× 10−6 m
E Phloem Young’s modulus 1.7× 107 Pa

Ũ Unloading rate 3.375× 10−6 mol m−2 s−1

C∗ Reference sucrose concentration 500 mol m−3

µ Viscosity 10−3 at C = 0 Pa s

LRRT − VsŨ
C∗ Positivity constraint 3.808× 10−10

Table 1: Description of parameters employed in the model. Numerical values correspond to the
initial values used in section 3.1.

In Figure 3, we show the numerical convergence of the scheme. Here different values of ∆t and
∆x are computed uniformly from 0.5 s to 10 s and from 1 mm to 100 mm respectively. We compute
the maximum error by comparison with the approximated solution for ∆t = 0.1 s, ∆x = 0.1 mm
after 12 hours. We also plot the lines ∆t and ∆x to demonstrate that the scheme is of order 1.
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Figure 3: Maximum of the relative error obtained by comparison with the approximated solution
for ∆t = 1 s, ∆x = 5 mm after 12 hours.

3.2 Parametric study

Several approaches are possible to simplify the governing equations 1.1 and 1.2. Sap viscosity can
be treated as a constant instead of a function of sucrose concentration (µ = µ0). This eliminates
one term from eq 1.2 and saves the computational cost of evaluating viscosity at all points of the
grid. Alternatively, the effect of sucrose’s partial molal volume can be neglected (Vs = 0). Also,
phloem’s thickness may also not be updated during the simulations (e = e0). Each approach is
considered individually as well as all at once and compared to results of the previous section.

10



0:10 1:10 24:00

0.0e+00

3.0e−14

6.0e−14

9.0e−14

1.2e−13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Relative length

A
xi

al
 w

at
er

 fl
ux

 (
m

3  s
−1

)

e=f(P); µ=f(C); VS=2.155 10−4

e=e0

µ=µ0

VS=0

e=e0; µ=µ0; VS=0

Figure 4: Effects of possible model simplications on the axial water flux at an early (10 minutes),
intermediate (1h10) and late stage (24h). The considered simplifications are a constant viscosity
(µ = µ0, dashed line); neglecting the partial molal volume of sucrose (Vs = 0, dash-dot line); initial
geometry (e = e0, dotted line); all simplifications combined (grey, solid line); no simplifications
(black, solid line).

Figure 4 shows how the axial water flux is affected by the proposed simplifications. Small
changes in the J profile can have large effects on both C and P profiles (not shown here). With a
constant sap viscosity, the flux is underestimated during the earlier stages and gets overestimated
in the final stage. The front development is also slowed down. Ignoring the contribution of sucrose
to sap volume (Vs = 0) causes the flux to be underestimated at any time. Initially, the effect is
weak while the sucrose concentration is low but progressively increases in magnitude. Modelling
the phloem thickness as being independent of pressure introduces only marginal differences. Al-
though the longitudinal gradient of J is slightly higher between the loading zone and the front of
the flow, the magnitude is comparable to that of the reference simulation. Because the simplifi-
cation has only a minor influence on the J profile, it may seem advantageous to avoid computing
phloem’s deformation under flow. However, the simplification also has little consequences from a
computational point of view; it does not modify the governing equations and all terms must still be
evaluated. As expected [15], the flux predicted by combining all simplications is very close to the
reference behaviour in near steady-state conditions. On the other hand, the flux in the early phases
(0:10, 1:10) is strongly affected. Those simplifications are thus best avoided when attempting to
describe phloem dynamics and rapid transitioning. Overall, none of the proposed simplifications
appeared to be sufficiently beneficial to be included in the model.

3.3 Towards realistic designs

The objective of this application is to depict how the model can help in studying the behaviour
of living trees. We simulate sap flow on the silhouette of an entire tree. In this application, a
finite element mesh is created by Delaunay triangulation from a photograph of Te Matua Ngahere
(see fig. 5). This kauri (Agathis australis) tree is the second largest in New Zealand. The height,
diameter and volume of the tree trunk are equal to 10.21 m, 5.22 m and 208.1 m3, respectively.
There are obvious limitations to this approach. The reconstructed surface is flat whereas the
phloem layer of the actual tree is 3D convex. Moreover, only the forward-facing half of the conduit
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is represented. Notwithstanding, it shows the model can operate on a geometry that is not limited
to rectangular channel and which can be directly retrieved from objects found in the natural world.

Figure 5: Mesh reconstruction of Te Matua Ngahere from a photograph (credit: D. Sellier).

Figure 6 shows the tentative profiles for sucrose concentration and pressure in the phloem.
Because of the aforementioned limitations, the profiles are not expected to be realistic. To improve
on the quality of the results would require further steps such as reconstructing the surface of an
existing tree stem in 3 dimensional space, determining the pattern of sieve cells’ orientation on
that surface, and identifying the strength of all carbon sources and sinks. Undertaking those steps
is beyond the scope of this study.

Figure 6: Phloem pressure (P), sucrose concentration (C) and water flux (J) distributions on a Te
Matua Ngahere after 12 hours.
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3.4 Orthotropic transport

In this application, the interaction between orthotropic (direction-dependent) transport and com-
peting sinks are investigated. A simulation is carried out for a plate of dimensions L = 1 m, w = 0.6
m and e = 7.5 µm. Three sources, denoted ri ∀i ∈ [1, 3], are located near the top of the conduit.
They are aligned diagonally to represent the spiral arrangement of branches (phyllotaxis). They

have identical strength with a loading flux equal to Ũ . The botton region of the plate (y < 0.1
m) is divided into two sinks, s1 on the left-hand side (x < 0.3 m) and s2 on the right-hand side

(x > 0.3 m). The unloading at sinks is equal to Ui = piŨ
C
C∗ with p1 = 0.5 and p2 = 1. The lateral

permeability is set to kT = 0.01kL.
The distributions of sap pressure (P), sucrose concentration (C) and water flux (J) after 12

hours are shown in Figure 7. A vertical pressure ridge (P > 0.95 MPa) has formed on the left side
of the conduit and a depression (0.7 MPa) has developed in the bottom right region corresponding
to s2. Like in the case of P, the C isocontours are slightly oblique, as would be expected from
the differential in sink priorities. Despite the fact that the three sources have the same strength,
sucrose concentration at each source is not equal. Sucrose gets more concentrated as one moves
leftward from one source to the next. The J pattern is opposite to those of P and C. The flow
reaches higher values on the right side of the conduit because sources on that side are aligned
with the stronger sink. In contrast, the sap flows less efficiently on the left side, which is aligned
with the weaker sink. This causes a build-up in pressure and available sucrose. The role of sieve
cell orientation on phloem transport is highlighted by strong longitudinal features in all profiles.
Lateral transport is very limited. Nevertheless, the simulated distributions reveal a remarkable
amount of interaction between conduit orientation and sink priorities.

Figure 7: Phloem pressure (P), sucrose concentration (C) and water flux (J) distributions on an
orthotropic plate after 12 hours.
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3.5 Three-dimensional surfaces

There are limitations associated to representing the phloem of real trees as a planar surfaces. Tree’s
external surface must be figuratively cut and unrolled. It involves conformal mapping and setting
periodic conditions at the lateral boundaries (for circumferential connectivity).

The alternative is to simulate transport directly on three-dimensional surfaces. Figure 8 shows
a simulation carried out with the present model on a 3D domain. Transport is simulated for
a branched system, here a tree fork. Forks are common in deciduous, urban trees. Sap and
carbohydrates flow from the primary branches and merge in the lower region, the main tree stem.
Other geometrical features particular to trees (e.g. scars, buttresses, burls) can be included in
simulations as long as a triangulated mesh can be generated to match the original geometrical
configuration. Such a mesh was not available for this application.

Figure 8: Phloem pressure (P), sucrose concentration (C) and water flux (J) distributions in a 3D
fork after 12 hours.

4 Conclusion

The model presented here takes the mechanistic description of an osmotically-generated pressure
flow and extends it to a phloem domain represented by a surface with anisotropic transport prop-
erties. The key features of the model were illustrated with applications. The model represents an
important advance towards modelling the transport process for real, living trees. The transport
equations are solved using a finite element method; each subdivision of the domain is assigned
independent properties. The number of elements is only limited by the available computational
ressource. With this approach, large-scale simulations become possible and the vast difference that
exists between sieve cell dimensions and tree size can be bridged. The finite element approach is
also particularly appropriate for describing a highly heterogenous biological material. As trans-
port parameters are defined on an element-by-element basis, virtually any distribution of hydraulic
properties and unloading rates can be represented in the model. Finally, the model can describe
transport and source/sink dynamics with a fine time scale (under a second) for periods over several
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days. The effects on transport of heterogeneous distribution of hydraulic properties, periodic load-
ing and interactions between sieve orientation and sink priority will all be investigated in future
studies.

Major challenges have to be addressed before phloem transport can be computed for real tree
configurations. The first challenge is to generate the external surface of an experimental tree,
which could be done using 3D laser scanner or terrestrial LiDAR for trees of moderate size. An-
other challenge is to identify the distribution of diameter and orientation of sieve elements in a
tree. The flow grain analogy [42] or models of auxin transport [43] could assist in approximating
the pattern of fibre orientation. A third, very significant challenge is to evaluate the individual
strength of all carbon sinks and sources within the tree over time. The emergence of experimental
techniques relying on radiotracers and Positron Emission Tomography [40, 41] will be invaluable
to monitor in vivo carbon dynamics and to inform models.

The presented model could be used to explore further additional aspects relative to the interac-
tion between growth and transport. For example, it would be interesting to research optimality in
the conflicting demands of carbohydrates for regulating transport (osmoregulation) and supplying
living tissues (growth, respiration). From both a mathematical and biological point of view, the
feedback loop between shape and transport is also of interest. On one hand, sap flow controls local
growth by supplying the building material. On the other hand, tree stem geometry, derived from
growth, impacts on where the sap flows. It has strong implications on the origin and the patterns
of shape formation in the plant kingdom. Exploring the relation between tree shape and transport
could be achieved by simulating phloem transport for virtual growing trees [28] generated using a
Level Set method [29].
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platform MeCS with the support of the University of Picardie Jules Verne. This research was
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