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Abstract

Multiaxial fatigue analysis can be categorized into several viewpoints, i.e. empirical formulae, methods based on stress invariants,
critical plane approaches, models using averages of stress quantities and energetic considerations. The aim of this paper is not to
survey the current state of knowledge concerning multiaxial fatigue but to critically examine two endurance criteria so as to prove
that a direct link can be established between them.

The firs of the two methods, proposed by Papadopoulos, has been built by exploring the fatigue of metals from the mesoscopic
scale, that is from the scale of the metal grains of a metallic aggregate. The localized plastic strains developping in some less
favourably oriented crystals is considered to be the main cause of fatigue crack nucleation. According to relationships between
macroscopic and mesoscopic quantities, this model is finall expressed in terms of the usual macroscopic stresses relative to an
elementary material volume. The second approach proposed by Froustey and Lasserre is an energetic based criterion. It has been
deduced from experimental observations concerning multiaxial endurance limit and states that crack initiation occurs as soon as
the total strain energy density exceeds a critical value.

This paper shows that the critical value of the accumulated mesoscopic plastic strain used by Papadopoulos to characterize the
endurance limit can be estimated with the global strain energy density at the macroscopic scale. Indeed, it is demonstrated that
when dealing with in-phase or out-of-phase synchronous sinusoidal constant amplitude loadings, a single analytical formulation of
these criteria can be written either with stress quantities or with energetic ones describing thus the same physical phenomenon.
The mean stress influenc is discussed; the predictions of the two approaches are similar when the material remains quasi elastic.
Another important result concerns the phase difference of the stress tensor components. Very few approaches are able to predict
the independence of the fatigue strength on the phase difference between normal and shear stresses. The two proposed criteria
reflec this phenomenon which has been experimentally observed for many metals subjected to combined bending-torsion loading.
Nevertheless, this independence with regard to the phase shift is no more effective when dealing with some biaxial stress systems
with two normal stresses. In this case the two models are consistent with the experimental results since they show a marked influence
of the phase difference.
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1. Introduction designers and several studies have been devoted to a

critical assessment of them. The aim of this paper is not

The design of structures against high cycle multiaxial
fatigue is a very important challenge for engineers.
Many criteria have been proposed in the literature for
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to survey the current state of knowledge concerning high
cycle multiaxial fatigue but to critically examine two
endurance criteria based on two very different
approaches of the fatigue crack initiation prediction:
critical plane and energy, so as to prove that a direct link
can be established between them.

Different scales of material description can be used to
study the fatigue strength of metals. Two scales will be



Nomenclature

a,b material parameters of the mesoscopic approach
n unit normal of a material plane

t time

A, B, C, D functions of the mesoscopic criterion

C macroscopic shear stress vector

E Young modulus

H, I, J, K functions of the energy based criterion

I, ., I firs invariants of the alternating and mean parts of the stress tensor

J1.0 Jo.m second invariants of the alternating and mean parts of the stress deviatoric tensor
N(@,0) normal stress on the material plane define by the angles ¢, 6

Tio, endurance limit under fully reversed torsion
1% Poisson ratio
0} pulsation

=3, macroscopic stress tensor

T loading period

T macroscopic resolved shear stress vector

T, amplitude of the macroscopic resolved shear stress

R, maximum tensile strength

S=8y macroscopic stress deviatoric tensor

E=E; macroscopic strain tensor

/4 mean value on a period of the elastic strain energy density
wd distortion part of the elastic strain energy density mean value
Ws spherical part of the elastic strain energy density mean value
B material parameter of the energy based approach

By phase difference of the stress tensor components

A mesoscopic plastic strain

¢, 0, v spherical co-ordinates of a unit normal vector for an easy elementary material slip plane
ng_] endurance limit under fully reversed tension

O'bDend,l endurance limit under fully reversed plane bending
O'Bnbend,l endurance limit under fully reversed rotating bending

2 Hmaxs 2H.a 2h, Maximum, amplitude and mean values of the hydrostatic stress

more particularly considered here: the macroscopic scale
(i.e. the usual scale of engineer or the scale of the con-
tinuous medium) and the mesoscopic scale (i.e. the scale
of the grains of a metallic aggregate). In high cycle
fatigue where macroscopic plastic strains are negligible,
fatigue theories can be distinguished according to these
two scales. Many fatigue criteria [20-23] have been pro-
posed within the macroscopic scale, i.e. the stress, strain
or energetic quantities arising in the various criteria are
those reached by engineers by means of measurement
(strain gauges) or calculation (finit element methods).
For instance, Froustey et al. [1] proposed an energy
based criterion stating that crack initiation occurs as soon
as the distortion strain energy density exceeds a critical
value; this approach, described in this paper, is called
the energy based criterion. However since fatigue is also
a phenomenon taking place at the scale of the grains of
the metal, some authors [2-7,24], following the initial
work of Dang Van [2], used a mesoscopic scale theory

that provides (according to a plasticity analysis) a precise
description of damage accumulation in some less plas-
tically resistant grains. An important contribution to this
approach is due to Papadopoulos whose last criterion is
described below.

Following the presentation of the two above men-
tioned criteria (Papadopoulos and Froustey et al.), some
experimental data obtained with in- or out-of-phase
synchronous sinusoidal constant amplitude combined
loadings are compared with the predictions of the two
approaches. Then, their analytical formulations are com-
pared to look for a link between mesoscopic and macro-
scopic energy based approaches. The mean load effect
and the phase influenc are discussed.

2. A mesoscopic scale approach

In high cycle fatigue, the macroscopic local behaviour
of a mechanical component remains most of the time



elastic even if local stress concentrations can induce
local plastic strains. Indeed, near the fatigue limit, elastic
shakedown is reached after a few cycles and conse-
quently the following material response is purely elastic.
However, at the mesoscopic scale of the order of the
grain size (or some grain sizes), the metal consisting of
crystals of random orientation is not isotropic nor homo-
geneous. Such structure induces a fluctuatio of stress
and strain among these grains. It seems then natural to
assume that in some less plastically resistant grains, the
mesoscopic stress can locally exceed the yield limit. If
the cyclic response of the plastically deformed grains is
not elastic shakedown then it can be assumed that a
crack is likely to occur. Indeed, despite that the mech-
anisms which may lead to a fatigue limit in HCF are
most of the time described as the grain boundary block-
age for cracks of length less than the order of the grain
size, some authors [2—7] consider that the elastic shake-
down of the cyclic microplasticity is another source of
a fatigue limit (which is generally lower than the one
related to grain boundary blockage of microcracks). In
this framework, the estimation of the stress and strain
field at the mesoscopic scale can be carried out, as Dang
Van [2] did, according to the Lin Taylor model.

To build an endurance criterion by means of this
model, Papadopoulos [4-6] assumed that the crystals of
a metallic aggregate follow a combined isotropic and
kinematical hardening rule when flowin plastically. It
is long known that metal grains possess some preferred
orientations (slip systems) along which plastic strain can
develop (Fig. 1). A slip plane and a slip direction on this
plane constitute each slip system. The author showed
that the accumulated plastic strain along a slip direction
on a slip plane induced by an external cyclic load
becomes nearly proportional to the macroscopic resolved
shear stress amplitude 7,, when the number of load
cycles increases indefinitely

Fig. 1. Loading path of the shear stress vector C and of the resolved
shear stress vector T on a material plane A.

DApeT, (1)

To avoid that the accumulated plastic strain exhausts the
ductility of the crystal, a critical value can be define as
a material parameter. The limitation of this mechanical
quantity leads to a condition precluding the creation of
a micro-crack within an elementary material volume.
Although a so define fatigue criterion could be of inter-
est to investigate the fatigue strength of single crystals,
it is of no use within the engineering framework since
in this context one has to prevent the creation of a fatigue
crack of the same size as the elementary volume.

This fatigue engineering criterion is then based on two
average measures. The firs one is related to the plastic
strain accumulated in all the flowin crystals within the
elementary volume:

2r 1w 2m;

1
w@ﬁ\/ o f f f(Ta«p,e,w))ZdWsinedewp 2)

P=00=0y=0

The angle y varying from 0 to 27 covers all the gliding
directions on a material plane whereas the angles ¢ and
0 varying from 0 to 2w and from 0 to 7, respectively,
cover all the possible orientations of the material plane
inside the elementary volume (Fig. 2).

But the limitation of this average measure cannot lead
to a criterion able to encompass all the experimental
fatigue knowledge. Indeed, it is now well established
that the normal stress N(¢,0) plays a key role on the

Fig. 2. Material plane A define by means of the spherical coordi-
nates 6 and @ of the normal n and direction m on the plane located
with the angle y taken from an arbitrary but fixe direction on A.



fatigue strength. A second average measure is then intro-
duced:

2r @

1 .
W=, f f N(¢,0)sin6dodg 3)
»=00=0

It is worth mentioning that this volumetric mean is
nothing else but the hydrostatic stress ;.

Finally, the multiaxial endurance criterion is define
as an inequality applied to a linear combination of the
average quantities proposed above:

\/@—l_azH,maxsb (4)

The two material parameters a, b can be identifie from
two fatigue limits, for example the fatigue limits in fully
reversed tension—compression oy, , and in fully reversed
torsion 7, [Eq. (5)]. But the reference uniaxial fatigue
limit has to be chosen according to the type of loading:
Otn_, for tension, ov,q_, for plane bending or 6Rwend_,
for rotative bending.

T
a=3—"—\3 and b=15 | (5)

O-bend,I

This criterion is not convenient for any kind of metals.
Indeed to reflec the beneficia effect on the fatigue
strength of a negative hydrostatic stress, the parameter
a must be positive. This condition leads to a restriction
of the criterion applicability. Only metals for which the
ratio TE,_I/O'EH_1>1/\/3 can be analysed through this
approach. The ratio must not also be too close to one
since the class of brittle metals is not considered in this
theory. Papadopoulos proposed to limit his criterion to
the materials verifying the condition 0.6=7;_/0y, =
0.8.

3. An energy based approach

Froustey et al. proposed in 1992 [1] an energy based
macroscopic formula based on the accumulation of the
strain energy density. The aim of this global criterion is
not to predict the propagation direction of a fatigue crack
but to predict multiaxial fatigue crack initiation.

The authors consider the mean value on a load period
T of the elastic strain energy density W define by Eq.
(6) whatever the point M in the component, where 3
and £ are respectively the tensor of stresses and the
tensor of elastic strains at the considered point function
of time.

11
W:szz”(t)E’f'(t)dt (6)

As proposed by Tsybanev [9], a complete loading cycle

is considered in order to distinguish rotative bending and
plane bending. In the high cycle fatigue regime the
material remains elastic at the macroscopic scale [§],
thus W is also the total strain energy density mean value.

For any periodic loading, the tensor of stresses 2(?)
can be considered as the sum of two tensors: the alternat-
ing part 3, (7) and the mean value 3, .. The same con-
sideration can be made for the strain tensor:
E,()=E; ()*E;jm.

For any periodic loading, Froustey et al. [1] writes the
total strain energy density as the sum of an alternating
part Wa (due to 3;,,(¢) and E, (7)) and the static part Wm
(due to %, and E;,): W=Wa+Wm, with:

T
1(1 1
Wazjzﬁ,-j,a(t)E;-)a(t)dt and Wm=§E,-j,mEg-,m (7
0

Since fatigue crack initiation is depending on the
hydrostatic stress and the alternating shear stress, Frous-
tey and Lasserre have chosen to consider separately the
spherical part Wsa of the alternating strain energy den-
sity Wa and its deviatoric part (distortion energy) Wda
Eq. (8). In the same way, they have considered the
spherical part Wsm and the deviatoric part Wdm of the
static strain energy density Wm Eq. (9).

T T
W _1=2vif, 7)dt and Wd _tvl 1, .(Hdt 8
sa="cr T 1a(0)df an AT 24(1) ®)
0 0
—2v 1+v
Wsm=ﬁ'ﬁ’m and de:?'JLm (9)
where
S ) S
2= By S 0) Ty =G S

Il ,a([) = Ekk,a(t) Il,m = 2k/c,m

1 1
J2,a(t) :ESij,a(t)Sij,a(t) J2,m :ESij,mSij,m

Several workers showed that the fatigue strength of
metallic materials is depending on the triaxiality of
stresses [10]. For Froustey and Lasserre, the triaxiality
degree of stresses is define by reference to the work of
De Leiris [11]. This is the ratio between the spherical
part of W and its totality, it is define for alternating
stresses, d7a, and for mean stresses, d7m.

Wsa _ Wsm

dTa:% dTm= Win

(10)

The influenc of the triaxiality degree of stresses is
described for a given mean load by a normalised func-
tion F varying between 0 and 1,



Wa 1 1
Wdaeq_F(dTa’ﬁ)—l_dTa'{l_ﬁ'ln[1+dTa'(eB (11)

—1)]}

where Wda,, is the equivalent distortion energy gener-
ated at the endurance limit by a loading of pure distor-
tion, i.e. torsion (d7a=0). B is a material dependent para-
meter characteristic of the material stress triaxiality
sensibility.

On the same basis, Eq. (12) gives the relation between
the static strain energy density Wm and the spherical
part of the equivalent strain energy density Wsm,, that
would be generated by a pure triaxial loading.

Wm B
Wsm,, 1-e?*

F(dTm,B) (12)

Finally, by the use of Eqgs. (11) and (12) the authors
have proposed an energy based multiaxial endurance cri-
terion as a linear relation Eq. (13) between the equivalent
pure distorsion energy density and the equivalent pure
triaxial strain energy density at the endurance limit (Fig.
3). Wda,, corresponds to the elastic strain energy den-
sity at the endurance limit in fully reversed torsion.

Wsmq ]
WS Miriax

Wda.,=Wday.s [ 1 (13)
For a static triaxial loading, the spherical part of the elas-
tic strain energy density Wsm,,, is identifie from the
elastic strain energy density at R, (maximal tensile
strength) and the function F(d7m.y.3). This can be
written as Eq. (14).

RY, 1-e” 1
2E ﬁ F(dTmuniax’ﬁ)

Ws Myiax =

(14)

The 8 parameter is determined from two fully reversed
endurance limits on smooth specimen. GRuwena_, i the

Wda

tors

unsafe

safe

, Wsm

0 Wsm_ .
triax

Fig. 3. Energy based criterion.

endurance limit in rotative bending and TE“LI the endur-
ance limit in torsion. Thus [ is solution of Eq. (15)
derived from Eq. (11). For all the materials tested by
Froustey et al. (cast irons, steels, aluminium alloys) this
parameter is varying between 0 and 5.

(O‘rotlt;end1)2_3{1—;'111[1"'1_32‘/(613_1)]}:0 (15)

to_;

4. Link between the mesoscopic scale and the
energy based approaches

The two criteria described above can be applied to any
kind of constant amplitude multiaxial loadings (sinus,
triangle, square, ...) but only synchronous sinusoidal
stress systems define by Eq. (16) will be examined in
this part. All the usual multiaxial laboratory tests can
then be considered (combined tension—torsion, biaxial
tension, ...).

2,(0=2, sin(r =)+, ij=xp.2 (16)

B is the phase difference between the (if) stress compo-
nent and a reference stress component (for example here
3. Let us notice that a sinusoidal loading is called
synchronous if the frequency of all the stress compo-
nents is the same.

4.1. Criterion formulations

4.1.1. Mesoscopic scale approach

_The evaluation of the mechanical quantities
(T3 and S imax 18 required to apply the mesoscopic
scale criterion. The firs term comes out from an inte-
gration of the resolved shear stress amplitude acting
along a slip direction on a slip plane. For loading as
given by Eq. (16), the path described by the extremity
of the shear stress vector on a material plane is an ellipse
(Fig. 4). The corresponding major and minor semi-axes
C, and C, are given by Eq. (17) where the quantities A,
B, C and D are functions of the phase difference f3; [7].

Ca,b = ( 1 7)

A2+B2+C2+D2 (A2+B2+C2+D2)2

+ (AD-BC)?

2 4

As shown in [7] the amplitude 7, of the resolved shear

stress acting along a slip direction L on the slip plane

A here under consideration is equal to the half-length of
the projection of the ellipse on the line L:

T,= N/Cﬁcoszl/ﬁCﬁsinzl// (18)



Fig. 4. Elliptic path on a plane A described by the shear stress vector extremity during a period of a synchronous sinusoidal out-of-phase bending

and torsion (or tension and torsion) loading, from [7].

where v is the angle formed between the direction of
the major axis of the ellipse and the line L (Fig. 4).

Once the value of 7, has been introduced into Eq. (2)
and after substantial analytical calculations, the average
value achieves the simple following form:

\f“<T§>=\/% (19)

[Eix,ﬁzﬁy,ﬁziz,aﬂ Efy,a+3Efz,ﬁ3Eﬁz,a—zn,azyy,acoswxx—ﬁyy)} s
_Exx,azzz,aCos(ﬂxx_ﬁzz)_zyy,azzz,acOs(ﬂyy_ﬂzz)

It is worth noting that this mean value is independent of
the phase differences relative to the shear components
of the stress tensor, i.e. f,,, B.., B,-.

For the maximum hydrostatic stress, one can reach the
following analytical formulations:

2H,max = EH,m + EH,a:>

1
2H,max = g[zxx,m + Eyy,m + 2zz,m] (20)
+ l [ 2)2cx,a+2}2/y,a+E§z,a+22xx,a2yy,aCOS (ﬁxx_ﬁyy) 12
3 +22xx,azzz,acos (ﬁxx_ﬂ ZZ)+22yy,aEZz,aCOS (ﬁyy_ﬂ zz)

4.1.2. Energy based approach

If one consider the mean value over a loading period
of the distortion elastic strain energy density due to the
alternating part of the stress tensor Wda (see Eq. (8)), it
can be readily proved that for any out-of-phase

synchronous sinusoidal loading Wda is define by Eq.
(21). The distortion elastic energy density corresponding
to the mean (static) stresses Wdm is given by Eq. (22).

1+v
Wda = <6Ev) [Efx,a + E)zzy,a + Egz,a + 3 (2)2/2,3. + E}rz,a

+ E)zry,a) - Exx,azfyy,acoS(ﬁxx _ﬁyy) - Exx,azfzz,ac‘os(ﬁxx (2 1 )
_ﬁzz) - 2yy,az’zz,acos(ﬁyy _ﬁzz)—]

1+v

de = <3E> [E)zcx,m + E}2’)/,1”0 + Egz,m - Exx,mzyy,m (22)

- Eyy,mz’zz,m - Ezz,mz’x)c,m + 3 (Egcy,m + 2)zcz,m + 2}2/z,m)—]

Moreover the spherical part of the strain energy density
is given by:

T

1-2v|1
WS—@{TJI%’a(Z)dI'FI%’m} (23)
where
I%,m = (Exx,m + Eyy,m + Ezz,m)2 (24)
and
I} .(0)=[2,, sin(0i—B,)+2,, sin(wr—pB,,) (25)

+ Ezz,aSin(a)t _ﬁzz)] ?

After some calculations, the spherical parts of the static
and alternating strain energy density, respectively Wsm
and Wsa, are:



1-2v 1 =2v
Wom=" =" (Zramt Syt Zee)? (26)
1-2v1
=" 2 2
Wsa= oF 2[(2xxa+2yysﬂ+zzz»a)

+ szx,azyy,acos (ﬁxx _ﬁyy) + 2z’xx,azzz,aco s(ﬂxx _ﬁzz) (2 7)
+23,,.2.. .c08(B,,— B.)J

4.2. Application of the two criteria to sinusoidal
loadings

The formulae giving the predictions of the two criteria
for different sinusoidal loadings (usually used for fatigue
tests) are shown in Table 1. All these predictions are
illustrated in Fig. 5 for the 30NCD16 quenched and tem-
pered steel whose characteristics are: E=200 GPa,
v=0.3, R,,=1200 MPa, Rp, ,=895 MPa, 6, =560 MPa,
Oroend_ =058 MPa, 7;_ =428 MPa. For the predictions
shown in Fig. 5, the identificatio of the material para-
meters a and b of Papadopoulos criterion is carried out
by means of two fully reversed endurance limits: torsion
T, and rotative bending OpRwena_,; according to the
Papadopoulos classificatio this steel is hard because the
ratio 7p_ /072, =0.76 lies between 0.6 and 0.8. The value
of the f parameter for this steel is 0.96.

For biaxial stress state the predictions are shown in
Fig. 6 for the 25CrMo4 steel [15] whose characteristics
are: R,=780 MPa, Rp,,,=660 MPa, oy, =361 MPa,
Tio_, =228 MPa. According to the Papadopoulos classi-
ficatio this material appears as a hard steel, its ratio
Tio_/On_=0.63 being just at the low limit of the accept-

Table 1

able interval [0.6, 0.8]. Since ORwena_, is unknown for
these data, the 3 parameter relative to the material stress
triaxiality sensibility is identifie by means of 6y, ,. This
leads to a 3 value closed to zero.

One can notice that both criterion predictions are
closed together especially if the material is not loaded
over its static yield stress. They are sensitive to the phase
differences f3; only for biaxial stress state with two nor-
mal stresses as shown in Fig. 6. These points will be
discussed later. For biaxial stress state it has to be noted
that the reference uniaxial endurance limit used for the
mesoscopic criterion is oy, .

4.3. Set up of a direct link for synchronous sinusoidal
loadings

As Wdm represents the deviatoric part of the static
strain energy density, it will not appear in the link
between the two approaches since it is assumed in Papa-
dopoulos theory that the mean part of the deviatoric ten-
sor has no effect on fatigue limit.

Let us focus then on the other elastic strain energy
components whose analytical expressions have been pre-
viously given.

First of all, concerning the average measure \/@ of
the macroscopic resolved shear stress amplitude T, used
in Papadopoulos criterion and given by Eq. (19), it
appears from expression (21) definin the distortion elas-
tic energy density Wda due to the alternating part of the
stress tensor that a simple relation relates these two
quantities:

1+v B 2
Weda= 2E(m) (28)

Predictions of the energy based criterion and of the mesoscopic criterion for different stress states®

Stress tensor components (non nul values) Energy based criterion predictions Mesoscopic criterion predictions

Uniaxial stress states

zi/'(t)zzxr,ln+2xx,a5inwt E.zx.a Enz(x.m<1
—t =

(Gll%!bend_] )2 Rzm

Multiaxial stress states
Pure torsion

1 a
= A + =
\/;Exx,a 3 (Exx.a Exx,m) b

3, (=2 wt2,, Sinot 22 32 m 2 ,.=b
(™) R
2(14v) F(d T yniaxsB)

Combined bending and torsion or combined tension and torsion

Exx(t)zzxx,n1+2xx,aSin(wt _ﬁxr) sz,a Enz(x.m
2 (D=2t 2 sin(@1 =)

Tension-compression on thin wall tube with internal-external pressure
2O et Z SO~ B) o Ziem
4%
(CTE»:bencl_])zJ2 RLK?

=1

(Gg)tbendil )?H? RLP N

=1

2y1v(t)=2y1v.n1+2y1v.aSin(wt_ﬁvy)

\/ — 23, fﬁ(EmﬁEW) b

\/szr a+2j%y,a_2n,a2yy.acoS(ﬁn_ﬁyy)

%<zm,‘n+zw,m+ vzﬁx,i.+2ey,i.+zzn,i.z}y,acoswn—ﬁ}»)Sb

* H, L, J, K are function of the X, components and given in Appendix A.
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Fig. 5. Comparison of the two criterion predictions for different loadings on smooth specimens in 30NCD16 quenched and tempered steel (dark

marks are experiments from Dubar [12]).
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Fig. 6. Comparison of the two criterion predictions versus the phase
difference in biaxial tension on smooth specimens in 25CrMo4 steel
(dark marks are experiments from Mielke [15]).

The comparison of the two approaches can go on by
studying the maximum value of the hydrostatic stress
S max and the spherical part of the elastic strain energy
density. More precisely, from the relations (20), (26) and
(27) one can readily show that:

1-2v32
Wsa=— 22& (29)
and

1-2v?
Wsm—EEHm (30)

Finally, from these relations (28), (29) and (30), the
Papadopoulos criterion (4) can be expressed by means
of the energetic parameters Wsa, Wsm and Wda:

2F 2F
\/Wdaw+a\/3(1_2v)[sgn(ll,m)\/Wsm (€29)]

+ 2Wsa]5b

or in the same way:

Wda+a'l sgn(l, )\ Wsm+\2Wsal=<b' (32)

where
, 1+v ,_ b
a —a\/3(1_2v) and b _\/E (33)
1+v



with

+1 if x>0
sgn(x)=4 0 if x=0
-1 if x<0

4.4. Discussion

4.4.1. Hypothesis agreement

Eq. (28) proves that the plastic strain accumulated in
all the flowin crystals within the elementary volume
can be related to the alternating distortion energy mean
value. In other words, an energetic integration carried
out over a loading cycle leads to similar results than an
integration of the resolved shear stress amplitude over
each possible slip direction of every material plane pass-
ing through a point of a loading component. This corre-
lation seems similar to the one made by Novhozilov [13]
who already noticed (for monotonic loading) that the
mean square of the shear stress over every material plane
passing through a point of a loading component is equal
to 2/5 J, where J, is the second invariant of the deviatoric
part of the stress tensor. To deal with endurance in
fatigue, some authors (Simburger [14] and Grubisic [16])
proposed a criterion coming out from this relationship.
However, some non-justifie assumptions lead to
erroneous predictions [7]. For example, the influenc of
a static shear stress on the torsion fatigue limit was pre-
dicted to be as strong as the effect of a static normal
stress on the bending fatigue limit.

4.4.2. Mean stress sensitivity

Most of the tests in the high cycle fiel are carried
out by applying loads with low mean values, that is, in
condition where the material remains elastic at the
macroscopic scale. There is no (or a few) hardening (or
softening) mechanism activated. In such case, the predic-
tions of the two criteria are close together and are always
in good agreement with experimental data. However, if
high mean stresses are applied, some differences
between the predictions of the two formulations are
observed.

When the mean value is a shear stress mean value,
the mesoscopic approach does not predict any influenc
of the mean load on the fatigue strength whereas the
energetic based approach takes it into account. For high
cycle fatigue (more than 10° cycles) the independence
of the fatigue limit in cyclic torsion with respect to
superimposed mean torsion has been shown by Sines
[17] who analysed 27 metals. Nevertheless this work has
been used by Papadopoulos et al. [7] to confir that this

mean stress independence is valid as far as yielding of
the specimen is not reached, that is for 7,,,=7,+7.,<7,
where 7, is the yield limit value in torsion. The predic-
tions of the energy based criterion are not inconsistent
with this condition (Fig. 5). But the literature is too poor
in high cycle fatigue data in torsion with a maximum
shear stress significantl higher than the yield limit to
critically discuss the accuracy of the two criterion pre-
dictions with high mean shear stress.

When the mean value is a normal mean value, the two
models are built to reflec the dependence to static loads
(for simple and combined loadings); this is in agreement
with available experiments [7,17]. It is important to
notice that when loads with high mean levels are
imposed, an elastic shake down of the material must
occur to reach fatigue limit (i.e. infinit life); the material
tends then to recover a purely elastic response after a
few cycles. Let us also mention another difference
between the two criteria when the mean value is nega-
tive: mesoscopic approach shows an open safety area
whereas the energetic based approach shows a close one.

4.4.3. Phase shift sensitivity

One common and striking feature of these two models
is the phase difference influenc on criterion prediction
for various stress states. As can be seen in the relations
(19-22), (26) and (27) the mechanical quantities used in
the criteria formulations are independent with respect to
the phase difference f,,, .. and 3. related to the shear
components of the stress tensor. It means that the two
approaches predict no influenc of the phase shift on the
fatigue strength when out-of-phase bending and torsion
or out-of-phase push—pull and torsion loads are con-
sidered (see Table 1). Though this independence has
been experimentally observed by many authors
[1,14,18], the widespread and popular fatigue criteria
such as Crossland and Dang Van are unable to reflec
this fact [19]. The proposals discussed in the paper are
the few which deal properly with the phase effect on
fatigue resistance for combined bending torsion loads.
This common good predictive behaviour is all the more
amazing because the two models have been built accord-
ing to different approaches (i.e. mesoscopic and
energetic).

The independence property with regard to the phase
shift is only valid for combined bending (or tension) and
torsion loads. For out-of-phase biaxial normal stress sys-
tems for example, the phase angles f3,, appears in the
criteria formulations (see Table 1). There are some
experimental evidences of the marked influenc of the
phase difference between two normal stresses. For
instance, Mielke [15] showed on a 25CrMo4 steel and
for a tension—compression and internal loading that the
fatigue strength for the phase shift 3,=180° is 33%
lower than in the proportional conditions f3,,=0°. These



observations are clearly reflecte through the two models
as shown in Fig. 6.

5. Conclusions and prospects

Two high-cycle fatigue criteria are presented and
compared in this paper. They are based on two different
approaches: the macroscopic criterion proposed by Frou-
stey et al. is built according to energetic considerations
while the second criterion proposed by Papadopoulos is
based on a mesoscopic analysis of fatigue damage. Both
models take into account proportional and non pro-
portional multiaxial loadings. Moreover, in the case of
out-of-phase, synchronous, sinusoidal stress systems
simple analytical expressions are obtained. Thanks to
these analytical formula, it has been proved that a direct
link can be established between the energetic quantities
of Froustey criterion and the average measure (72) of
the macroscopic resolved shear stress amplitude 7, and
the hydrostatic stress 2 . 0f Papadopoulos work. This
means that the upper-bound value of the accumulated
plastic strain accumulated in all the flowin crystals
within the elementary volume, V(72), proposed by Papa-
dopoulos is simply related to the distortion elastic energy
density Wda due to the alternating stresses. One can then
draw the conclusion that an energetic integration carried
out over a loading cycle is similar to an integration of
the resolved shear stress amplitude over each possible
gliding directions of every material planes passing
through a point of a loading component. This conclusion
is closed to the one made by Novhozilov [13]: for mono-
tonic loading the mean square of the shear stress over
all material planes at a point is proportional to J..

One striking feature of these two approaches is that
they predict no influenc of the phase shift on the fatigue
strength when out-of-phase bending and torsion or out-
of-phase push—pull and torsion loads are considered.
This theoretical result is in good agreement with some
experimental studies. Nonetheless this independence
with regard to the phase shift is no more effective when
dealing with biaxial stress systems. Indeed, the two mod-
els predict a marked influenc of the phase difference
between two normal stresses. This strong dependence
has been experimentally observed but still need to be
confirmed

The two models present different dependence to the
loading shape. For a proportional loading the average
values WT2) and Siimax Of Papadopoulos criterion
remain unchanged whatever the loading shape with time
(sinusoidal, triangle, square) could be. The energy esti-
mation requires though an integration with time which
induces a dependence of this quantity over the loading
shape. Since this influenc has not been widely studied
in the scientifi literature about high cycle fatigue, the
authors will draw no conclusion on this point. For

f /
/

0.2 0.4 0.6 0.8 1
(torsion/rotative bending) fully reversed endurance limit ratio

0

Fig. 7. Evolution of the B parameter of the energy based criterion
versus the ratio rg_]/aﬁ,‘bend_] for v=0.3.

instance, Dietmann et al. carried out fatigue tests on a
ST35 steel in biaxial tension [25] with different wave
forms but only under combined loadings and non-pro-
portional loadings, not under simple loading such as
push—pull. Experiments have to be done in the high cycle
regime to investigate the loading shape influenc for
simple and proportional loadings. For non proportional
loadings the two criteria are loading shape dependent;
this is in agreement with experiments in low cycle
regime but there are not enough experimental data for
long life to quantify the accuracy of the criteria.

Finally, let us point out too that the applicability of
the Papadopoulos criterion is restricted to a class of
material for which the inequality ‘L’E)_l/agn_l>1/\/3 is
observed. More precisely by considering that the model
can not be applied to brittle materials, only ‘hard metals’
define by 0.6=7;,_/op, =0.8 are concerned by this
approach. The empirical Papadopoulos’ classificatio
according to the value of the ratio 7g_ /0%,  is linked
with the B parameter of the energy based approach.
Indeed, B is the solution of Eq. (16) depending on the
ratio Ty /ORwena_,- Fig. 7 illustrates the evolution of j3
versus this ratio which is not very different from the
Papadopoulos ratio for metallic materials. This figur
shows that B is varying between 0 and 4 when
Tio_/Ofowend_, 18 Varying between 0.6 and 0.8. To deal
with ‘mild steels’, 0.5=t_/og, ,=0.6, Papadopoulos
[4] already proposed a critical plane type criterion still
based on the mesoscopic approach. In a future study, the
authors will show that this last criterion can also be
related to energetic quantities estimated from a
material plane.

Appendix A

The different variables H, I, J, K used to simplify the
presentation of the equations in Table 1 are:
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— in tension compression on thin wall tube with internal
external pressure:
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