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Abstract. This paper presents briefly describes the state of the art of
accelerating image processing with graphics hardware (GPU) and dis-
cusses some of its caveats. Then it describes GpuCV, an open source
multi-platform library for GPU-accelerated image processing and Com-
puter Vision operators and applications. It is meant for computer vi-
sion scientist not familiar with GPU technologies. GpuCV is designed
to be compatible with the popular OpenCV library by offering GPU-
accelerated operators that can be integrated into native OpenCV appli-
cations. The GpuCV framework transparently manages hardware capa-
bilities, data synchronization, activation of low level GLSL and CUDA
programs, on-the-fly benchmarking and switching to the most efficient
implementation and finally offers a set of image processing operators
with GPU acceleration available.
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1 Introduction

Graphical processing units (GPUs) are powerful parallel processors mostly ded-
icated to image synthesis. They have made their way to consumers PCs through
video games and multimedia. Recent graphics cards generation|] offer highly par-
allel architectures (hundreds of processing units) with high memory bandwidth
and are close to reach TeraFLOPS peak performances while CPUs barely reach
50 GigaFLOPS, but they suffer from complex integration and data manipulation
procedures based on dedicated APIs. While they have become the most power-
ful part of middle-end computers, they opened a path to cheap General Purpose
processing on GPU (GPGPU).

In this paper, we discuss the benefits and issues related with GPU for image
processing. Then we describe GpuCV, the open source framework we propose
for GPU-accelerated image processing and computer vision, which is an exten-
sion of OpenCV[1], a popular library for developing interactive computer vision
applications.

The GpuCV framework is meant to transparently manage hardware capabil-
ities across card generations, data synchronization between central and graphics
memory and activation of low level GLSL and CUDA programs.
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It performs on-the-fly benchmarking and switching to the most efficient im-
plementation depending on operator parameters.

Finally, we introduce the set of image processing operators with GPU ac-
celeration available in GpuCV and we discuss how to move existing OpenCV
applications to GpuCV.

2 GPU Processing

2.1 GPU technologies

Graphics processors are meant to generate high quality images from three-
dimensional models. Their massively parallel processing pipeline offers great
abilities for algebra operations and native handling of floating point numbers,
vectors and matrices. Their host graphics card holds dedicated fast memory.
General purpose computing with GPU is possible at the cost of reformulating
common algorithms to fit the processing pipeline, which may or may not be easy
depending on the algorithm.

Since 2002, GPUs have become programmable pipelines with vertex and
fragment shaders written in Cg (C for Graphics)[2], GLSL (OpenGL Shading
Language)[3] and HLSL (High Level Shading Language). While these languages
require compiling and linking GPU and CPU programs, the meta-programming
approach in Sh[4] and Brook GPUJ[5] is meant to hide difference between CPU
and GPU.

In the end of 2006, NVIDIA released a new architecture named CUDA (Com-
pute Unified Device Architecture)[6] and AMD/ATT released CTM (Close To
Metal)[7], which both enhance GPU control.

All this programming languages have helped turning GPUs into data stream
processors, so leaving the central processing unit (CPU) available for other tasks.
The challenge consists of creating shaders to achieve the expected processing,
while working around their intrinsic limitations. Although, they are not meant
for image processing and remain hard to use for image processing and computer
vision scientists.

2.2 Previous work on GPU computing for image processing

The 1st publications we are aware of that describe image processing with con-
sumer GPU are dated 1999 [8] and open source libraries became available in
2003[9]. Colantoni[10] used GPU programming for color image processing. Jargstorff
[11] proposed a framework for image processing on GPU that was implemented
byNocent[12]. The OpenVidia library [13] by Fung et al. offers a library of frag-
ment shaders and a framework for computer vision and image processing. In
[14], Moreland and Angel used a fragment shader to compute a Fast Fourier
Transform on GPU four times faster than on CPU. Strzodka presented a GPU-
accelerated generalized bi-dimensional distance transform in [15] and motion
estimation[16]. The GPUGems books serie[17] discusses image processing, in-
cluding image filtering(color adjustment, anti aliasing), image processing in the
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OpenVidia framework, and advanced GPGPU programming Gaussian computa-
tion. Lately, GPU4Vision[18] achieved real-time optical flow and total variation
based image segmentation on GPU.

3 GPU caveats

General purpose computing with GPUs implies some challenges and technolog-
ical issues.

3.1 Platform dependency

GPU technologies are evolving rapidly and rely on dedicated interfaces meant
for parallel image rendering. Every year, a new generation of graphics chipset is
released with new features, extensions and backward compatibility issues such as
shader model version, image formats available (double float precision), NVIDIA
CUDA or ATI CTM support.

3.2 Data transfers

Mixed processing on CPU and GPU implies data transfers between the central
memory (CPU RAM) and the video memory (GPU RAM), which can turn into
a bottleneck. Running several operators consecutively on either processor helps
reducing the transfer cost, so enhancing acceleration. At times, an operator may
be slower on the processor that holds data in memory, but processing locally
avoids data transfer and so may achieve better overall performance.

3.3 Sequential to parallel processing

While parallel algorithms for image processing, that process each pixel inde-
pendently, can be fairly easily implemented on GPU, sequential algorithms are
well suited for the CPU architecture. Some sequential algorithms can hardly be
transposed efficiently on the GPU parallel architecture. Global image computa-
tion (histogram, labeling, distance transform, recursive filters, sum array table)
requires ad hoc implementation. Recent technology such as CUDA helps but still
requires tricky tuning for efficient acceleration[19].

3.4 Varying relative GPU/CPU performances

Activating a code fragment on GPU requires a code dependent activation delay,
so processing small images is not accelerated with GPUs. Indeed calling a pro-
gram on the GPU has an overhead cost (about 100 micro-sec for CUDA, 180
micro-sec for OpenGL and GLSL) that can be more than the CPU operator
execution time. Furthermore, hiding the latency of the GPU memory requires
processing some minimum amount of data to increase the number of consecutive
threads that are executed in parallel. Performance of operators may also vary
depending on data size and format. A GPU routine may run faster with large
images than its CPU counterpart, but slower with small images.
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3.5 API restrictions

The output of a fragment shader is write-only, i.e. it cannot be read by that
shader, so recursive algorithm mist implemented with successive calls of a shader.
NVIDIA CUDA work around theses limitations at the cost of a more complex
data format management. Indeed, CUDA achieves direct access to the graphics
card so pixel format conversions previously done by the graphic drivers now must
be handled at the application level[19].

4 GpuCV approach

We propose GpuCV as an open source library and framework for image process-
ing and computer vision accelerated by GPU. It is meant to support developers
that may be familiar or not with the GPU technology in achieving GPU accel-
eration by:

— offering a set of GPU optimized routines in replacement of some OpenCV
library routines.

— transparently comparing the CPU and GPU implementations and automat-
ically switching to the fastest one.

— hiding platform dependencies and data transfers.

We describe here after the main GpuCV framework features, namely the ap-
plication programming interfaces(API) it relies on, the data management and
implementation switching mechanisms and finally the available facilities for in-
tegration into existing applications.

4.1 Programming technologies

GpuCV supports an OpenGL-GLSL and a NVIDIA CUDA API, in order to get
the best from each. OpenGL and GLSL have been widely used and feature high
compatibility with most hardware (AMD/ATI, NVIDIA, Intel, S3) and OS. The
OpenGL-GLSL API uses general OpenGL rendering features such as rendering-
to-textures, depth buffer, mipmapping as well as vertex/geometry /fragment shaders
for custom operations. It allows 2D /3D contents computing and makes abstrac-
tion of the data types and formats. The GpuCV-CUDA API relies on the CUDA]]
library which allows recursive operators but is currently compatible only with
recent NVIDIA graphics cards. Most operators supplied with GpuCV have been
developed with both API for compatibility purpose.

GpuCV does not use meta-programming languages such as BrookGPU to
stay closer to the hardware and have full control of memory management and
graphics cards features.
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4.2 Data management

Processing data with either CPU or GPU requires storing data in central memory
and/or in graphics memory. Furthermore data may have to be available in several
formats in either memory, e.g. as Ipllmage or CvMat for OpenCV in central
memory, or as texture of buffer for OepnGL and array or buffer for CUDA in
graphics memory. Handling data potentially stored in multiple locations and
formats requires synchronizing copies and enforcing read only access to input
images. GpuCV saves developers the burden of managing data with a unified
data container that describes the data format of an image and allows transparent
data handling. In case the data location or format does not match the selected
implementation, the image is transparently copied into the required location and
formats.

In case data is available from several locations, a 'smart transfer’ option can
estimate all possible transfer time costs and select the fastest one, based on
previously recorded benchmarks. Finally, GpuCV operators know about input
and output images, so writing to an output image discards all the other existing
instances for data consistency sake.

4.3 Automatic switching a GpuCV operator

A GpuCV enhanced application should run on a CUDA enabled platform, or an
older GLSL only platform or even a low end CPU only platform. So a GpuCV op-
erator may include up to three implementations respectively based on OpenCV,
OpenGL-GLSL and NVIDIA-CUDA. Obviously, the execution time of each im-
plementation depends on the algorithm, on the input parameters such as image
size and format, on the optional filter parameters and the host hardware plat-
form. So performance depends on too many parameters to be easily predicted
and no implementation can be statically chosen as the fastest for any operator.
Second, they require data in associated memory (central or graphic memory) and
data transfer might be done according to the previously used implementation
and add more complexity to already complex source code. We have developed
a dynamic switch mechanism that works heuristically based on local implemen-
tations’” benchmarks and estimated transfer times. We have implemented this
mechanism internally to each GpuCV operator to transparently switch between
the CPU and GPU implementations.

Switch implementation: The switch mechanism performs in the following
three modes:

- Benchmarking mode - Collects, on the fly, processing times for all implemen-
tations.

- Switch mode - Chooses best implementation to call depending on previously
recorded benchmarks.

- Forced mode - User can force the switch to call any of the implementations.
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Compatibility of the workstation hardware with an implementation is re-
spected by the switch in all modes. Also to ensure full compatibility with the
native CPU operator we synchronize input data to CPU memory when required.

Benchmarking mode runs until we get significant information about all im-
plementations according to their input parameters such as image properties and
optional operator parameters. We use SugoiTracer[20] to collect the statistics
(such as average processing time, standard deviation, total time...). The mecha-
nism leaves benchmarking mode to go to switch mode when the standard devi-
ation time shows stable and coherent values.

In the switch mode, it calculates the calling cost for each implementation
using the processing time and eventual data transfer time depending on the
data memory location. Then it calls the fastest implementation.

Finally the switch can be forced by the user to call a desired implementation
for any operator. It can be used to select an implementation for show case or
benchmarks as well as to avoid the switching cost for small images.

Converting all OpenCV operators to GpuCV auto-switch operators:
GpuCV supplies several interfaces to directly access all the GPU implementa-
tions from GpuCV-GLSL and GpuCV-CUDA as well as a switching interface
which contains all the switch operators. The switching interface is self generated
using OpenCV functions’ declarations and uses dynamic library loading mecha-
nism to find all GpuCV available implementations. Knowing the auto-switch has
an observed mechanism time of about 350us, which is negligible for large images
but become too costly for really smaller ones. As all the GpuCV interfaces re-
spect OpenCV original functions declarations, developers can either directly call
implementations at the cost of some manual optimization and synchronization or
simply call the auto-switch operators to ensure that the fastest implementations
is called.

4.4 Integration

GpuCV has been designed to be fully compliant with existing OpenCV applica-
tions, and thus on multiple OS such as MS Windows XP and LINUX.

Porting an OpenCYV application to GpuCV: As previously described, the
smart data transfer mechanism transparently handles multiple data locations
and formats and the automatic switch mechanism select the most efficient im-
plementation available. This makes it possible to smoothly and easily integrate
GPU acceleration routines for the GpuCV library with CPU based routines from
the OpenCV popular library[1]. Actually, the highest level interface to GpuCV
is a set of routines that are meant as replacement for OpenCV native routines.
Porting an existing OpenCV application to GPU now consists of changing a few
header files, linking libraries and adding manual synchronization when image
data are accessed without using OpenCV functions.

More advanced manual tuning of GpuCV can be achieved whose explanation
are described in on-line documentation.
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5 Results

This section present our results, all source code and benchmarks are available
on-line. Testing hardware was an Intel Core2 Duo 2.13 Ghz CPU with 2GB of
RAM and NVIDIA GeForce GTX280 GPU with 1GB of RAM.

5.1 Benchmarking tools

GpuCV integrates some embedded benchmarking tools[20] that are used to
record data transfer times and processing time for all GPU and CPU implemen-
tations. It can be used to benchmark a native OpenCV application and return
statistics about all the OpenCV calls depending on input parameters such as
data size, format and operators options such as filter size of filter mode.

5.2 Point to point operations

GpuCV includes numerous point to point operations for arithmetic, logic, com-
parison and math functions. Their implementations are straight forwards and
will not be discussed here.

5.3 Neighborhoods operations

GpuCV supplies neighborhoods operators for morphology and edges detection
such as dilate, erode, sobel, laplace, canny and smooth. They have similar im-
plementations except GpuCV-CUDA versions that use shared memory as cache
for fast access[6]. Table 1 shows some results.

Table 1. Benchmarks for some neighborhood operators.

Operator Erode/Dilate 3 Sobel

Image Size OpenCV | GpuCV-GLSL | GpuCV-CUDA | OpenCV | GpuCV-GLSL | GpuCV-CUDA
2048 x 2048 30ms 2.68ms 1ms 49.2ms 13.7ms 1.1ms
1024 x 1024 | 7.45ms 860us 390us 13.5ms 3.6ms 400us

512 X 512 4.7ms 342us 160us 3.7ms 1.1ms 176us

256 X 256 1.9ms 224ps 115us 915us 413us 117us

128 x 128 122ps 211pus 110us 240us 245us 113us

5.4 Sequential algorithm

The Deriche[21] filter is an edge detection filter. It performs a 2 ways smoothing
on X and derivation on Y, 2 ways smoothing on Y and derivation on X and
finish by a local extrema calculation. Deriche is more efficient than canny or
sobel filters but requires more calculation so it is often used in real time appli-
cations. The processing of one line/row is sequential but all the lines/rows can
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be processed in parallel so we have decided to port Deriche to GpuCV-CUDA.
The default algorithm for smoothing and derivation is to scan line Xn from left
to right and store results into XnL, and from right to left into XnR, then it
sums both temporary lines XnL and XnR into Xn_Sum. XnL and XnR calcula-
tions are independent and can be done in parallel using different thread IDs. To
avoid wasting memory with temporary buffers (XnL and XnR) and waiting the
calculation end to sum results, we performs a two steps pass for X:

— For left to right processing:

o i € [0,width/2] : Xn_Suml[i] = XnL]i]

e | = width/2 : we synchronize threads

o i € [width/2, width] : Xn_Suml[i] = Xn_Sum[i] + XnL[i]
— For right to left processing:

o j € [width,width/2] : Xn_Suml[i] = XnR]i]

e | = width/2 : we synchronize threads

o i € [width/2,0] : Xn_Suml[i] = Xn_Suml[i] + XnR][i]

To optimize memory access, only row are processed so it requires the transposed
input images. As smoothing Y is independent from from smoothing X, a single
kernel process simultaneously Img and Transposed(Img) depending on the thread
IDs. Derivations are identically handled and local extrema calculation is done
by a simple kernel. As we have only a few threads running (2 per lines + 2
per rows), the GPU is not in full charge for small images. Table 5.4 shows real
improvements up to 100 times so GPU based Deriche filter is now able to perform
on large images in real time.

Table 2. Benchmarks for Deriche

Image Size Cimg | GpuCV-CUDA | Improvement factor
2048 x 2048 | 1997ms 19.35ms 101

1024 x 1024 | 397ms 6.58ms 60

512 x 512 89.2ms 3.625ms 24

256 x 256 26.5ms 2.907ms 9

128 x 128 7.07ms 2.8ms 2.5

5.5 Object detection

As a further example, we try to implement on GPU the object detector algo-
rithm described by Viola[22]. A trained classifier (namely a cascade of boosted
classifiers working with haar-like features) is applied to the image’s region of
interest, and return a position when the region consist of a Haar-like feature.
Viola’s object detection algorithm involves two operations, Summed Area Ta-
ble(SAT) and Local Area Sum. We implemented both on GPU, SAT based on
CUDPP library[23] and the local sum by a simple kernel. Refer to Table 5.5 for
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results. So, our next step would be to implement CvHaarClassifierCascade
tree data structure on GPU memory by organizing the dispersed data of a tree
into a continuous data on GPU and remapping the data pointers. Half of the
processing time of OpenCV operator is spent in local sum calculation. Also the
transfer time which is wasted in transferring data from CPU to GPU is covered
by the gain from SAT. With this implementation, we expect to get better results
than OpenCV.

Table 3. Benchmarks for SAT and LocalSum

Operator SAT LocalSum
Image Size | OpenCV | GPUCV | OpenCV | GPUCV
2048 x 2048 | 78.7ms | 27.7ms | 31.8ms 1.4ms
1024 x 1024 | 22.5ms 5.4ms 7.8ms 893us
512 x 512 4.9ms 2.7ms 1.9ms 198us
128 x 128 142 ps 2.4ms 133us 105us

6 Conclusion

In this paper, we presented benefits and issues of using GPGPU for image pro-
cessing. We described our open source framework for image processing and com-
puter vision, which is an extension of the Open CV library. It is meant to help
scientist and developer porting their existing applications or new algorithm GPU
without falling into low level GPU complexity. It offers many features to trans-
parently manage hardware capabilities, data synchronization, GLSL and CUDA
support, on-the-fly benchmarking and switching mechanisms and finally offers a
set of image processing operators with GPU acceleration available.

We shown that GPU-acceleration depends from many factors namely the
algorithm to optimize, the image properties and format, the hardware and the
optional filter parameters, so it is hard to predict the performance on all systems.
Furthermore, some cases remain faster on CPU than GPU so we introduce a
dynamic mechanism to select the most efficient implementation and reduce GPU
usage penalties. Future works will consist on adding more operators to the library
and improving integration with other image processing systems.

As an open source project, we encourage the community to use and contribute
to the library. GpuCV sources, benchmarks and informations are available at:
https://picoforge.int-evry.fr/projects/gpucv/.
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