
HAL Id: hal-01372682
https://hal.science/hal-01372682v1

Submitted on 13 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

BFT-Bench: Towards a Practical Evaluation of
Robustness and Effectiveness of BFT Protocols

Divya Gupta, Lucas Perronne, Sara Bouchenak

To cite this version:
Divya Gupta, Lucas Perronne, Sara Bouchenak. BFT-Bench: Towards a Practical Evaluation of
Robustness and Effectiveness of BFT Protocols. 16th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems (DAIS), Jun 2016, Heraklion, Crete, Greece.
pp.115-128, �10.1007/978-3-319-39577-7_10�. �hal-01372682�

https://hal.science/hal-01372682v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

BFT-Bench : Towards a Practical Evaluation of
Robustness and Effectiveness of BFT Protocols

Divya Gupta∗, Lucas Perronne∗, and Sara Bouchenak†

∗Univ. Grenoble Alpes, LIG Grenoble, France
†Univ. Lyon, INSA Lyon, LIRIS, Lyon, France

Divya.Gupta@imag.fr,Lucas.Perronne@imag.fr,Sara.Bouchenak@insa-lyon.fr

Abstract. Byzantine Fault Tolerance (BFT) is an interesting means to
make computing systems resilient in presence of failures and attacks.
That being said, designing and implementing BFT protocols is a hard
and tedious task. This first comes from the inherent complexity of de-
signing BFT distributed protocols, reasoning about their correctness,
and implementing the software prototype of the protocols in a consistent
and efficient way. Another reason that makes BFT protocols hard and
error prone is the lack of tools for testing and evaluating protocols imple-
mentations in various and realistic settings. Furthermore, BFT protocols
differ in many aspects, ranging from the faulty behaviors they handle,
to the communication patterns and cryptographic mechanisms they ap-
ply. Thus, a comprehensive benchmarking environment is still missing to
easily analyze and compare the effectiveness and performance of these
protocols. In this paper, we present BFT-Bench, the first benchmark-
ing framework for evaluating and comparing BFT protocols in practice.
BFT-Bench includes different BFT protocols implementations, their au-
tomatic deployment in a distributed setting, the ability to define and in-
ject different faulty behaviors and workloads, and the online monitoring
and reporting of performance and dependability measures. The experi-
mental results of the evaluation of BFT-Bench show the effectiveness of
the framework, easily allowing an empirical comparison of different BFT
protocols, in various workload and fault scenarios.

Keywords: Fault Tolerance; Byzantine Faults; Fault Injection; Perfor-
mance; Robustness; Benchmarking

1 Introduction

Cloud computing environments are now increasingly common. With their expan-
sion, unpredictable events such malicious attacks, network delays, data corrup-
tion, and other types of Byzantine faults require specific fault tolerance mech-
anisms. Byzantine Fault Tolerance (BFT), based on state machine replication,
consists in replicating the critical service in several replicas running on differ-
ent nodes, and thus, ensuring service availability despite failure occurrence [13].
When clients access the service, this is done through a specific BFT communi-
cation protocol that ensures that client requests are processed by replicas in the
same order.

2 D. Gupta, L. Perronne, S. Bocuhenak

There has been a large amount of work on Byzantine Fault Tolerance (BFT)
protocols. Early efforts have explored the practicality of Byzantine Fault Tol-
erance, with PBFT protocol[6]. Other efforts have been made to improve the
performance of the protocols and reduce the cost they induce due to many mes-
sage rounds and cryptographic operations. Thus, some BFT protocols focus on
improving performance in fault-free cases [15, 9, 2], while other protocols improve
performance in presence of failures, each one proposing and applying techniques
to counter specific types of faults such as network contention, system overload,
etc. [3, 7].

However, there has been very little in the way of empirical evaluation of
BFT protocols. Evaluations of the protocols have often been conducted in an
ad-hoc way, which makes them difficult to reproduce, and compare with new
protocols. Moreover, it is generally admitted that BFT protocols are too complex
to implement, thus, re-implementing them each time a new protocol must be
compared with existing ones is not realistic.

In this paper, we present BFT-Bench, a benchmarking environment for eval-
uating performance and robustness of Byzantine fault tolerance systems. BFT-
Bench enables the definition of various execution scenarios and faultloads, their
automatic deployment in an online system, and the production of various mon-
itoring statistics. This provides a means to analyze and compare the effective-
ness of the protocols in various situations. BFT-Bench is an open framework
that includes state-of-the-art BFT protocols, and may be extended with new
BFT protocols. In addition, the paper presents an evaluation with BFT-Bench,
empirically comparing different BFT protocols, and exhibiting their level of per-
formance and robustness in different scenarios.

The remainder of the paper is structured as follows. Section 2 discusses the
related work. Sections 3 presents BFT-Bench. Section 4 describes the experi-
mental evaluation, and Section 5 concludes the paper.

2 Related Work

A Byzantine fault tolerant system is able to counter arbitrary faults, ranging
from hardware crash, to message corruption, network congestion, or any other
misbehavior. In the following, we review the related work on Byzantine fault
tolerance, and BFT benchmarking.

BFT From Theory to Practice. BFT State Machine Replication (SMR) con-
sists in replicating the underlying service in several replicas, to ensure service
availability and correctness despite fault occurrence [13]. Such a service handles
requests coming from concurrent clients. Thus, to ensure consistency among ser-
vice replicas, an agreement protocol is applied to guarantee that client requests
are executed in the same order by correct service replicas. Reaching an agreement
requires 3f + 1 replicas to handle upto f arbitrary faults [11].

BFT Performance Improvement in Fault-Free Conditions. One of the
main drawbacks of BFT was its cost. Thus, everal protocols were proposed to

Practical Evaluation of BFT Protocols 3

enhance the performance of BFT protocols while maintaining their correctness.
A first family of BFT protocols aims at improving the performance of the pro-
tocols in the absence of faults. They usually run a lightweight version of the
protocol in fault-free cases, and switch to a more robust version of the protocol
at fault occurrence. This is interesting in scenarios where faults occur rarely, and
where it is more interesting to provide priority to fault-free cases. Examples of
such protocols are Zyzzyva [9], Chain [15], and Aliph [2], allowing to improve
clients request throughput/latency.

BFT Performance Improvement in Presence of Faults. Another family
of BFT protocols intends to improve performance in presence of faults. Roughly
speaking, these protocols provide practical and efficient mechanisms to specifi-
cally handle some misbehaviors (i.e., fault types). Aardvark [7], Prime [1], Spin-
ning [16], and RBFT [3] are examples of such protocols.

BFT Simulation and Benchmarking. General performance benchmarks
have been proposed to evaluate the performance of application servers, web
servers, data management systems, etc. Other solutions consider benchmarking
dependability to provide a means to characterize system behavior in presence of
faults. They consider different underlying systems such as MapReduce [12], or
web servers [8]. Less effort has been done for benchmarking BFT systems. BFT-
SMaRt is a replication engine that implements a BFT protocol; it interestingly
includes a tool for evaluating the BFT protocol [4]. However, it is limited to the
assessment of that particular protocol. Simulators of BFT protocols were also
proposed [14, 10]; in contrast, in this paper we consider the empirical evaluation
of BFT. Thus, there is a need for a comprehensive benchmarking environment
to help researchers and practitioners to conduct empirical studies and better
analyze and evaluate the performance and robustness of BFT protocols.

3 BFT-Bench Framework

BFT-Bench framework allows empirical evaluation and comparison of state-
of-the-art and new Byzantine fault-tolerance systems. Figure 1 describes the
major components of BFT-Bench: (i) several BFT protocols implementations,
(ii) fault scenarios to be injected in the underlying BFT system, (iii) load to
be injected in the running underlying system, and (iv) monitoring statistics to
report performance and dependability statistics the system.

Thus, BFT-Bench enables automatic deployment of the experiments in a
distributed system that consists of several nodes running the replicas of the
BFT protocol, and one or multiple nodes emulating clients sending concurrent
requests to the BFT system.

3.1 BFT Protocols

BFT-Bench is intended to be an open framework that can be extended with new
BFT protocols to evaluate, new fault models. In this paper, the following state-
of-the-art BFT protocols are considered: PBFT for being the first practical BFT

4 D. Gupta, L. Perronne, S. Bocuhenak

PBFT

Cluster Setup BFT Protocol Load Injection Fault Injection Statistics
Monitoring

Chain

RBFT

BFTSmart

Public Cloud
Configuration

Private Cloud
Configuration

Hybrid Cloud
Configuration

 Local
Configuration

Clients

Workload

 Replica
Crash

 Message
Delay

 Network
Flooding

 SystemOverload

Delay
With

Overload

Performance
Metrics

Dependability
Metrics

Low Level
Offline

Evaluation
Metrics

Manager

Concurrent
Clients

Initiates

BFT
Replica
Process

Node 1

BFT
Replica
Process

BFT
Replica
Process

BFT
Replica
Process

BFT
Replica
Process

Node 2 Node 3 Node 4 Node N

CLUSTER

BFT-Bench

R
e
q
u
e
st

R
e
sp

o
n
se

Fig. 1. Overview of BFT-Bench

protocol [6]; Zyzzyva, Chain, and Aliph for their performance efficiency in fault-
free conditions [9, 15, 2]; Aardvark, and RBFT as instances of robust protocols
that improve performance in presence of failures [7, 3]. These protocols were
chosen for their variety of features, their variety of communication patterns as
described in Figure 2, and their variety in terms of fault types the protocols
prototypes actually handle (see Section 3.2).

Practical BFT Protocol. PBFT’s communication pattern is used as a baseline
many other protocols such as Aardvark and RBFT [7, 3]. In PBFT, upon a client
request the primary sends pre-prepare messages to other replicas with assigned
sequence number to the request. Then, prepare messages and commit messages
are exchanged to agree on the sequence number. If PBFT suspects the primary
to be malicious, it undergoes a view change to replace the primary by another
replica.

Protocols Enhancing Performance in Fault-Free Conditions. Zyzzyva
is a speculative, high throughput BFT protocol [9]. Its design is meant to bypass
the expensive agreement steps of PBFT in fault-free settings. In such scenario,
the clients send their requests to the primary in charge of assigning sequence
numbers. The primary then forwards the ordered requests to the other replicas,
which speculatively execute these requests and send the responses to the clients.
If a client receives 3f + 1 consistent matching responses, it commits. Otherwise,
clients apply additional steps such as collecting commit certificates and creating
proofs of misbehaviors to trigger view change.

Chain protocol, as its name suggests and as described in Figure 2(b), follows a
chain-like communication pattern where clients send requests to the head replica,
which itself sends messages to its successor replica, and so on [15]. Chain greatly

Practical Evaluation of BFT Protocols 5

benefits from batch optimization where multiple messages are sent in one batch,
which improves system throughput, with a peak of performance when the system
is completely saturated (i.e., when the network link between any two servers
is fully loaded). However, Chain by itself is unable to ensure Byzantine fault
tolerance, and must rely on a protocol switching mechanism when subject to
failures.

Aliph protocol involves several sub-protocols [2]. Its initial configuration,
Quorum, is dedicated to provide high performance if the system does not involve
asynchrony, contention, or failures. When facing contention, Quorum is replaced
by Chain. Finally, upon occurrence of Byzantine behaviors, Chain is replaced by
a backup protocol that handles Byzantine faults, for example PBFT. In Quorum,
clients directly send requests to all replicas. These replicas independently execute
the requests, updates their local history and reply to the clients. Note that
the ordering phase commonly performed by the primary replica is skipped in
Quorum, thus providing a better response time. Thus, in Aliph the client side of
the protocol is responsible of managing inconsistencies, and relies on a panicking
mechanism to trigger sub-protocol switching.

Client

Primary

Replica 1

Replica 2

Request Pre-prepare CommitPrepare Reply

Replica 3

1 2 3 4 5 6

(a) PBFT protocol

Client

Primary/head

Replica 1

Replica 2

Replica 3

1 2 3 5 64

(b) Chain protocol

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4 5 6

(c) RBFT protocol

Fig. 2. Examples of communication patterns of BFT protocols

Protocols Enhancing Performance in Presence of Faults. Aardvark
prototype implements efficient fault tolerance mechanisms for faults such as
intentional message delay, network flooding, or clients sending corrupted requests
to the system [7]. To handle these fault types, Aardvark uses mechanisms such
as replica blacklisting or digital signatures, to minimize the impact of faulty
components on the overall system performance.

6 D. Gupta, L. Perronne, S. Bocuhenak

RBFT strengthens the architecture of PBFT and incorporates adaptive mech-
anisms to deal with different faulty behaviors [3]. RBFT runs f + 1 multiple
instances of the same BFT protocol in parallel but the requests are executed
only by one of the instances called master instance, while other f instances are
called backup instances. Each backup instance has its own primary which orders
the incoming requests in order to monitor the difference of throughput between
the master instance and itself. If the performance at backup and master instance
differs by a given threshold at not less than 2f + 1 replicas, the primary replica
at master instance is considered faulty and a view change is triggered, where a
new primary is elected at every instance.

3.2 Fault Injection

In the following, we first describe the fault types that are handed by state-of-the-
art BFT protocols presented in Section 3.1, and how BFT-Bench injects them in
a running system. We then present how to describe a faultload, i.e. fault scenario
to be injected by BFT-Bench.

Fault Types Examples

Replica Crash. Upon a replica crash, the replica stops and does not participate
in any further communication with the clients or the other replicas of the BFT
protocol. In practice, BFT-Bench remotely connects to the target replica node
and kills the replica process. Note that the implementation of this fault type
injection is BFT protocol-independent, thus, it does not require changes to BFT
protocols prototypes.

Message Delay. When a replica starts delaying messages, it slows down all
future operations of the protocol depending on these messages, thus, leading
to degradation in performance. As a result, this Byzantine behavior is espe-
cially critical when it occurs at the primary replica. In practice, BFT protocols
prototypes are extended to integrate the injection of this type of fault. When
BFT-Bench triggers this type of fault, instead of sending messages according to
the protocol specifications, the replica process sleeps during a given delay, before
resuming to send any messages to other replicas.

Network Flooding. Network flooding is a common denial-of-service attack. It is
meant to overload the network with malicious messages which can not be said
invalid until verified. This verification of messages is computation-intensive and
prevents the system from focusing on correct messages. In practice, BFT pro-
tocols prototypes are extended to integrate the injection of this type of fault.
When BFT-Bench triggers this type of fault, the faulty replica transmits cor-
rupted messages of a chosen size to other replicas.

Practical Evaluation of BFT Protocols 7

System Overload. Overloading the system with a large number of concurrent
client requests can affect system performance to a large extent. Although none
of the servers behave maliciously in this attack, but continuous increase in con-
current clients can eventually deteriorate the performance or lead to system
thrashing. To inject this behavior, BFT-Bench remotely connects to the node in
charge of emulating concurrent clients, and starts additional client processes.

Faultload. A faultload in BFT-Bench is described in a file. Each line of the
faultload file consists of the following elements: the time at which a fault occurs
(relative to the beginning of the experiment), the type of fault that occurs, where
the fault occurs, and optionally, additional parameters that depend on the type
of fault. A fault belongs to one of the fault types handled by BFT protocols
prototypes, and introduced in Section 3.2. A fault occurs in one of the BFT
protocol replicas; this replica may be either explicitly specified in the faultload
or randomly chosen among the set of replicas.

Thus, a faultload in BFT-Bench may contain the following element to de-
scribe the injection of fault of type crash:
<[fault trigger time], replica crash, replicax>

It may contain the following element to describe the injection of fault of
type message delay, specifying among others the delay to be injected, and the
duration of occurrence of this type of fault:
<[fault trigger time], message delay, replicax, ([injected message delay], [fault
occurrence duration])>

A faultload in BFT-Bench may also contain the following element to describe
the injection of fault of type network flooding, specifying among others the size
of the message used for flooding, and the duration of occurrence of this type of
fault:
<[fault trigger time], network flooding, replicax, ([flooding message size], [fault
occurrence duration])>

The overall architecture of BFT-Bench fault injection is presented in Fig-
ure 3. In this example, the cluster has N + 2 nodes, where N = 3f + 1 nodes are
BFT replicas, one node hosts concurrent clients emulator, and one node runs
BFT-Bench. BFT-Bench faultload injector uses faultload to determine which
type of fault is to be triggered, at what time this fault will be injected, and
other required fault parameters. The fault injector runs a daemon that com-
municates directly with the replicas to trigger faults. For instance, in case of
replica crash, the daemon waits until the fault trigger time is reached, then calls
remotely interacts with the target replica to actually trigger the fault.

3.3 Load Injection

The workload is first characterized by number of concurrent clients sending re-
quests to the BFT system. Client requests are executed in FIFO order in a closed
loop, where a clients submits a request, waits for the request to get processed
and receives a response, before sending another request. The workload is also

8 D. Gupta, L. Perronne, S. Bocuhenak

Faultload

 initiates

ClientsN Servers

Node 1

BFT
replica

process

Manager

concurrent
clients

initiates

................

Global faultload injector process

<fault trigger time
1
,

Replica crash,
Node 1>

<fault trigger time
2
,

Network flooding,
Node 3,

Message size>

.. <fault trigger time
3
,

System overloading,
#clients>

Fault Injection

Cluster

Node 2 Node 3 Node N

BFT
replica

process

BFT
replica

process

BFT
replica

process

Fig. 3. Architecture of Faultload Injection

characterized by the size of client request/response messages exchanged with
the BFT system. It is an important parameter as large size messages affect BFT
system performance, due to time consuming cryptographic operations executed
by BFT protocols. BFT-Bench includes a client emulator implementing multi-
client behavior, where each client process sends requests to the underlying BFT
system, and receives the corresponding responses. In BFT-Bench, the workload
may contain one or several elements as follows to describe the load to be in-
jected:
<[load injection time], [#concurrent clients], [request message size], [response
message size], [request processing time], [load injection duration])>

3.4 Monitoring

BFT-Bench produces performance statistics for evaluating and comparing the
performance of BFT protocols. Throughput and Latency are the main perfor-
mance parameters considered when evaluating Byzantine Fault Tolerance pro-
tocols, both experimentally and theoretically. Latency is the time elapsed from
the moment a client submits a request until the complete response is received
by this client. Throughput is measured as the number of client requests han-
dled by the system per unit of time. Latency and throughput are measured by
BFT-Bench at the client-side, and thus include network communication times
between the client and the replicas. Furthermore, BFT-Bench produces low-level
system monitoring information such as cpu, memory and network usage, that
can help better explaining the behavior and possible bottlenecks of the system.

Practical Evaluation of BFT Protocols 9

3.5 On Extensibility of BFT-Bench

BFT-Bench is an open framework intended to help BFT protocol designers and
practitioners to easily evaluate their protocols. BFT-Bench includes, among oth-
ers, existing implementations of BFT protocols. In this paper, we illustrated the
use of BFT-Bench with several state-of-the-art BFT protocols prototypes. In
the following, we describe how to integrate a new BFT protocol prototype to
BFT-Bench, and benefit from its benchmarking features. Although most of the
components of BFT-Bench framework are general and can be easily reused for
new BFT protocols, there are some exceptions that we describe below. Workload
injection is based on the client emulator program that comes with a BFT proto-
col prototype. Such a program is pretty simple, and its reuse to allow dynamic
workload variation as provided by BFT-Bench is straightforward. For the imple-
mentation of faultload injection for faults like replica crash or system overload,
the implementation is independent from the actual BFT protocol prototype.
This is not the case of faults of type message delay or network flooding that
need an extension of the underlying BFT protocol prototype.

4 Experimental Evaluation

4.1 Experimental Setup

The experiments presented in this paper were conducted on a cluster of Grid’5000 [5].
Each node hosts two Quad-Core Intel Xeon E5420, with 2.50 GHz, 8 GB of
RAM, and 160 GB of storage; nodes are connected through 1 GB Ethernet.
BFT-Bench framework currently includes six BFT protocols, namely PBFT,
Chain, RPFT, Aardvark, Aliph, Zyzzyva [6, 15, 3, 7, 2, 9]. We used the original
C++ code of these protocols. When needed by the evaluated BFT protocol, mul-
tiple virtual network interfaces are created on a single physical network interface
controller to exploit the robustness of protocol, e.g., Aardvark, RBFT.

For each protocol under evaluation, four nodes are used for running the
replicas of the service (i.e., application), thus, f = 1. Two other nodes are used
for the experiments, one for emulating the clients that concurrently send requests
to the replicated service, and one node for hosting BFT-Bench. Similarly to state-
of-the-art evaluations, each replica runs an echo service [6]. Client request size
and client response size are 4 KB each. Furthermore, to emulate the computation
performed by the service, a delay of 100 (±10%) µs is introduced before sending
the response to the client. The results of the experiments are obtained after a
warm-up phase of 180 s, to let the system reach a stable stage before actually
measuring the behavior of the system. The graphs presented in the following are
obtained after the warm-up phase.

4.2 Evaluation in Presence of Replica Crash

In this use case, five concurrent clients access the replicated service, when the
crash of the primary replica of the service occurs. Thus, the following faultload

10 D. Gupta, L. Perronne, S. Bocuhenak

is provided to BFT-Bench, which triggers a fault at time 300 s:
<300 s, replica crash, {primary}>

Figure 4 presents the measured latency and throughput. Upon crash of the
primary, PBFT induces a sudden increase in latency, and throughput drops
sharply. This is due to the view change mechanism used by the protocol to replace
the faulty primary. Aliph follows the same pattern since it switches to PBFT
upon fault occurrence. Upon crash, Chain cannot maintain its pipeline structure
as the successor of the crashed server never receives any message. In theory,
Chain must switch to PBFT upon crash, but unfortunately this mechanism is
not present in the Chain prototype. Zyzzyva prototype implements only the
fault free version of the protocol and, thus, does not deal with fault occurrence.
In Aardvark and RBFT where clients broadcast requests to all replicas, and
because of the absence of a crash handling mechanism at client side, this fault
is not handled.

0.1

1

10

0 100 200 300 400 500 600

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

Aardvark
Aliph

Zyzzyva

Fault-free scenario
 with 5 clients

Single event of
 replica crash
 at 300s

(a) Latency

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Aardvark
Aliph

Zyzzyva

Fault-free scenario
 with 5 clients

Single event of
 replica crash
 at 300s

(b) Throughput

Fig. 4. Performance evaluation in presence of replica crash

4.3 Evaluation in Presence of Message Delay

In this use case, a replicated service is accessed by two concurrent clients, when
the service starts misbehaving by inducing intentional and unjustifiable message
delay. The following faultload is provided to BFT-Bench to inject this misbe-
havior in the running replicated service:
<300 s, message delay, replicax, (500 ms, 300 s)>

Here, starting from time 300 s there is a message delay of 500 ms, and this
misbehavior continues during 300 s (i.e., until the end of the experiment). Since
the BFT protocols under evaluation use different architectures and communica-
tion patterns, message delays are introduced by BFT-Bench in different ways
to these protocols, as explained in the following. For instance in case of PBFT,
Aardvark, RBFT, and Zyzzyva, a delay is injected at the primary replica-side,
when this replica receives a client request and sends the initial message to other
replicas for processing that request (i.e., usually known as the pre-prepare phase
in these protocols). In case of Chain, a message delay is injected before the head

Practical Evaluation of BFT Protocols 11

replica initiates the communication protocol with the other replicas. For Aliph
which does not have a dedicated replica (i.e., no primary, no head), a chosen
replica induces message delay.

0.1

1

10

100

0 100 200 300 400 500 600

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

Aardvark
Aliph

Zyzzyva

Fault-free scenario
 with 2 clients

Continuous Message Delay

(a) Latency

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Aardvark
Aliph

Zyzzyva

Fault-free scenario
 with 2 clients

Continuous Message Delay

(b) Throughput

Fig. 5. Performance evaluation in presence of intentional message delay

Figure 5 presents the results of these experiments. We can observe that the
impact of this type of fault is different from one protocol to another. For in-
stance, Figure 5(a) shows that message delay faults induce a latency increase
of two orders of magnitude for PBFT, Zyzzyva, Aliph, Chain protocols, and
a latency increase of one order of magnitude for Aardvark. Interestingly, due
to its robustness to this type of fault, RBFT is able to smoothly tolerate this
misbehavior without a perceptible impact on performance.

4.4 Evaluation in Presence of Network Flooding

In this case, ten clients concurrently access a replicated service, when the ser-
vice starts misbehaving by inducing network flooding. The following faultload
is provided to BFT-Bench to inject this misbehavior in the running replicated
service:
<300 s, network flooding, replicax, (4 KB, 300 s)>

Thus, starting from time 300 s, replicax starts sending corrupted messages
of size 4 KB to other replicas, during 300 s. Figure 6 presents the results of
these experiments. Interestingly, Aardvark and RBFT are robust in case of such
misbehavior. They are able to detect that a replica performs network flooding,
and counter it by black-listing that replica [7, 3]. In contrast, PBFT has bad
performance in case of network flooding, since it is not able to tolerate this type
of misbehavior. Aliph, which switches to PBFT when faults occur, demonstrates
similar behavior as PBFT, although for clarity purposes its results after fault
occurrence are not included in Figure 6.

4.5 More Complex Scenario

This use case illustrates a more complex scenario where a fault tolerant service
faces a Byzantine fault, in addition to service contention. Here, the following

12 D. Gupta, L. Perronne, S. Bocuhenak

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

Aardvark
Aliph

Zyzzyva

Fault-free scenario
 with 10 clients

Continuous Network Flooding

(a) Latency

1000

2000

3000

4000

5000

0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Aardvark
Aliph

Zyzzyva

Fault-free scenario
 with 10 clients

Continuous Network Flooding

(b) Throughput

Fig. 6. Performance evaluation in presence of network flooding. Results of Aliph after
fault occurrence are not included; Aliph switches to PBFT when fault occurs and
demonstrates similar behavior as PBFT.

faultload is used by BFT-Bench:
<200 s, message delay, (replicax, 500 ms, 600 s)>
And in order to increase service contention, the following workload is provided
to BFT-Bench:
<0 s, 2, 4 KB, 4 KB, 100 µs, 400 s>
<400 s, 5, 4 KB, 4 KB, 100 µs, 200 s>
<600 s, 10, 4 KB, 4 KB, 100 µs, 200 s>

0.1

1

10

100

1000

0 100 200 300 400 500 600 700 800

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

Aardvark
Aliph

Zyzzyva

Fault-free scenario
 with 2 clients

Continuous Message Delay

System Overloading
 with 5 clients

System Overloading
 with 10 clients

(a) Latency

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Aardvark
Aliph

Zyzzyva

Fault-free scenario
 with 2 clients

Continuous Message Delay

System Overloading
 with 5 clients

System Overloading
 with 10 clients

(b) Throughput

Fig. 7. Performance evaluation - combination of message delay and system overload

Thus, the replicated service is first accessed by two concurrent clients. Then
at time 200 s, the service starts misbehaving by inducing abnormal message
delay of 500 ms, during 600 s (i.e., until the end of the experiment). In addition,
the service load increases from 2 clients at the beginning of the experiment to
5 clients at time 400 s, and then to 10 clients at time 600 s. And as described in
Section 4.1, client request and response message sizes are 4 KB.

Figure 7 presents the results of the experiment. We can observe that RBFT
is able to transparently tolerate the Byzantine fault of type message delay when
service contention is not too high. However, when 10 clients concurrently access

Practical Evaluation of BFT Protocols 13

the service, RBFT is no more able to handle contention and terminates. In case
of Aardvark, the Byzantine fault tolerant service is able to face message delay
fault, but at the expense of a performance overhead of one order of magnitude.
Interestingly, Aardvark smoothly handles service contention increase without
a perceptible impact on performance. This holds up to a given service load,
where with 10 concurrent clients, Aardvark is no more able to handle contention,
and terminates. Zyzzyva and Chain are able to face the Byzatine fault of type
message delay. But they induces a high performance overhead of two orders of
magnitude when such a fault occurs. In addition, when the service has a high
contention (10 concurrent clients), Chain-based replicated service is three orders
of magnitude slower, while Zyzzyva crashes. PBFT and Aliph (which switches
to PBFT upon fault occurrence) have similar behavior after the occurrence of
the fault at time 200 s, with a drop of latency of two orders of magnitude. After
a while, PBFT and Aliph undergo a view change, i.e. they replace the faulty
primary by a new primary. This has a direct impact on service performance
which drastically improves.

5 Conclusion

Performance and dependability are important requirements of today’s comput-
ing systems. Byzantine Fault Tolerance (BFT) is a general approach to make
these systems, theoretically, tolerate arbitrary faults. BFT protocols were ex-
tensively investigated in the last years, and various prototypes were proposed.
However, to the best of our knowledge, there is no practical solution to precisely
identify the varying nature of Byzantine behaviors, no general tool for real-time
injection of these misbehaviors in a system, and no reusable environment for the
empirical evaluation of various BFT protocols. This paper presents BFT-Bench,
the first framework for evaluating BFT implementations under different faulty
behaviors and workloads. BFT-Bench framework includes several state-of-the-
art BFT protocols, automatically deploys them, injects different types of faults
at different rates, and produces performance and dependability measures. The
evaluation results show that BFT-Bench is able to successfully compare various
BFT protocols, in various faulty behaviors. We wish to make BFT benchmarking
easy to adopt by developers and end-users of BFT protocols. BFT-Bench frame-
work aims to help researchers and practitioners to better analyze and evaluate
the effectiveness and robustness of BFT systems. Although this paper concen-
trates on presenting the current version of BFT-Bench with some BFT protocols
and their related fault types, we believe that the proposed approach can be easily
extended to other BFT protocols, and other faulty behaviors.

Acknowledgement

This work was supported by AMADEOS (Architecture for Multi-criticality Ag-
ile Dependable Evolutionary Open System-of-Systems), a collaborative project
funded under the European Commission’s FP7 (FP7-ICT-2013-610535). The

14 D. Gupta, L. Perronne, S. Bocuhenak

experiments were conducted on the Grid’5000 experimental testbed, developed
under the INRIA ALADDIN development action with support from CNRS, RE-
NATER and several Universities, as well as other funding bodies.

References

1. Y. Amir, B. A. Coan, J. Kirsch, and J. Lane. Byzantine Replication Under Attack.
In The 38th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2008), 2008.

2. P.-L. Aublin, R. Guerraoui, N. Knezevic, and V. Quéma. The Next 700 BFT
Protocols. ACM Trans. Comput. Syst., 32(4), 2015.

3. P.-L. Aublin, S. B. Mokhtar, and V. Quéma. RBFT: Redundant Byzantine Fault
Tolerance. In The IEEE 33rd International Conference on Distributed Computing
Systems (ICDCS 2013), 2013.

4. A. N. Bessani, J. Sousa, and E. A. P. Alchieri. State Machine Replication for the
Masses with BFT-SMART. In The 44th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2014), 2014.

5. F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jégou, P. Primet, E. Jeannot,
S. Lanteri, J. Leduc, N. Melab, et al. Grid’5000: A Large Scale and Highly Re-
configurable Grid Experimental Testbed. In The 6th IEEE/ACM International
Workshop on Grid Computing, 2005.

6. M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In The 3rd Sym-
posium on Operating Systems Design and Implementation (OSDI 1999), 1999.

7. A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making Byzantine
Fault Tolerant Systems Tolerate Byzantine Faults. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI 2009), 2009.

8. J. Durães, M. Vieira, and H. Madeira. Dependability Benchmarking of Web-
Servers. In The 23rd International Conference on Computer Safety, Reliability
and Security (Safecomp’2004), 2004.

9. R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong. Zyzzyva: Speculative
Byzantine Fault Tolerance. ACM Trans. Comput. Syst., 27(4), 2009.

10. H. Lee, J. Seibert, E. Hoque, C. Killian, and C. Nita-Rotaru. Turret: A Platform for
Automated Attack Finding in Unmodified Distributed System Implementations.
In The 34th Int. Conf. on Distributed Computing Systems (ICDCS 2014), 2014.

11. M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of
Faults. J. ACM, 27(2), 1980.

12. A. Sangroya, D. Serrano, and S. Bouchenak. Benchmarking Dependability of
MapReduce Systems. In The IEEE Int. Sym. on Reliable Distributed Systems
(SRDS), 2012.

13. F. B. Schneider. Implementing Fault-tolerant Services Using the State Machine
Approach: A Tutorial. ACM Comput. Surv., 22(4), Dec. 1990.

14. A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. BFT Protocols Under
Fire. In The 5th USENIX Symposium on Networked Systems Design and Imple-
mentation, 2008.

15. R. van Renesse and F. B. Schneider. Chain Replication for Supporting High
Throughput and Availability. In The 6th Symposium on Operating Systems Design
and Implementation (OSDI 2004), 2004.

16. G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Spin One’s Wheels?
Byzantine Fault Tolerance With a Spinning Primary. In SRDS, 2009.

