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Robustness of adaptive narrowband

beamforming with respect to bandwidth

Marc Oudin and Jean Pierre Delm&=nior Member, IEEE

Abstract

This paper addresses the robustness of adaptive narrovidgamaforming with respect to bandwidth
based on the loss of performance in terms of Signal to Intemfee plus Noise Ratio (SINR). The
criterion used by Zatman to define a narrowband environmentthe ratio between the jammer plus
noise covariance matrix and the noise eigenvalue, is dufi@n the point of view of a loss of SINR
after narrowband beamforming under non narrowband cantiti Using theoretical results about the
eigenvalues and eigenvectors of covariance matrices doiats closely spaced in frequency by Lee [5],
it is shown that Zatman’s criterion can be interpreted as ppeu bound on the SINR loss which is

nearly reached under certain conditions that are specified.

Index Terms

Narrowband, array signal processing, adaptive beamfayniandwidth, robustness, SINR, Direction

Of Arrival.

EDICS Category: SAM-BEAM, SAM-PERF

. INTRODUCTION

Evolution of radar technology and full digitized arraysoalithe short term use of wideband waveforms
for different advantages, such as high range resoluti@altsiness, etc. (see, e.g. [1]). This breakthrough
is a new challenge in radar for which broadband time domairfreguency domain array processing

algorithms allow one to improve performance over standg@atial beamforming based on narrowband
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assumptions [2]. However, this improvement is done at theepsf an increased complexity. Therefore,
to optimize the choice between narrowband or broadband feearimg algorithms we have to precisely
evaluate the performance of standard narrowband algositivimen the waveform has a certain given
bandwidth.

In [3], Zatman proposes a general definition of a narrowbagdas environment which is often used
as a reference for adaptive beamforming as well as for Die@f Arrival (DOA) estimation. It is based
on the second eigenvalue of the jammer plus noise covarisratex. Thus, an environment is qualified
as “narrowband” if this eigenvalue is smaller than 3dB abthe noise level in the jammer plus noise
covariance matrix. The author has shown by simulationsahancrease of bandwidth leads to the second
eigenvalue rising above the noise floor and a growth of thauangegion in which the jammer denies
coverage. Therefore, the decrease of performance of adaptiamforming algorithms is related to the
second eigenvalue in the jammer plus noise covariance xnatowever, he has not given an explicit
relation between the second eigenvalue level and the beamafs performance losses. Moreover, he has
considered a zero-bandwidth target whereas in practiqaicgtions, its bandwidth will often be non-zero
like that of the jammer, which may also induce losses on ti¢RSIThose issues have been partially
considered in [4] where the authors have proposed to defmeatio between the Signal to Interference
+ Noise Ratio (SINR) resulting from narrowband beamformimigh non-zero bandwidth conditions to
that resulting from the same processing with zero bandwédtfditions, as a criterion for narrowband
beamforming. However, they have considered a jammer-fre@ament, which is not realistic for most
radar applications.

In this paper, we propose to use the same criterion as in [4tidy the robustness of adaptive
narrowband beamforming, in the presence of a target and @eanbandwidth jammer whose Directions
of Arrival (DOAs) are assumed to be arbitrary. First, we derthe expression of the SINR for zero-
bandwidth and non-zero bandwidth target models. Usingrdigal results about the eigenvalues and
eigenvectors of covariance matrices for signals closebceg in frequency by Lee [5], we show that
under the assumption of a small fractional bandwidth, botliets lead to the same expression. Then, we
relate the considered SINR ratio to the criterion proposeddtman to define a narrowband environment,
i.e., the ratio between the second eigenvalue of the jamiusrqpise covariance matrix and the noise
eigenvalue. Thus, we show that the latter criterion can berpneted as an upper bound on the SINR
loss due to bandwidth, w.r.t. the target DOA, and derive ecigifit conditions for which the upper bound
is nearly reached.

This paper is organized as follows. The data model is giverségtion Il. Then, the considered
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robustness criterion is given in Section Il and detailled fero-bandwidth and non-zero bandwidth

target models. Finally, this criterion is related to Zatrsashefinition of narrowband in Section IV.

Il. DATA MODEL

We consider a radar system where the receive antenna is arbnifinear Array! (ULA) composed
of N sensors. The transmitted waveform has carrier frequgp@nd the array is assumed to have half-
wavelength spacing w.r.t. the carrier frequency. Thens@®r an environment composed of one jammer,
thermal noise and a target. The jammer is modelled by a nomiz@ndwidth white stationary process
with powero? and bandwidthB and the thermal noise by a spatially white complex proceith, power

o2. The jamming plus noise covariance matrig

2 52
R:/_E §J¢J(f0+f)¢J(f0+f)de—|—g%I )

with
. _ T
bi(f)=[1 dhu . GVVrg ]

whereu; = sin(6 ;) andé; is the DOA of the jammer. Finally the target signal is modely a stationary

process, with powe&%, known DOA#s and covariance matriR .

Ill. ROBUSTNESS CRITERION WR.T. BANDWIDTH

The common performance measure of SINR is chosen to studyphbustness of adaptive narrowband
beamforming w.r.t. bandwidth. In practical cases, knowiagether a signal is narrowband or not is
important to select the proper spatial processing. If thymali is narrowband, spatial processing alone
is sufficient [6]. On the contrary, under non narrowband ¢bmas, space-time or subband processing
allows one to compensate for performance losses due to bdigwee e.g., [2, chap.6], [7]-[10].

Under non-zero bandwidth conditions, the SINR expressiogivien by

wlRgw

SINR = ————— 2
wHRw 2)

whereR andRg are defined in the previous Section awdis a spatial filter. When a zero-bandwidth

designed adaptive beamformer is computed under non-zemdth conditions, its expression is given

1The results of this paper are easily extended to an arbiaemy geometry.

2As in [3], we consider a radar scenario, assuming that thisriance matrix does not contain a target signal’s componen
and study steady-state performance.
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by®
WNZB O(R_1¢S (3)

and the SINR expression becomes, using (3) in (2)

¢Is{fi_lfisf{_l¢s
PR ¢y

In practical applications, the target and jammer bandwidth often be assumed to be identical. Indeed,

SINR =

(4)

when receiving a non-zero bandwidth target signal, a basslfiier is often applied to the data, thus
reducing the jammer bandwidth to that of the signal. Thesefae consider in the following a non-zero
bandwidth target with the same bandwidbhas that of the jammer. However, to make the analysis of
the full non-zero bandwidth case (i.e. non-zero bandwidthmer and target) easier, we first consider
the simpler case of a zero-bandwidth target model with a zemw- bandwidth jammer model. In the

following, we detail SINR expression (4) depending on thrgea model.

A. Zero-bandwidth target case

Here, we assume that the target signal is modelled by a zerdviidth stationary process. Its covari-

ance matrix is given by

= def
Rs = Rs = 02¢so¥ (5)
with
Ppg=1|1 eimus ... i(N-Dmus whereug = sin(fg). (6)
Injecting (5) in (4), we obtain
SINRyzp = 02 R . 7

B. Non-zero bandwidth target case

Here, we assume that the target is modelled by a non-zerowbdtidwhite stationary process with
bandwidth B.Its covariance matrix may be written“as

Rg = /% Ojd’s(fo + fos(fo+ N df (8)
5 B

2

3We use the subscript ZB when the environment is non-zero bandwidth &8 when it is zero-bandwidth.

_ - - B
“Note that in [4], a simpler rank-one target covariance maofithe formRs = a§¢s¢§ with ¢g o [ 25 ¢g(fo + f)df
was used. :
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with

Bolf) = [1 Th . SO

Now we show that (4) can be approximated by the SINR expressitained with a zero-bandwidth
target (7) under the assumption of a small fractional badtwiMore precisely, we prove in Appendix
| the following result:

Result 1: When the second eigenvalue of the target covariance majrsatisfies\, < (Z—Z‘) 2, the

J

SINR appearing in criterion (4) is approximated by:
SINRyzp = 030§ R 5. 9)

This approximation is validated by extensive numerical pansons, for arbitrary jammer DOAs and
number of sensors. For instance, Fig. 1 compares actual #NBR approximate one (9) as a function
of the target DOA. The parameters alé = 10, 03 = 30 dB, 0% = 0 dB, 02 = 0 dB, u; = 0.1
(those parameters will be used in the following simulatjcarsd the fractional bandwidt% =0.15. We
observe that the approximation is accurate except whenatigett DOA is close to array endfire. Then,
to illustrate the influence of the fractional bandwidth, wetpn Fig. 2 the same expressions, as well as
A20

£, as a function of the fractional bandwidth, withy = 0.15. First, we note that the

2
Tn0s

the termp =
approximation remains accurate for fractional bandwidipsto about0.15. Then, we observe that,
rapidly increases with the SINR and that the condition inuRek is sufficient but not necessary. Indeed,
the approximation may be very accurate whereas the cond{}%@% < 1 is not satisfied, due to the

coarse upper-bounds used for the derivation of Result 1.

C. Expression of the robustness criterion

Here, we introduce a robustness criterion defined by the tmitween the non-zero bandwidth SINR
(for both zero-bandwidth and non-zero bandwidth targetm\ﬁ < 1) and the zero-bandwidth SINR
[4]. This criterion allows one to quantify the loss in SINRalio the increase of bandwidth of the

environment (see, e.g. [3] for illustrations of this lossSNR). Its expression is

. _ SINRyzp

SINRzp (10)

where SINRyzp is given by (7) and (9) an®dINRzp is the optimal SINR under zero-bandwidth
conditions equal to

SINRzp = 02¢d R g
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SINR (dB)

— — —actual

approximate

0.1 0.2

0.3 0.4 0.6 0.7 0.8 0.9 1

0.5
ug = sm(es)

Fig. 1. Actual SINR (4) and approximate SINR (9), as a functid the target DOA.

SINR (dB)

25

20

15

10

(5]

o

— — —actual SINR

- P

approximate SINR -

0.1 0.15 0.2 0.25 0.3 0.35
B/f0

2

Fig. 2. Actual SINR (4), approximate SINR (9) apd= M"g as a function of the fractional bandwidth.
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where

R = 03¢0 + 071 (11)

is the zero-bandwidth jamming plus noise covariance maand ¢ ; = ¢ ;(fo) is the zero-bandwidth
jammer steering vector. Because< 1, »—! will denote the SINR loss throughout the paper. Using the
expressions oBINRyzp and SINRzp in (10), we obtain the detailed form of the chosen robustness

criterion -
. PSR ¢y
P§ R pg

IV. RELATION BETWEEN THE SINR LOSS AND ZATMAN’S DEFINITION OF NARROWBAND

(12)

Now, we want to relate SINR ratio (12) to the ratio between $keond eigenvalue of the jammer
plus noise covariance matrix and the noise eigenvalue,gsex by Zatman for defining a narrowband

environment.

A. Upper bound on the SINR loss

Assuming that the fractional bandwidth is small, we provéhim conditions of Zatman [3] the following
result:

Result 2:In the presence of a zero-bandwidth target and a non-zerdvidth jammer, the ratio
between the second eigenvalue of the jammer plus noiseiaogarmatrix and the noise eigenvalue is
an upper bound on the SINR loss! of the optimal adaptive beamformer due to bandwidth wing. t
target DOA.

Proof

Using the derivation given in Appendix | and based on the ltesof [5], the non-zero bandwidth
jammer covariance matriR — 21 can be approximated by a rank-two matriwhere its largest two
eigenvalues and the associated eigenvector are respegtive 02 ~ No2, 12 — 02 andu; ~ %1 and

VN

" H
uy. Then, using (11)R — 021 = No—i%%. Consequently, we have:

R~ R+ (p2 — o5)uouj’.

Using the matrix inversion lemma, we obtain:

R'~R!'-R'u, < !
M2

_ g2
On

-1
+ u?R_1u2> ulR™1. (13)

®Note that this assumption has been justified in [3] by the eén@biobservation that the eigenvaluesRfovertake the noise
floor one at a time when the bandwidth is increased.
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Incorporating (13) in (12), we obtain:

PSR 1
¢dR g (5257 +ufR71wy)

(14)

A lower bound of this SINR ratio (14) w.r.t. the target DOA ibtained by considering unconstrained
steering vectokpg. In this case, (14) is minimized when the teﬂ%hf;{% is maximized, i.e., with
S S

¢y x ug. Using, u, TR 1uy ~ derlved fromul! uHu1 = 0, this associated lower bound on

H®$;
2 N
the SINR ratior is equal t8

rp = —*. (15)

[ ]
Consequently, the ratio between the noise eigenvalue andeabond eigenvalue of the jammer plus
noise covariance matrix can be interpreted as a lower bountie SINR ratior or conversely, the ratio
between the second eigenvalue of the jammer plus noiseiaaearmatrix and the noise eigenvalue as
an upper bound on the SINR loss. From this result, we deduagpper bound of the SINR loss™!
in the presence of a narrowband jammer, in the sense of Z&ndefinition. Thus, when the second
eigenvalue of the jammer plus noise covariance matrix isllsmtnan 3dB above the noise eigenvalue,
Result 2 proves that the SINR loss will be smaller than 3dBdbitrary target and jammer DOASs.

Indeed, ifus < 202, we have:

<Ly

1 < SINR loss= 5
Tb Un

S =

For a non-zero bandwidth target, we have shown in SectiothHt the SINR expression could be
precisely approximated by the SINR expression in the pm=ef a zero-bandwidth target, under the
assumption thad, < (Z )aS where )\, is the second eigenvalue of the target covariance matrig (se
Result 1). Therefore, Result 2 is also valid for a non-zenodvadth target, under the latter assumption.

After having given a general relation between Zatman'ssdon and the SINR loss™!, we now want
to give sufficient conditions for which the upper bourg;l1 is nearly reached for a certain DOA of the

target.

®Note that an approximation ofi is given by the derivative ofg,(f) w.rt. f, orthogonalized byg;, u> =~
(1- @19 ) deg )

H - ¢H)dd> ) = + o( ) [5]. Since there is no target DOA for whicthg is proportional to this vector, the lower
] ]
df

bound on the SINR ratlo can not be reached.
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B. Derivation of sufficient conditions for which the uppeuhd is nearly reached

For ease of notations, we only consider the zero-bandwaltiet model. However, as we have already
noted, the analysis remains valid in the presence of a nom{zandwidth target under the conditions
given by Result 1.

Our aim is to analyze the SINR ratio given by (12). To proceed, first use the approximation
introduced in [3] and justified by the analysis of Lee [5] apg@lto the spectral representation of stationary
bandlimited signals (see Appendix I), to replace the jamowariance by a rank-two matrix, under the
assumption of a small fractional bandwidth. Then, we male gbcond assumption that the array is
composed of many sensémhich allows one to derive limit expressions of the consde8INR ratio.

1) Approximation of covariance matriXe use the following approximation:

5 H | o H
03P P51+ 05D 12075

R = 5 | (16)
with
b1 = ¢;(fo—Af)
b2 = ¢;(fo+Af)
where Af = %. We have validated this second approximation by extensiwaenical comparisons.

However, we note that the rank-two approximation leads ¢micant errors in the SINR expression,
when the fractional bandwidth is too large. Indeed, in thade; the effective rank of the covariance
matrix is larger than 2 and the approximation is not justifeedymore. However, simulations show
that for fractional bandwidths up t% = 0.3, with the chosen parameters, this approximation remains
acceptable. It is illustrated in Fig. 3 where we plot expi@sg7) with or without approximation of the
covariance matrix according to (16) f% = 0.3 as a function of the target DOA and in Fig. 4 for
ug = 0.15 as a function of the fractional bandwidth.

We observe that errors due to this second approximation emg small. Therefore,16) may be used
for analysis of the non-zero bandwidth case at small fraetidbandwidths.

2) Derivation of limit expressions of the SINR rati@he approximation oR in (12) by R allows

one to derive a closed-form expressionSdNR vz (7) and then of-. Indeed, after a double application

"This assumption is justified in most radar applications,viich high spatial resolution is required.
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SINR (dB)

— — —actual
=30 .
approximate
_35 Il Il Il Il Il Il Il Il Il J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ug = sm(es)

Fig. 3. Actual SINR (7) with or without approximation of thammer plus noise covariance matrix by (16) as a function of
the target DOA

— — —actual
approximate

SINR (dB)
|
B
T

1 J
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fig. 4. Actual SINR (7) with or without approximation of thammer plus noise covariance matrix by (16) as a function of
the fractional bandwidth
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of the matrix inversion lemma, we can write

N |¢g¢J,2‘2 B |¢g¢J,l‘2

Hp-1
R = — —
¢S ¢S 0% O’f‘Lﬁ Uga
2 2
|98 D12|" | D2
o8 3%
2

+ %Rd(¢g¢J,2)(¢Ifl¢S)(¢§2¢J,1)]

| 2

Withﬂ:%JF%va:ﬁ—% and
He = e-iv-na SHVZ1)
b5 P ¢ sin(xy)
Hg o o i(N—1a, S(NT2)
¢s Pa2 ‘ sin(z2)
" _ i2N-1)arSIEZNAT)
Piafis ‘ sin(2Ax)
where
r1 = w9+ Az
xy = xg— Az
™
Ty = §(u5 —uy)
A
A S %Tf”J' (17)

Then after a Taylor series expansion, usiigs 1 and% < 1 under constrainN% < 1, andj—zf > 1,

we can write forxg # 0

~ b2 30’2A:L'2
Hp-1 Hp-1 J
o3 R (75 ~ (75 R (ﬁ - —
o S S S 4a <N3J%03A1’2—|—3U%>

with
_ sir}zg](Vx()))
b— Nsin(2Nzo)  sin®(Nxzo)sin(2zo) (18)
T sin?(xo) sin?(zo) :

We deduce an approximate expression of the proposed oriteri

b2 < 302 Ax? >
1o \ N3520% AP 130T
rel— ;“;m In/ (19)
s R g
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— — —actual

approximate

0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

0.5
ug = sm(es)

Fig. 5. Actual SINR ratio (12) and approximate SINR ratio )18 a function of the target DOA.

In order to validate the latter equation, we now compare tn Biapproximate relation (19) with actual
one (12) w.r.t. the target DOA. The fractional bandwidthﬁs: 0.1.

First, we observe that the approximate plot is an accurdimate ofr. We notice that when the target
is in the vicinity of the jammer, the SINR losses! increase until a target position close to that of the
jammer. Then, from that position to the jammer one, the SIhN$&és quickly decrease. When the target
and jammer DOAs are equal, the losses have nearly vanisbadh(aatio (12) is equal té’% ~1
[5] where y; is the largest eigenvalue at).

Next, we want to estimate the 'worst-case’ SINR ratjg;,, w.r.t. the target DOA and relate it to the
lower boundr;, (15). We prove the following result:

Result 3: Under the assumptions th% < 1 andN > 1 under constrainW% < 1, the maximal

SINR lossr! w.r.t. the target DOA nearly reaches the upper bou@H equal to the ratio between the

min
second eigenvalue of the jammer plus noise covariancexretd the noise eigenvalue.
Proof

Noticing that the minimum SINR ratie,,;, is reached whefl < |zy| < 1, we can use a Taylor series
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— — —actual

approximate

9
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

B/fO

Fig. 6. Actual and approximate (21) values6f;, , as a function of the fractional bandwidth.

expansion of ternf; in (19), and obtain after a few algebraic manipulations samsed in Appendix Il

b4

- NOz2. (20)

Ne)

SIS

Then, by noticing thap?R~1¢ ~ 2% for 2

)
302 o

> 1, 0 < |zo| < 1 and using (17), we obtain the

ExS

following approximation of the minimum value of

2 2
(o) g,
Tmin =~ F5 5 n2 5 = 2 . (21)
FojAr*+o5 N3 am (BT 2 + o2
305w\ 7)) Uton

We remark thatNT?’a%Z—; (%)21@ represents the first order Taylor series expansion of th@erskc
eigenvalue of the jammer’s noise free covariance matrixigded from [3, rels 27 and 28] f(ﬁ% < 1),
so that the denominator of (21) approximates Finally, taking the inverse of (21) completes the proof.
]
In order to observe the influence of the fractional bandwidiit. minimal SINR ratior,,,;,,, we now
plot in Fig. 6 this one as a function %

First, we note that approximate expression (21) is a veryiate estimate of the actual valug,,
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— — —actual
approximate

(dB)

-10+

min

r

12+

—14}

-16+

-18 i i i i i
5 10 15 20 25 30

number of sensors

Fig. 7. Actual and approximate (21) values6f;, , as a function of the number of sensors.

obtained from (12), except for important fractional bandths. Second, we observe thag;, rapidly
decreases when the fractional bandwidth increases. Theranalyze the influence of the number of
Sensors om,,;,. Fig. 7 shows the value of this criterion for the actual angragimate expressions, for
different values ofV and Z = 0.05.

We observe that the approximation given by (21) is very aateyrexcept for high values df. This
can be explained by the fact that the series expansion dawopsly is valid under the hypothesis that

N%<<1.

V. CONCLUSION

In this paper, the robustness of adaptive narrowband bearirfg with respect to bandwidth has been
studied where the criterion of the loss of performance of stemdard narrowband processing in terms
of SINR, under the assumption of a non-zero bandwidth enwirent, w.r.t. the narrowband case has
been proposed. Using results about the eigenvalues andveigers of the covariance matrix for signals
closely spaced in frequency, this SINR loss has been retatéltk ratio between the second eigenvalue
of the jammer plus noise covariance matrix and the noisenge@ee. Thus, it has been shown that under

the assumption of a small fractional bandwidth, the SINRs Issupper bounded by the ratio between
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the second eigenvalue of the jammer plus noise covariandexnaad the noise eigenvalue, for both
zero-bandwidth and non-zero bandwidth target models. Thefficient conditions for which the upper

bound of the SINR loss is nearly reached have been given.

APPENDIX |: PROOF OFRESULT 1

First, consider the EVD oRg:
N

Rs = Z /\nvnv,f;l.
n=1
Using the spectral representation = f_i e?™ftdu(f) of the complex envelope of the wide-sense
stationary bandlimited Gaussian target sizgnals, appratéch byx; ~ Zf:_ol a;e?? it with f; = (=L +
21 + 1)%, L > 1 and(a;);—o,. -1 uncorrelated Gaussian random variables witfa;|?} = "Tz’ Rs
can be approximated as the spatial covariance associatledawdiscrete sum of zero-bandwidth signals
closely spaced in frequency for low fractional bandwidths:

L-1

2
Rs~ Y Sosfo+ ol (fo+ f).

=0

Consequently, the results of [5] apply. In particular

g B
vi= VN +O(f0)
and
M= u(Rs)+0(2),
fo

A = O

2(n—1)
<fé> ] forn >1
0

Therefore, for% <1, vy~ \‘f—sﬁ and \; = Na% and the non-zero bandwidth target covariance matrix

R can be approximated by the rank-two matrix
R ~ 02¢gpd + \ovovil . (22)

Injecting (22) in (4), we obtain

(23)

_ Ay [@HR v, |
SINR ~ 0% R g <1+ 2|#5 R v )

03 (p§ R )
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Now, we derive a sufficient condition to neglect the secomthtan (23). To proceed, let consider the

following ratio )
Ao | PR vyl

03 (¢p§ R g)?

and compare it to unity. Using the Cauchy-Schwartz inetyalie have

_ 2 _
Ao | ¢ R vy < AoV R vy
o%(Pp§R1pg)? ~ oipiR 1oy

Then, sinceviR~v, < ;%N < L and¢pfR1gg > % where i and p are given by the EVD of

R =" pyu,u?, we obtain:

— 2
A2 [ Ry _ em
03 (TR 1¢g)? ~ NoZo}

A sufficient condition to neglect the second term in (9) isréfiere that

Aoy

—— <1
No%o?

and sinceu; ~ No? for % < 1, this condition becomes

g

|

Ao < (F2)o?

g

()

which proves Result 1.

APPENDIX II: PROOF OF(20)

With

E ~ 4sin?(Ny) < N 1 >2
a  sin?(zg) \tan(Nzg) tan(z)

deduced from (18), (20) is straightforwardly obtained franthird order expansion ofan(Nz) and
tan(xg) in Nzy and xo respectively, under the assumption that < 1 and N > 1 with constraint

Nzxy < 1.
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