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Robustness of adaptive narrowband

beamforming with respect to bandwidth
Marc Oudin and Jean Pierre Delmas,Senior Member, IEEE

Abstract

This paper addresses the robustness of adaptive narrowbandbeamforming with respect to bandwidth

based on the loss of performance in terms of Signal to Interference plus Noise Ratio (SINR). The

criterion used by Zatman to define a narrowband environment,i.e. the ratio between the jammer plus

noise covariance matrix and the noise eigenvalue, is studied from the point of view of a loss of SINR

after narrowband beamforming under non narrowband conditions. Using theoretical results about the

eigenvalues and eigenvectors of covariance matrices for signals closely spaced in frequency by Lee [5],

it is shown that Zatman’s criterion can be interpreted as an upper bound on the SINR loss which is

nearly reached under certain conditions that are specified.

Index Terms

Narrowband, array signal processing, adaptive beamforming, bandwidth, robustness, SINR, Direction

Of Arrival.

EDICS Category: SAM-BEAM, SAM-PERF

I. INTRODUCTION

Evolution of radar technology and full digitized arrays allow the short term use of wideband waveforms

for different advantages, such as high range resolution, stealthness, etc. (see, e.g. [1]). This breakthrough

is a new challenge in radar for which broadband time domain orfrequency domain array processing

algorithms allow one to improve performance over standard spatial beamforming based on narrowband
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assumptions [2]. However, this improvement is done at the price of an increased complexity. Therefore,

to optimize the choice between narrowband or broadband beamforming algorithms we have to precisely

evaluate the performance of standard narrowband algorithms when the waveform has a certain given

bandwidth.

In [3], Zatman proposes a general definition of a narrowband signal environment which is often used

as a reference for adaptive beamforming as well as for Direction Of Arrival (DOA) estimation. It is based

on the second eigenvalue of the jammer plus noise covariancematrix. Thus, an environment is qualified

as “narrowband” if this eigenvalue is smaller than 3dB abovethe noise level in the jammer plus noise

covariance matrix. The author has shown by simulations thatan increase of bandwidth leads to the second

eigenvalue rising above the noise floor and a growth of the angular region in which the jammer denies

coverage. Therefore, the decrease of performance of adaptive beamforming algorithms is related to the

second eigenvalue in the jammer plus noise covariance matrix. However, he has not given an explicit

relation between the second eigenvalue level and the beamformer’s performance losses. Moreover, he has

considered a zero-bandwidth target whereas in practical applications, its bandwidth will often be non-zero

like that of the jammer, which may also induce losses on the SINR. Those issues have been partially

considered in [4] where the authors have proposed to define the ratio between the Signal to Interference

+ Noise Ratio (SINR) resulting from narrowband beamformingwith non-zero bandwidth conditions to

that resulting from the same processing with zero bandwidthconditions, as a criterion for narrowband

beamforming. However, they have considered a jammer-free environment, which is not realistic for most

radar applications.

In this paper, we propose to use the same criterion as in [4] tostudy the robustness of adaptive

narrowband beamforming, in the presence of a target and a non-zero bandwidth jammer whose Directions

of Arrival (DOAs) are assumed to be arbitrary. First, we derive the expression of the SINR for zero-

bandwidth and non-zero bandwidth target models. Using theoretical results about the eigenvalues and

eigenvectors of covariance matrices for signals closely spaced in frequency by Lee [5], we show that

under the assumption of a small fractional bandwidth, both models lead to the same expression. Then, we

relate the considered SINR ratio to the criterion proposed by Zatman to define a narrowband environment,

i.e., the ratio between the second eigenvalue of the jammer plus noise covariance matrix and the noise

eigenvalue. Thus, we show that the latter criterion can be interpreted as an upper bound on the SINR

loss due to bandwidth, w.r.t. the target DOA, and derive sufficient conditions for which the upper bound

is nearly reached.

This paper is organized as follows. The data model is given inSection II. Then, the considered
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robustness criterion is given in Section III and detailled for zero-bandwidth and non-zero bandwidth

target models. Finally, this criterion is related to Zatman’s definition of narrowband in Section IV.

II. DATA MODEL

We consider a radar system where the receive antenna is a Uniform Linear Array1 (ULA) composed

of N sensors. The transmitted waveform has carrier frequencyf0 and the array is assumed to have half-

wavelength spacing w.r.t. the carrier frequency. Then, consider an environment composed of one jammer,

thermal noise and a target. The jammer is modelled by a non-zero bandwidth white stationary process

with powerσ2
J and bandwidthB and the thermal noise by a spatially white complex process, with power

σ2
n. The jamming plus noise covariance matrix2 is

R̄ =

∫ B

2

−B

2

σ2
J

B
φJ(f0 + f)φJ(f0 + f)Hdf + σ2

nI (1)

with

φJ(f) =
[

1 e
jπ f

f0
uJ · · · e

j(N−1)π f

f0
uJ

]T

whereuJ = sin(θJ) andθJ is the DOA of the jammer. Finally the target signal is modelled by a stationary

process, with powerσ2
S , known DOAθS and covariance matrix̄RS .

III. ROBUSTNESS CRITERION W.R.T. BANDWIDTH

The common performance measure of SINR is chosen to study therobustness of adaptive narrowband

beamforming w.r.t. bandwidth. In practical cases, knowingwhether a signal is narrowband or not is

important to select the proper spatial processing. If the signal is narrowband, spatial processing alone

is sufficient [6]. On the contrary, under non narrowband conditions, space-time or subband processing

allows one to compensate for performance losses due to bandwidth, see e.g., [2, chap.6], [7]–[10].

Under non-zero bandwidth conditions, the SINR expression is given by

SINR =
w

H
R̄Sw

wHR̄w
(2)

whereR̄ and R̄S are defined in the previous Section andw is a spatial filter. When a zero-bandwidth

designed adaptive beamformer is computed under non-zero bandwidth conditions, its expression is given

1The results of this paper are easily extended to an arbitraryarray geometry.
2As in [3], we consider a radar scenario, assuming that this covariance matrix does not contain a target signal’s component

and study steady-state performance.
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by3

wNZB ∝ R̄
−1φS (3)

and the SINR expression becomes, using (3) in (2)

SINR =
φH

S R̄
−1

R̄SR̄
−1φS

φH
S R̄−1φS

. (4)

In practical applications, the target and jammer bandwidthcan often be assumed to be identical. Indeed,

when receiving a non-zero bandwidth target signal, a bandpass filter is often applied to the data, thus

reducing the jammer bandwidth to that of the signal. Therefore, we consider in the following a non-zero

bandwidth target with the same bandwidthB as that of the jammer. However, to make the analysis of

the full non-zero bandwidth case (i.e. non-zero bandwidth jammer and target) easier, we first consider

the simpler case of a zero-bandwidth target model with a non-zero bandwidth jammer model. In the

following, we detail SINR expression (4) depending on the target model.

A. Zero-bandwidth target case

Here, we assume that the target signal is modelled by a zero-bandwidth stationary process. Its covari-

ance matrix is given by

R̄S
def
= RS = σ2

SφSφH
S (5)

with

φS =
[

1 ejπuS · · · ej(N−1)πuS

]T

whereuS = sin(θS). (6)

Injecting (5) in (4), we obtain

SINRNZB = σ2
SφH

S R̄
−1φS . (7)

B. Non-zero bandwidth target case

Here, we assume that the target is modelled by a non-zero bandwidth white stationary process with

bandwidthB.Its covariance matrix may be written as4

R̄S =

∫ B

2

−B

2

σ2
S

B
φS(f0 + f)φS(f0 + f)Hdf (8)

3We use the subscriptNZB when the environment is non-zero bandwidth andZB when it is zero-bandwidth.
4Note that in [4], a simpler rank-one target covariance matrix of the form R̄S = σ2

Sφ̄Sφ̄
H

S with φ̄S ∝

R
B
2

−

B
2

φS(f0 + f)df

was used.
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with

φS(f) =
[

1 e
jπ f

f0
uS · · · e

j(N−1)π f

f0
uS

]T

.

Now we show that (4) can be approximated by the SINR expression obtained with a zero-bandwidth

target (7) under the assumption of a small fractional bandwidth. More precisely, we prove in Appendix

I the following result:

Result 1: When the second eigenvalue of the target covariance matrixλ2 satisfiesλ2 ≪ (σ2
n

σ2
J

)σ2
S , the

SINR appearing in criterion (4) is approximated by:

SINRNZB = σ2
SφH

S R̄
−1φS . (9)

This approximation is validated by extensive numerical comparisons, for arbitrary jammer DOAs and

number of sensors. For instance, Fig. 1 compares actual SINR(4) to approximate one (9) as a function

of the target DOA. The parameters areN = 10, σ2
J = 30 dB, σ2

S = 0 dB, σ2
n = 0 dB, uJ = 0.1

(those parameters will be used in the following simulations) and the fractional bandwidthB
f0

= 0.15. We

observe that the approximation is accurate except when the target DOA is close to array endfire. Then,

to illustrate the influence of the fractional bandwidth, we plot in Fig. 2 the same expressions, as well as

the termρ = λ2σ
2
J

σ2
nσ2

S

, as a function of the fractional bandwidth, withuS = 0.15. First, we note that the

approximation remains accurate for fractional bandwidthsup to about0.15. Then, we observe thatλ2

rapidly increases with the SINR and that the condition in Result 1 is sufficient but not necessary. Indeed,

the approximation may be very accurate whereas the condition λ2σ2
J

σ2
nσ2

S

≪ 1 is not satisfied, due to the

coarse upper-bounds used for the derivation of Result 1.

C. Expression of the robustness criterion

Here, we introduce a robustness criterion defined by the ratio between the non-zero bandwidth SINR

(for both zero-bandwidth and non-zero bandwidth targets with B
f0

≪ 1) and the zero-bandwidth SINR

[4]. This criterion allows one to quantify the loss in SINR due to the increase of bandwidth of the

environment (see, e.g. [3] for illustrations of this loss inSINR). Its expression is

r =
SINRNZB

SINRZB
(10)

where SINRNZB is given by (7) and (9) andSINRZB is the optimal SINR under zero-bandwidth

conditions equal to

SINRZB = σ2
SφH

S R
−1φS

September 12, 2007 DRAFT
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Fig. 1. Actual SINR (4) and approximate SINR (9), as a function of the target DOA.
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where

R = σ2
JφJφH

J + σ2
nI (11)

is the zero-bandwidth jamming plus noise covariance matrix, andφJ = φJ(f0) is the zero-bandwidth

jammer steering vector. Becauser < 1, r−1 will denote the SINR loss throughout the paper. Using the

expressions ofSINRNZB and SINRZB in (10), we obtain the detailed form of the chosen robustness

criterion

r =
φH

S R̄
−1φS

φH
S R−1φS

. (12)

IV. RELATION BETWEEN THE SINR LOSS AND ZATMAN ’ S DEFINITION OF NARROWBAND

Now, we want to relate SINR ratio (12) to the ratio between thesecond eigenvalue of the jammer

plus noise covariance matrix and the noise eigenvalue, proposed by Zatman for defining a narrowband

environment.

A. Upper bound on the SINR loss

Assuming that the fractional bandwidth is small, we prove inthe conditions of Zatman [3] the following

result:

Result 2: In the presence of a zero-bandwidth target and a non-zero bandwidth jammer, the ratio

between the second eigenvalue of the jammer plus noise covariance matrix and the noise eigenvalue is

an upper bound on the SINR lossr−1 of the optimal adaptive beamformer due to bandwidth w.r.t. the

target DOA.

Proof

Using the derivation given in Appendix I and based on the results of [5], the non-zero bandwidth

jammer covariance matrix̄R − σ2
nI can be approximated by a rank-two matrix5 where its largest two

eigenvalues and the associated eigenvector are respectively µ1 − σ2
n ≈ Nσ2

J , µ2 − σ2
n andu1 ≈ φJ√

N
and

u2. Then, using (11),R− σ2
nI = Nσ2

J
φJ√
N

φH
J√
N

. Consequently, we have:

R̄ ≈ R + (µ2 − σ2
n)u2u

H
2 .

Using the matrix inversion lemma, we obtain:

R̄
−1 ≈ R

−1 −R
−1

u2

(

1

µ2 − σ2
n

+ u
H
2 R

−1
u2

)−1

u
H
2 R

−1. (13)

5Note that this assumption has been justified in [3] by the empirical observation that the eigenvalues ofR̄ overtake the noise
floor one at a time when the bandwidth is increased.
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Incorporating (13) in (12), we obtain:

r ≈ 1 − |φH
S R

−1
u2|2

φH
S R−1φS

× 1

( 1
µ2−σ2

n

+ uH
2 R−1u2)

. (14)

A lower bound of this SINR ratio (14) w.r.t. the target DOA is obtained by considering unconstrained

steering vectorφS . In this case, (14) is minimized when the term|φ
H
S R−1u2|2

φH
S R−1φS

is maximized, i.e., with

φS ∝ u2. Using,uH
2 R

−1
u2 ≈ 1

σ2
n

derived fromu
H
2

φJ√
N

≈ u
H
2 u1 = 0, this associated lower bound on

the SINR ratior is equal to6

rlb =
σ2

n

µ2
. (15)

Consequently, the ratio between the noise eigenvalue and the second eigenvalue of the jammer plus

noise covariance matrix can be interpreted as a lower bound on the SINR ratior or conversely, the ratio

between the second eigenvalue of the jammer plus noise covariance matrix and the noise eigenvalue as

an upper bound on the SINR loss. From this result, we deduce anupper bound of the SINR lossr−1

in the presence of a narrowband jammer, in the sense of Zatman’s definition. Thus, when the second

eigenvalue of the jammer plus noise covariance matrix is smaller than 3dB above the noise eigenvalue,

Result 2 proves that the SINR loss will be smaller than 3dB forarbitrary target and jammer DOAs.

Indeed, ifµ2 ≤ 2σ2
n, we have:

1 ≤ SINR loss=
1

r
≤ 1

rlb

=
µ2

σ2
n

≤ 2.

For a non-zero bandwidth target, we have shown in Section IIIthat the SINR expression could be

precisely approximated by the SINR expression in the presence of a zero-bandwidth target, under the

assumption thatλ2 ≪ (σ2
n

σ2
J

)σ2
S whereλ2 is the second eigenvalue of the target covariance matrix (see

Result 1). Therefore, Result 2 is also valid for a non-zero bandwidth target, under the latter assumption.

After having given a general relation between Zatman’s criterion and the SINR lossr−1, we now want

to give sufficient conditions for which the upper boundr−1
lb is nearly reached for a certain DOA of the

target.

6Note that an approximation ofu2 is given by the derivative ofφJ(f) w.r.t. f , orthogonalized byφJ , u2 ≈
`

I−
φJ φH

J
N

´

dφJ (f)

df

k

f=f0
‚

‚

‚

`

I−
φJ φH

J
N

´

dφJ (f)
df

k

f=f0

‚

‚

‚

+ o( B
f0

) [5]. Since there is no target DOA for whichφS is proportional to this vector, the lower

bound on the SINR ratio can not be reached.
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B. Derivation of sufficient conditions for which the upper bound is nearly reached

For ease of notations, we only consider the zero-bandwidth target model. However, as we have already

noted, the analysis remains valid in the presence of a non-zero bandwidth target under the conditions

given by Result 1.

Our aim is to analyze the SINR ratio given by (12). To proceed,we first use the approximation

introduced in [3] and justified by the analysis of Lee [5] applied to the spectral representation of stationary

bandlimited signals (see Appendix I), to replace the jammercovariance by a rank-two matrix, under the

assumption of a small fractional bandwidth. Then, we make the second assumption that the array is

composed of many sensors7 which allows one to derive limit expressions of the considered SINR ratio.

1) Approximation of covariance matrix:We use the following approximation:

R̃ =
σ2

JφJ,1φ
H
J,1 + σ2

JφJ,2φ
H
J,2

2
+ σ2

nI (16)

with

φJ,1 = φJ(f0 − ∆f)

φJ,2 = φJ(f0 + ∆f)

where∆f = B

2
√

3
. We have validated this second approximation by extensive numerical comparisons.

However, we note that the rank-two approximation leads to significant errors in the SINR expression,

when the fractional bandwidth is too large. Indeed, in that case, the effective rank of the covariance

matrix is larger than 2 and the approximation is not justifiedanymore. However, simulations show

that for fractional bandwidths up toB
f0

= 0.3, with the chosen parameters, this approximation remains

acceptable. It is illustrated in Fig. 3 where we plot expression (7) with or without approximation of the

covariance matrix according to (16) forB
f0

= 0.3 as a function of the target DOA and in Fig. 4 for

uS = 0.15 as a function of the fractional bandwidth.

We observe that errors due to this second approximation are very small. Therefore, (16) may be used

for analysis of the non-zero bandwidth case at small fractional bandwidths.

2) Derivation of limit expressions of the SINR ratio:The approximation ofR̄ in (12) by R̃ allows

one to derive a closed-form expression ofSINRNZB (7) and then ofr. Indeed, after a double application

7This assumption is justified in most radar applications, forwhich high spatial resolution is required.

September 12, 2007 DRAFT



10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−35

−30

−25

−20

−15

−10

−5

0

5

10

u
S
 = sin(θ

S
)

S
IN

R
 (

dB
)

 

 

actual

approximate

Fig. 3. Actual SINR (7) with or without approximation of the jammer plus noise covariance matrix by (16) as a function of
the target DOA
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of the matrix inversion lemma, we can write

φH
S R̃

−1φS =
N

σ2
n

−
∣

∣φH
S φJ,2

∣

∣

2

σ4
nβ

−
∣

∣φH
S φJ,1

∣

∣

2

σ4
nα

−
∣

∣φH
S φJ,2

∣

∣

2 ∣
∣φH

J,2φJ,1

∣

∣

2

σ8
nβ2α

+
2

σ6
nβα

Re[(φH
S φJ,2)(φ

H
J,1φS)(φH

J,2φJ,1)]

with β = 2
σ2

J

+ N
σ2

n

, α = β − |φH
J,1φJ,2|2
σ4

nβ
and

φH
S φJ,1 = e−j(N−1)x1

sin(Nx1)

sin(x1)

φH
S φJ,2 = e−j(N−1)x2

sin(Nx2)

sin(x2)

φH
J,2φJ,1 = e−j2(N−1)∆x sin(2N∆x)

sin(2∆x)

where

x1 = x0 + ∆x

x2 = x0 − ∆x

x0 =
π

2
(uS − uJ)

∆x =
π

2

∆f

f0
uJ . (17)

Then after a Taylor series expansion, usingN ≫ 1 and ∆f
f0

≪ 1 under constraintN ∆f
f0

≪ 1, andσ2
J

σ2
n

≫ 1,

we can write forx0 6= 0

φH
S R̃

−1φS ≈ φH
S R

−1φS − b2

4a

(

3σ2
J∆x2

N3σ2
nσ2

J∆x2 + 3σ4
n

)

with






a = sin2(Nx0)
sin2(x0)

b = Nsin(2Nx0)
sin2(x0)

− sin2(Nx0)sin(2x0)
sin4(x0)

.
(18)

We deduce an approximate expression of the proposed criterion:

r ≈ 1 −
b2

4a

(

3σ2
J∆x2

N3σ2
nσ2

J∆x2+3σ4
n

)

φH
S R−1φS

. (19)
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Fig. 5. Actual SINR ratio (12) and approximate SINR ratio (19), as a function of the target DOA.

In order to validate the latter equation, we now compare in Fig. 5 approximate relation (19) with actual

one (12) w.r.t. the target DOA. The fractional bandwidth isB
f0

= 0.1.

First, we observe that the approximate plot is an accurate estimate ofr. We notice that when the target

is in the vicinity of the jammer, the SINR lossesr−1 increase until a target position close to that of the

jammer. Then, from that position to the jammer one, the SINR losses quickly decrease. When the target

and jammer DOAs are equal, the losses have nearly vanished (actual ratio (12) is equal toσ
2
n+Nσ2

J

µ2
≈ 1

[5] whereµ1 is the largest eigenvalue of̄R).

Next, we want to estimate the ’worst-case’ SINR ratiormin w.r.t. the target DOA and relate it to the

lower boundrlb (15). We prove the following result:

Result 3: Under the assumptions thatB
f0

≪ 1 and N ≫ 1 under constraintN B
f0

≪ 1, the maximal

SINR lossr−1
min w.r.t. the target DOA nearly reaches the upper boundr−1

lb equal to the ratio between the

second eigenvalue of the jammer plus noise covariance matrix and the noise eigenvalue.

Proof

Noticing that the minimum SINR ratiormin is reached when0 < |x0| ≪ 1, we can use a Taylor series
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Fig. 6. Actual and approximate (21) values ofrmin , as a function of the fractional bandwidth.

expansion of termb2

a
in (19), and obtain after a few algebraic manipulations summarised in Appendix II

b2

a
≈ 4

9
N6x2

0. (20)

Then, by noticing thatφH
S R

−1φS ≈ N3x2
0

3σ2
n

for σ2
J

σ2
n

≫ 1, 0 < |x0| ≪ 1 and using (17), we obtain the

following approximation of the minimum value ofr:

rmin ≈ σ2
n

N3

3 σ2
J∆x2 + σ2

n

=
σ2

n

N3

3 σ2
J

π2

48

(

B
f0

)2
u2

J + σ2
n

. (21)

We remark thatN3

3 σ2
J

π2

48

(

B
f0

)2
u2

J represents the first order Taylor series expansion of the second

eigenvalue of the jammer’s noise free covariance matrix (deduced from [3, rels 27 and 28] forNB
f0

≪ 1),

so that the denominator of (21) approximatesµ2. Finally, taking the inverse of (21) completes the proof.

In order to observe the influence of the fractional bandwidthw.r.t. minimal SINR ratiormin, we now

plot in Fig. 6 this one as a function ofB
f0

.

First, we note that approximate expression (21) is a very accurate estimate of the actual valuermin
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Fig. 7. Actual and approximate (21) values ofrmin , as a function of the number of sensors.

obtained from (12), except for important fractional bandwidths. Second, we observe thatrmin rapidly

decreases when the fractional bandwidth increases. Then, we analyze the influence of the number of

sensors onrmin. Fig. 7 shows the value of this criterion for the actual and approximate expressions, for

different values ofN and B
f0

= 0.05.

We observe that the approximation given by (21) is very accurate, except for high values ofN . This

can be explained by the fact that the series expansion done previously is valid under the hypothesis that

N ∆f
f0

≪ 1.

V. CONCLUSION

In this paper, the robustness of adaptive narrowband beamforming with respect to bandwidth has been

studied where the criterion of the loss of performance of thestandard narrowband processing in terms

of SINR, under the assumption of a non-zero bandwidth environment, w.r.t. the narrowband case has

been proposed. Using results about the eigenvalues and eigenvectors of the covariance matrix for signals

closely spaced in frequency, this SINR loss has been relatedto the ratio between the second eigenvalue

of the jammer plus noise covariance matrix and the noise eigenvalue. Thus, it has been shown that under

the assumption of a small fractional bandwidth, the SINR loss is upper bounded by the ratio between
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the second eigenvalue of the jammer plus noise covariance matrix and the noise eigenvalue, for both

zero-bandwidth and non-zero bandwidth target models. Then, sufficient conditions for which the upper

bound of the SINR loss is nearly reached have been given.

APPENDIX I: PROOF OFRESULT 1

First, consider the EVD of̄RS :

R̄S =

N
∑

n=1

λnvnv
H
n .

Using the spectral representationxt =
∫

B

2

−B

2

ej2πftdµ(f) of the complex envelope of the wide-sense

stationary bandlimited Gaussian target signals, approximated byxt ≈
∑L−1

l=0 ale
j2πflt with fl = (−L +

2l + 1) B
2L

, L ≫ 1 and (al)l=0,...,L−1 uncorrelated Gaussian random variables withE{|al|2} =
σ2

J

L
, R̄S

can be approximated as the spatial covariance associated with a discrete sum of zero-bandwidth signals

closely spaced in frequency for low fractional bandwidths:

R̄S ≈
L−1
∑

l=0

σ2
S

L
φS(f0 + fl)φ

H
S (f0 + fl).

Consequently, the results of [5] apply. In particular

v1 =
φS√
N

+ O(
B

f0
)

and

λ1 = tr(R̄S) + O(
B

f0
),

λn = O

[

(

B

f0

)2(n−1)
]

for n > 1

Therefore, for B
f0

≪ 1, v1 ≈ φS√
N

andλ1 ≈ Nσ2
S and the non-zero bandwidth target covariance matrix

R̄S can be approximated by the rank-two matrix

R̄S ≈ σ2
SφSφH

S + λ2v2v
H
2 . (22)

Injecting (22) in (4), we obtain

SINR ≈ σ2
SφH

S R̄
−1φS

(

1 +
λ2

∣

∣φH
S R̄

−1
v2

∣

∣

2

σ2
S(φH

S R̄−1φS)2

)

. (23)
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Now, we derive a sufficient condition to neglect the second term in (23). To proceed, let consider the

following ratio
λ2

∣

∣φH
S R̄

−1
v2

∣

∣

2

σ2
S(φH

S R̄−1φS)2

and compare it to unity. Using the Cauchy-Schwartz inequality, we have

λ2

∣

∣φH
S R̄

−1
v2

∣

∣

2

σ2
S(φH

S R̄−1φS)2
≤ λ2v

H
2 R̄

−1
v2

σ2
SφH

S R̄−1φS

.

Then, sincevH
2 R̄

−1
v2 ≤ 1

µN
≤ 1

σ2
n

and φH
S R̄

−1φS ≥ N
µ1

whereµ1 andµN are given by the EVD of

R̄ =
∑N

n=1 µnunu
H
n , we obtain:

λ2

∣

∣φH
S R̄

−1
v2

∣

∣

2

σ2
S(φH

S R̄−1φS)2
≤ λ2µ1

Nσ2
Sσ2

n

.

A sufficient condition to neglect the second term in (9) is therefore that

λ2µ1

Nσ2
Sσ2

n

≪ 1

and sinceµ1 ≈ Nσ2
J for B

f0
≪ 1, this condition becomes

λ2 ≪ (
σ2

n

σ2
J

)σ2
S

which proves Result 1.

APPENDIX II: PROOF OF(20)

With
b2

a
=

4sin2(Nx0)

sin2(x0)

(

N

tan(Nx0)
− 1

tan(x0)

)2

deduced from (18), (20) is straightforwardly obtained froma third order expansion oftan(Nx0) and

tan(x0) in Nx0 and x0 respectively, under the assumption thatx0 ≪ 1 and N ≫ 1 with constraint

Nx0 ≪ 1.
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