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JUSTIFIED SEQUENCES IN STRING DIAGRAMS: A
COMPARISON BETWEEN TWO APPROACHES TO

CONCURRENT GAME SEMANTICS

CLOVIS EBERHART, TOM HIRSCHOWITZ

Abstract. We compare two approaches to concurrent game semantics, one
by Tsukada and Ong for a simply-typed λ-calculus and the other by the authors
and collaborators for CCS and the π-calculus. The two approaches are obvi-
ously related, as they both define strategies as sheaves for the Grothendieck
topology induced by embedding “views” into “plays”. However, despite this
superficial similarity, the notions of views and plays differ significantly: the
former is based on standard justified sequences, the latter uses string diagrams.

In this paper, we relate both approaches at the level of plays. Specifically,
we design a notion of play (resp. view) for the simply-typed λ-calculus, based
on string diagrams as in our previous work, into which we fully embed Tsukada
and Ong’s plays (resp. views). We further provide a categorical explanation of
why both notions yield essentially the same model, thus demonstrating that
the difference is a matter of presentation.

In passing, we introduce an abstract framework for producing sheaf models
based on string diagrams, which unifies our present and previous models.
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1. Introduction

Two approaches to concurrent game semantics. Recent advances in con-
current game semantics have produced new games models for CCS and the π-
calculus [18, 19, 7] and a non-deterministic, simply-typed λ-calculus [31]. These
models are based on categories of innocent and concurrent strategies which share
the feature of being defined as categories of sheaves over a site of plays.

The two models are obviously related, as they both define innocent strategies
as sheaves for the Grothendieck topology induced by embedding views into plays.
However, despite this superficial similarity, the notions of views and plays differ
significantly. Indeed, Tsukada and Ong define them as justified sequences of moves
satisfying additional conditions, as in standard Hyland-Ong/Nickau (HON) game-
semantics [20, 27]. On the other hand, our plays [18, 19, 7] are based on ad hoc
string diagrams, as originally suggested by Melliès in a different setting (circa 2008,
published as Melliès [26]).

This appears to have motivated one of the main – legitimate – objections to our
approach: plays are not justified sequences, so why call this game semantics?

Comparing both approaches. In this paper, we relate both approaches not only
at the superficial level described above, but also at the level of plays. Specifically, we
design a notion of play (resp. view) for the simply-typed λ-calculus, based on string
diagrams as in our previous work, into which we embed Tsukada and Ong’s plays
(resp. views) as justified sequences. We thus obtain (for each pair of arenas [20]) a
commuting square

(1)
VA,B PA,B

EV
(A ⊢ B) E(A ⊢ B)

iTO

FV

i

F

of embeddings of categories:
● iTO denotes the embedding of Tsukada and Ong’s views (TO-views for
short) into plays (TO-plays for short);

● i denotes the embedding of our views into plays;
● FV and F respectively denote the constructed embeddings from TO-views
into views and from TO-plays into plays.

Furthermore, we prove that all these embeddings are full (Theorem 144), and that
FV is an equivalence of categories (Theorem 151).

Using this and Guitart’s theory of exact squares [16], we provide a categorical
explanation of why both induced categories of innocent strategies coincide.

Terminology 1. Let us make the following point precise now, for clarity. In
standard game semantics as well as in our approach, there are in fact two notions
of innocent strategies:

● The first is as sets of views with additional properties. In a concurrent set-
ting, this generalises to presheaves on views. We here call these behaviours
(resp. TO-behaviours for Tsukada and Ong’s notion).
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● The second is as sets of plays with additional properties, including so-called
innocence. In a concurrent setting, this generalises to sheaves on views. We
here call these innocent strategies (resp. innocent TO-strategies). Mere
presheaves on plays thus correspond to possibly non-innocent strategies.

Our second result (Corollary 116) states that the square of functors

V̂A,B P̂A,B

̂EV
(A ⊢ B)

̂E(A ⊢ B)

∏iTO

∆
FV

∏i

∆F

induced by (1) commutes up to isomorphism. Here, ∏f denotes right Kan extension
along fop , and ∆f denotes restriction along fop . The result entails:

● that ∆FV is an equivalence of categories between TO-behaviours and be-
haviours;

● that ∆F restricts to an equivalence of categories between innocent TO-
strategies and innocent strategies.

Remark 1. We are perhaps more honest than needed in claiming only a full em-
bedding from TO-plays into plays. Indeed, it would be very easy to impose an
additional condition on plays – alternation – in order to obtain an equivalence of
categories. The point is that we want to compare the purely diagrammatic notion
of play with the classical one. And since we obtain an equivalence between both
notions of innocent strategies anyway, we feel the result is in fact more convincing.

In passing, we provide an alternative characterisation of our, and hence also of
Tsukada and Ong’s, categories of views and plays for HON games as subcategories
of slices of a presheaf category (Theorem 98). This yields a presentation of views
and plays which, though less elementary, offers perhaps more structure than the
original and thus may be of interest for future developments.

In summary, our main contribution is a clarification of the link between our plays
based on string diagrams and the more classical justified sequences: the difference
is essentially a matter of presentation.

An abstract framework for constructing sheaf models. As a secondary con-
tribution, when constructing our model, instead of merely applying previously used
methods in a slightly different context, we set up an abstract framework for pro-
ducing sheaf models based on string diagrams. This framework admits both of our
previous models and the new one presented here as special cases. The hope is of
course that this will facilitate the construction of future sheaf models. Let us briefly
explain this before delving into technical details.

In both our approach and Tsukada and Ong’s, there is in fact one category of
plays EX for each initial position X in the game (as we saw above with X = (A ⊢
B)). In our approach, these categories are constructed in a uniform way from an
algebraic structure called a pseudo double category [8, 9, 13, 14, 24, 12], which,
intuitively, describes the game as a whole. A pseudo double category essentially
consists of a set ob(D) of objects, modelling positions in the game. For each pair
(X,Y ) of positions, there is a set Dv(Y,X) which models all plays with initial
position X and final position Y . Moreover, for all positions X ′ there is another
set Dh(X ′,X) of morphisms from X ′ to X, which, roughly, models all ways of
embedding the position X ′ into X. Finally, given plays and morphisms as in



4 CLOVIS EBERHART, TOM HIRSCHOWITZ

Y ′ Y

X ′ X

h

u

k

v

(where plays in Dv are marked with bullets to distinguish them from morphisms
in Dh), there is a set D(h,u, k, v) of cells, which model embeddings from u into v,
preserving both the initial and final positions. E.g., u could describe the part of the
play v which concerns players in X ′. Pseudo double categories enjoy quite a few bits
of additional structure, like composition of morphisms and plays, and vertical and
horizontal composition of cells, satisfying coherence conditions. The pseudo double
categories used in our sheaf models satisfy a few additional properties, among which
the crucial “fibredness” of the title.

Beyond providing a uniform construction for the categories EX , this rich struc-
ture yields links between them, which greatly facilitate the development. Indeed,
each play u∶Y X induces a functor S(u)∶Sh(EX) → Sh(EY ) between the cor-
responding categories of sheaves (a.k.a. innocent strategies). Similarly, each mor-
phism h∶X ′

→ X induces a restriction functor S(h)∶Sh(EX) → Sh(EX′). These
functors are semantically relevant: for any innocent strategy S ∈ Sh(EX), S(u)(S)
denotes the “residual” of S after u, i.e., a description of how the players of X would
behave according to S after playing u. A meaningful transition system on innocent
strategies is then (roughly) given by triples S

M
Ð→ S(M)(S), for any move M in the

game. The obtained transition system is shown in both of our previous models to
be closely related to the operational semantics of the considered calculus. On the
other hand, S(h)(S) denotes a restriction of S to X ′, i.e., a description of S for
players in the subposition X ′ of X. This is useful for composing strategies: if a
given position X is divided into two subpositions X ′ and X ′′, thought of as two
teams, a composite (in a sense analogous to parallel composition in game semantics)
of S′ ∈ Sh(EX′) and S′′ ∈ Sh(EX′′) is any S ∈ Sh(EX) whose respective restrictions
to X ′ and X ′′ give S′ and S′′.

We thus set out to produce such fibred pseudo double categories automatically
from more basic data. The kind of basic data we will use is the notion of signature
defined in Section 3. From any signature S, we construct a pseudo double category
D(S). Up to the verification of a few additional conditions on D(S), new sheaf
models may thus be produced directly from nice signatures S.

As mentioned above, one crucial such condition, on which the very construction
of our categories EX is based, is fibredness. Our second main contribution is then
in Section 4 to prove that under suitable hypotheses, D(S) satisfies this property.
More precisely, we provide two results:

● Under a necessary and sufficient, but hard-to-verify condition essentially
saying that fibredness is satisfied for all basic moves in S, we prove that
D(S) is fibred (Theorem 83).

● We then exhibit sufficient, easier-to-verify conditions for the result to hold
(Theorem 92).

By plugging both results together, we obtain (Corollary 93) that any S satisfying
the given sufficient conditions yields a fibred D(S).

Plan. The paper is organised as follows. We start by recalling Tsukada and Ong’s
notion of strategy, the notion of pseudo double category, as well as a few useful facts
about presheaf categories in Section 2. In Section 3, we first design what will be the
signature SHON for HON games. We then generalise this to define signatures and
construct the pseudo double category D(S) of plays on any signature S, which we
finally instantiate with SHON , giving rise to the pseudo double category D(SHON )
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we want to construct for HON games. We also state and motivate the fibredness
property, which we then study in Section 4, where we provide sufficient criteria for
it to be satisfied by D(S). In particular, we show that these criteria are satisfied by
SHON . In Section 5, we relate the obtained categories of views, plays and strategies
to Tsukada and Ong’s. We finally conclude in Section 6.

Notation. We often use natural numbers n to denote sets {1, . . . , n}. We denote
by Ĉ the category of presheaves over any category C, i.e., contravariant functors to
the category Set of sets. We further denote F (f)(x) by x ⋅f , for any presheaf F ∈ Ĉ,
C,D ∈ C, f ∶C → D, and element x ∈ F (D). The Yoneda embedding is denoted by
y∶C → Ĉ and often left implicit. Finally, for any category C, let Cf denote its full
subcategory of finitely presentable objects [1].

2. Preliminaries

2.1. Tsukada-Ong strategies. Let us start with a brief recapitulation on Tsukada
and Ong’s categories of views and plays, as well as their notion of strategy.

As usual in game semantics, games are based on arenas. An arena consists of
a finite set of polarised moves, organised into a forest via a so-called justification
relation. A compact definition is:

Definition 2. An arena is a simple forest, i.e., a directed, simple graph in which
all vertices are uniquely reachable from a unique root (= vertex without a parent).

Vertices will be called moves, and roots will be deemed initial.

Remark 2. This graph-based notion of arena, already used, e.g., by Harmer et
al. [17], slightly differs from Tsukada and Ong’s relation-based notion. For in-
stance, their notion comprises non-empty arenas without initial moves, e.g., the
integers with justification given by predecessor and so-called ownership given by
parity. In fact, any relation-based arena A is isomorphic (in the category of arenas
and innocent strategies) to the simple forest FA given by the part of A which is
reachable from its roots. Furthermore, FA and A yield the exact same categories of
views and plays. So we deliberately restrict attention to graph-based arenas.

Notation 3. All forests considered in the sequel are simple, and we omit to mention
it. We denote by

√

A the set of roots of A. If A is an arena and m is a move in
A, then A/m is the forest strictly below m, and A ⋅m denotes A/m when m ∈

√

A.
Any forest A is a coproduct of trees, so that A ≅ ∑m∈

√
A Tm where each Tm is a

tree. For any arena A and m ∉ A, we denote by m.A the unique tree T such that
√

T = {m} and T ⋅m = A. Thus, any forest may be written as A = ∑m∈
√
Am.(A ⋅m).

The ownership of any vertex m ∈ A is O (for Opponent) if the length of the unique
path from a root to m is even, and P (for Proponent) otherwise. So, e.g., all roots
have ownership O. We denote this map MA → {P,O} by λA, where MA is the set
of moves of A.

Let us fix arenas A and B. Let A ⊸ B denote the simple graph obtained by
adding to A+B an edge b→ a for all b ∈

√

B and a ∈
√

A. The notion of ownership
straightforwardly extends to A ⊸ B since all paths from any root to some vertex
v have the same length. Concretely, ownership is left unchanged in B but reversed
in A (if B contains at least one root).

Remark 3. This is an arena iff B has at most one root or A is empty.

Definition 4. A justified sequence on (A,B) consists of a natural number n ∈ N,
equipped with maps f ∶n→MA +MB and ϕ∶n→ {0} ⊎ n such that, for all i ∈ n,

● ϕ(i) < i,
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● if ϕ(i) = 0 then f(i) ∈
√

B, and
● if ϕ(i) ≠ 0, then f(ϕ(i)) is the parent of f(i) in A⊸ B.

We denote by ∣(n, f,ϕ)∣ the length n of the sequence (n, f,ϕ).
For any i ∈ n, the view ⌈(n, f,ϕ)⌉i of i in (n, f,ϕ) is the subset of n defined

inductively by:
● ⌈(n, f,ϕ)⌉i = {i} if i is an Opponent move with ϕ(i) = 0,
● ⌈(n, f,ϕ)⌉i = ⌈(n, f,ϕ)⌉j ∪ {i} if i is an Opponent move with ϕ(i) = j > 0,
● ⌈(n, f,ϕ)⌉i = ⌈(n, f,ϕ)⌉i−1 ∪ {i} if i is a Proponent move.

A justified sequence s = (n, f,ϕ) on (A,B) is P -visible iff for all Proponent
moves i, ϕ(i) ∈ ⌈s⌉i. We further say that s is alternating iff for all i ∈ n − 1,
λA⊸B(i) ≠ λA⊸B(i + 1).

Definition 5. A preplay on the pair of arenas (A,B) is a P -visible, alternating,
justified sequence on (A,B).

A morphism of preplays g∶ (n, f,ϕ) → (n′, f ′, ϕ′) is an injective map g∶n → n′

such that:
● f ′(g(i)) = f(i) for all i ∈ n,
● ϕ′(g(i)) = g(ϕ(i)) for all i ∈ n (with the convention that g(0) = 0),
● g(2i) = g(2i − 1) + 1 for all i ∈ n/2.

The last condition says that g should preserve blocks of an Opponent move and the
next Proponent move (so-called OP -blocks).

Proposition 6. Pre-plays and morphisms between them form a category PPA,B,
with composition given by composition of underlying maps.

Definition 7. A TO-play is a preplay of even length. The category PA,B is the
full subcategory of PPA,B spanning TO-plays.

Definition 8. A TO-view on (A,B) is a TO-play s = (n, f,ϕ) such that ∣s∣ > 0
and ⌈s⌉n = s. Let VA,B denote the full subcategory of PA,B spanning TO-views.

As is well-known, a view is just a play in which Opponent moves are justified by
their predecessors:

Lemma 9. A TO-play s = (n, f,ϕ) is a TO-view iff for all odd i ∈ n, ϕ(i) = i − 1.

The inclusion iTO ∶VA,B ↪ PA,B induces in particular an adjunction

P̂A,B � V̂A,B ,
∆iTO

∏iTO

where ∆F denotes restriction along F op and ∏F denotes right Kan extension along
F op .

Definition 10. We call V̂A,B the category of TO-behaviours. The category Sh(PA,B)

of innocent strategies on (A,B) is the essential image of ∏iTO
.

By construction, ∏iTO
restricts to an equivalence Sh(PA,B) ≃ V̂A,B .

2.2. Pseudo double categories. A pseudo double category D consists of a set
ob(D) of objects, shared by a “horizontal” category Dh and a ‘vertical’ bicategory
Dv. Following Paré [28], Dh, merely being a category, has standard notation (normal
arrows, ○ for composition, id for identities), while the bicategory Dv earns fancier
notation ( for arrows, ● for composition, id● for identities). Moreover, for each
“square” as on the left below, D comes equipped with a set of cells α, wich have
vertical, resp. horizontal, domains and codomains, denoted by domv(α), codv(α),
domh(α), and codh(α). We picture this as on the right below.



JUSTIFIED SEQUENCES IN STRING DIAGRAMS 7

X ′ Y ′ X ′ Y ′

X Y X Y ,

h

u u′

h

u u′

h′ h′

α

where u = domh(α), u′ = codh(α), h = domv(α), and h′ = codv(α). D is fur-
thermore equipped with operations for composing cells: ○ composes them along a
common vertical morphism, ● composes along horizontal morphisms. Both verti-
cal compositions (of morphisms and cells) may only be associative up to coherent
isomorphism. The full axiomatisation is given by Garner [12], and we here only
mention the interchange law, which says that both ways of parsing the following
diagram coincide:

X X ′ X ′′

Y Y ′ Y ′′

Z Z ′ Z ′′,

h

u

h′
u′

k

k′
u′′

v

h′′

v′

k′′

v′′

α α′

α α′

i.e., (β′ ○ β) ● (α′ ○ α) = (β′ ● α′) ○ (β ● α).
For any pseudo double category D, we denote by DH the category with vertical

morphisms as objects and cells as morphisms, and by DV the bicategory with
horizontal morphisms as objects and cells as morphisms. Domain and codomain
maps extend to functors domv, codv ∶DH → Dh and domh, codh∶DV → Dv. We will
refer to domv and codv simply as dom and cod, reserving subscripts for domh and
codh .

Here is one of the prime examples of a pseudo double category, on which our
construction will be based.

Example 11. Starting from any category C with pushouts, consider the pseudo
double category Cospan(C) with

● C itself as horizontal category, i.e., Cospan(C)h = C,
● as vertical morphisms X Y all cospans X → U ← Y , and
● as cells all commuting diagrams

(2)

X X ′

U U ′

Y Y ′,

k

h

l

with dom(k, l, h) = k, domh(k, l, h) = (X → U ← Y ), etc.
Composition in Cospan(C)v is defined by (some global choice of) pushout and com-
position in Cospan(C)V follows by universal property of pushout.

Any signature S will comprise a base category C, and D(S) will be a sub-pseudo
double category of Cospan(Ĉ). Very roughly, C will be equipped with a notion of
dimension, and S will consist of a selection of cospans

(3) Y
s
Ð→M

t
←ÐX

in Ĉ viewed as morphisms Y X in Cospan(Ĉ)v, where X and Y have dimension
at most 1 and M may have arbitrary dimension. We will call these cospans seeds.
The intuition is that presheaves of dimension ≤ 1 model positions in a game (they
are essentially graphs), whilst higher-dimensional presheaves model the dynamics
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of the game. Thus the cospan (3) models a play, starting in position X and ending
in position Y , and M models how the play evolves from X to Y . Up to some
technicalities, D(S) is the smallest sub-pseudo double category of Cospan(Ĉ) whose
objects are positions and whose vertical morphisms contain seeds.

2.3. Pushouts, pullbacks and monos in presheaf categories. In this final
preliminary section, let us collect a few basic results about pushouts, pullbacks
and monos in presheaf categories, which we will consider to be second nature in
the sequel. The well-known pullback and pushout lemmas are not recalled, though
widely used throughout. Similarly, let us merely recall that epis are stable under
pullback, and that monos are stable under pushout in presheaf categories.

Let us start with an easy result about pullbacks along monos:

Lemma 12. Any commuting square as below with j iso and m monic is a pullback:

A B

C D.
j m

Proof. A simple diagram chase. �

Our second result is specific to sets:

Lemma 13. Any commuting square of the form below left is a pullback if each
rectangle as below right is:

∑i∈I Ai A

∑i∈I Bi B

[fi]i∈I

∑i∈I ki

[gi]i∈I

k

Ai A

Bi B.

fi

ki

gi

k

Proof. Straightforward. �

Our third result is an instance of the other pullback lemma [29].

Lemma 14 (Another pullback lemma). In any presheaf category, for any com-
muting diagram as below with e epi, if the outer rectangle and the left square are
pullbacks then so is the right square:

A B C

X Y Z.e

Proof. An immediate consequence of [29, Theorem 1], given that epis are pointwise,
hence strong, and stable under pullback in presheaf categories. �

Let us continue by recalling the adhesivity properties of presheaf categories [23].

Lemma 15. In any presheaf category, any pushout along a mono is also a pullback.
Explicitly, any pushout square

A B

C D

m

with m mono is also a pullback.

Lemma 16 (Adhesivity). In any presheaf category, for any commuting cube
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I B

A C

I ′ B′

A′ C ′,

with the marked pullbacks, mono and pushout, the front faces are pullbacks iff the
top face is a pushout.

Proof. By [23, Example 6 and Proposition 8 (iii)]. �

Let us finish with a similar-looking statement, which has in fact more to do with
extensivity [5] of Set than with adhesivity.

Lemma 17. In Set, for any commuting cube

I B

A C

I ′ B′

A′ C ′,

f

with the marked pushouts and pullback,
● if I ′ → B′ is injective then the front square is a pullback, and
● if all arrows except perhaps f are injective, then f also is.

Proof. The following proof is due to Paweł Sobociński (private communication). In
Set, the map m∶ I ′ → B′, being injective, may be written as a coproduct injection
m∶ I ′ → I ′ + X ′. But, injective maps being stable under pullback and coproduct
injections being stable under pushout, the whole cube may be written as

I I +X

A A +X

I ′ I ′ +X ′

A′ A′
+X ′,

g

g+k
h

f

with f = h+k. This in particular shows that injectivity of h and k entails injectivity
of f . Let us now show that the front face is a pullback. Indeed, it is the pasting of
both left-hand squares below:

A A +X X

A A +X ′ X ′

A′ A′
+X ′ X ′.

A+k

h h+X′

k



10 CLOVIS EBERHART, TOM HIRSCHOWITZ

All rows being coproduct injections, by extensivity all squares are pullbacks, hence
so is the face of interest by the pullback lemma. �

Corollary 18. For any commuting cube as in Lemma 17 in any presheaf category
with the marked pushouts and pullback,

● if I ′ → B′ is monic then the front square is a pullback, and
● if all arrows except perhaps f are monic, then f also is.

Proof. Monos and pullbacks are pointwise in presheaf categories. �

3. Signatures for pseudo double categories

In this section, we contsruct our signature SHON for HON games, defining the
notion of signature more or less in parallel. We start by adapting the method
used in our previous sheaf models to HON games, until we are able to state the
definition of a signature. We then (abstractly) give the construction of the pseudo
double category D(S) associated to any signature S. Finally, we motivate fibredness
by showing how it occurs in the definition of relevant categories of plays.

3.1. Towards a signature for HON games.

3.1.1. Method. The method used in previous work to design games proceeds in four
stages:

(i) Design a base category C1 over which finitely presentable presheaves will
model positions in the game.

(ii) Select a collection of spans of monomorphisms modelling “typical” moves
in the game. In each selected span Y

d
←Ð Z

c
Ð→X,

● X denotes the initial position of the move,
● Y denotes the final position of the move,
● Z denotes the part of the position which remains unchanged during
the move.

This is in line with the double pushout approach to graph rewriting [10].
(iii) The next step is characteristic of our approach, and allows us to give a

causal representation of plays not as spans but rather as cospans (on a richer
base category). The obtained representation is significantly simpler [6] than
analogous, span-based representations of rewrite sequences [3]. It proceeds
by augmenting C1 to a category C over which finitely presentable presheaves
will also model plays. This goes by adding one new object µS for each
selected span S = (Y

s
←Ð Z

t
Ð→X), in a way that

Z Y

X µS

d

c

t

s

is a pullback (with the marked monos). The resulting cospans Y
s
Ð→ µS

t
←ÐX

are called seeds of the game. In fact, this description of seeds is slightly
naive, as it implies that any two seeds are independent from each other, a
simplification that we cannot afford if we aim at fibredness. So we should
also describe morphisms between the new objects, and select our spans in a
compatible way, which essentially means that they should induce a functor
S∶C≥2 → Cospan(Ĉ)H , where C≥2 is the full subcategory of C spanning the
new objects.

(iv) In the last stage, roughly (see Section 3.3 for details), we construct the
smallest sub-pseudo double category of Cospan(Ĉ)
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● whose objects are positions,
● whose vertical morphisms include all identities and seeds, and
● which contains all pushouts of the form

id●Z id●Z′

S(µS) M

id●h

for all selected spans S = (Y ← Z → X) and morphism h∶Z → Z′ with
Z ′ a position.

The last point intuitively says that moves (modelled by seeds) may occur
in context.

We will handle the first three stages here, which will in fact yield our example
signature SHON . The last step will result from the general process associating a
pseudo double category D(S) to each signature S.

3.1.2. Sequent calculus and informal description of the game. A preliminary step
is to organise standard arena games into a sequent calculus, which will then guide
us through steps (i)–(iii). This is close in spirit to Melliès’s work [26] – though
the latter takes place in a linear setting. The idea is to understand an arena A =

∑imi.Ai as a logical formula much like ⋀i ¬Ai, and to consider the straightforward
focalised [2] sequent calculus on this.

A sequent is a list of arenas, possibly with a distinguished formula, denoted
by A1, . . . ,An ⊢, resp. A1, . . . ,An ⊢ A, and our sequent calculus has the following
inference rules:

Right
. . . Γ,Ai ⊢ . . . (∀i ∈ I)

Γ ⊢∑
i∈I

mi.Ai

Left
Γ,∑

i

mi.Ai,∆ ⊢ Ai

Γ,∑
i

mi.Ai,∆ ⊢

Cut
Γ ⊢ A ∆,A,Θ ⊢ B

∆,Γ,Θ ⊢ B

Cut’
Γ ⊢ A ∆,A,Θ ⊢

∆,Γ,Θ ⊢
⋅

This sequent calculus comes with the following cut elimination rule (ommitting
contexts):

π

⊢ A

π′

A ⊢ Ai

A ⊢

⊢ ↝

π

⊢ A

π′

A ⊢ Ai

⊢ Ai

πi

Ai ⊢

⊢

where A = ∑imi.Ai and π is

. . .

πi

Ai ⊢ . . . (∀i ∈ I)

⊢ A
⋅

Let us now informally describe the game based on this sequent calculus. A
position will consist of a finite family of sequents, connected as prescribed by the
Cut and Cut′ rules – that is, by linking the conclusion of some sequent to some
hypothesis of another. Each sequent will represent a player. E.g., giving a strategy
on such a position will consist of giving one for each sequent. In particular, the
game is definitely multi-party.
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Example 19. The Cut derivation below left yields the position below center.

⊢ B

⊢ A A,B ⊢ C

B ⊢ C

⊢ C

A

B
A,B⊢C

⊢A

⊢B

C
A

B

x

y1

y2

C .

The sequent at any vertex x is determined by the arenas and directions of adjacent
edges. It may not be obvious that the order of hypotheses is: this follows from
the notion of graph that we use, see below. Thus, we omit to label vertices with
sequents and only keep labels on edges. It is often useful to name vertices, so that
the involved position might be drawn as below right.

In fact, we will allow more general connectivity than the simple trees prescribed
by the Cut rules, but let us ignore this for the moment.

Let us now describe moves in the game. Typically, a move will involve two
sequents connected by an edge, and will correspond to the relevant instance of the
cut elimination rule above. So let us consider the simplest generic case: the position

Ax y
, omitting contexts for the moment. In this position, the sequent for x

is ⊢ A and the one for y is A ⊢. Let A = ∑imi.Ai. The idea is that the position
is described by the bottom part of the redex of the cut elimination rule, π and
π′ intuitively corresponding to some strategies for both players. If both strategies
accept the move, they will end up in a position described by the bottom part of
the reactum of the cut elimination rule, namely:

(4)

Ai

A
y

x1

x

.

A subtle point here is that after the move, the player holding the sequent ⊢ A
should behave the same as x did before the move, a requirement similar to so-called
uniformity in game semantics. Thus, x should not even be aware that the move
has been played. Technically, this will be modelled by enforcing the fact that x has
a so-called identity view of the move, and then by restricting attention to innocent
strategies.

Finally, assume that in the initial position, x had some hypothesis, say B. Then
after the move, x and x1 both should have access to the sameB. It thus appears that
we need sequents with multiple outputs or, rather, sequents with shared outputs.

3.1.3. Stage (i): positions. Let us now formalise this. All involved data will be
represented as presheaves on a certain base category, say L. Let us start with L1,
the part of L which only concerns positions:

Definition 20. Let L1 have
● an object for each arena;
● an object for each sequent;
● morphisms si∶Ai → S for each sequent S = (A1, . . . ,An ⊢);
● morphisms si∶Ai → S (for all i ∈ n) and t∶A → S for each sequent S =

(A1, . . . ,An ⊢ A).

Example 21. The (informal) position of Example 19 is modelled as the presheaf
X with X(A) = {a}, X(B) = {b}, X(C) = {c}, X(⊢ A) = {y1}, X(⊢ B) = {y2},
X(A,B ⊢ C) = {x}, and empty otherwise, whose action on morphisms is deter-
mined by y1 ⋅ t = a, y2 ⋅ t = b, x ⋅ t = c, x ⋅ s1 = a, x ⋅ s2 = b.
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3.1.4. Stage (ii): selecting spans. Let us now select the spans that will model moves.
For all arenas A = ∑i∈Imi.Ai and i ∈ I, we will have a span β corresponding to the
move sketched in Example 19. But in order for the obtained pseudo double category
to be fibred (which basically means that there is a canonical way to restrict any play
to any sub-position of its initial position), we need to introduce one additional move
for each player in the initial position. This makes two moves: the one corresponding
to the Right rule will be denoted by Λ, the one corresponding to Left being
denoted by @. As announced above, we should enforce the fact that the player x
in (4) has an identity view of β and therefore of Λ.

Given this, let us now select spans for the Λ, @, and β moves.
For all sequents S = (B1, . . . ,Bm ⊢ A) and q ∈

√

A, consider the span SΛ
S,q =

Y Λ
S,q

dΛ
S,q

←ÐÐ ZΛ
S,q

cΛS,q
ÐÐ→XΛ

S,q,

where
● XΛ

S,q = S (by Section 1, this is implicitly yS),
● Y Λ

S,q, which we will henceforth denote by S∣(B1, . . . ,Bm,A ⋅ q ⊢), is the
pushout

∑j∈mBj (B1, . . . ,Bm,A ⋅ q ⊢)

S (S∣(B1, . . . ,Bm,A ⋅ q ⊢))

[sj]j∈m

[sj]j∈m

injl

injr

● and ZΛ
S,q = S,

with the obvious morphisms. The possibly unclear point is the presence of ∑j Bj
in the pushout: this is due to the necessity for all hypotheses of x to be shared with
x1 in (4).

For all S′ = (A1, . . . ,An ⊢), i′ ∈ n, and q ∈
√

Ai, consider the span S@
S′,i,q =

Y @
S′,i,q

d@
S′,i,q
←ÐÐÐ Z@

S′,i,q

c@
S′,i,q
ÐÐÐ→X@

S′,i,q,

where
● X@

S′,i,q = S
′,

● Y @
S′,i,q = (A1, . . . ,An ⊢ Ai ⋅ q)

● and Z@
S′,i,q = ∑j∈nAj .

Finally, let us treat β.

Notation 22. For all sequents S = (Γ ⊢ A), S′ = (A1, . . . ,An ⊢), and i ∈ n such
that Ai = A, let us denote by S ▷i S

′ the pushout

A S′

S (S ▷i S
′
)

si

t

injl

injr

(we will drop the i subscript when unambiguous).

For all sequents S = (B1, . . . ,Bm ⊢ A) and S′ = (A1, . . . ,An ⊢) with Ai = A and
q ∈

√

A, consider the span S
β
S,S′,i,q =

Y βS,S′,i,q

dβ
S,S′,i,q
←ÐÐÐÐ ZβS,S′,i,q

cβ
S,S′,i,q
ÐÐÐÐ→Xβ

S,S′,i,q,

where
● Xβ

S,S′,i,q = (S ▷ S′),
● Y βS,S′,i,q denotes the pushout
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A + (A ⋅ q) (A1, . . . ,An ⊢ A ⋅ q)

(S∣(B1, . . . ,Bm,A ⋅ q ⊢)) Y βS,S′,i,q

[si,t]

[injl ○t,injr ○sm+1]

injl

injr

● and ZβS,S′,i,q = (S +∑j∈nAj),

with the obvious morphisms.

3.1.5. Stage (iii): augmenting the base category. At last, we augment our base
category L1 with new objects and morphisms that model moves. We could here
appeal to cocomma categories, as sketched in [6], which would lead to the definition
below, except it would lack the morphisms λ and @.

Definition 23. Let L consist of L1, plus:

● For all sequents S = (B1, . . . ,Bn ⊢ A) and q ∈

√

A, an object ΛS,q with
maps S

t
Ð→ ΛS,q

s
←Ð (B1, . . . ,Bn,A ⋅ q ⊢) such that t ○ sj = s ○ sj for all j ∈ n;

● For all sequents S = (A1, . . . ,An ⊢), i ∈ n, and q ∈
√

Ai, an object @S,i,q

with maps S
t
Ð→ @S,i,q

s
←Ð (A1, . . . ,An ⊢ Ai ⋅ q) such that t ○ si = s ○ si for all

i ∈ n;
● For all sequents S = (B1, . . . ,Bm ⊢ A) and S′ = (A1, . . . ,An ⊢), with i ∈
n such that Ai = A and q ∈

√

A, an object βS,S′,i,q with maps ΛS,q
λ
Ð→

βS,S′,i,q
@
←Ð @S′,i,q such that

λ ○ t ○ t = @ ○ t ○ si and λ ○ s ○ sm+1 = @ ○ s ○ t.

The pseudo double category describing HON games will be a sub-pseudo double
category of Cospan(L̂), entirely determined by the choice of a functor from L≥2 to
Cospan(L̂)H . Intuitively, this functor chooses for all new objects µ of L a cospan
which will be thought of as the basic play consisting of just µ. This choice of cospan
should of course be compatible with the choice of spans made above, as mentioned
in the informal description of the process in 3.1.1.

In fact, for each valid tuple (S,S′, i, q), L≥2 locally looks like the poset

βS,S′,i,q

@S′,i,qΛS,q

λ @

viewed as a category. We define our functor L≥2 → Cospan(L̂)H to map this to

(5)

S ∣ (B1, . . . ,Bm,A ⋅ q ⊢) Y βS,S′,i,q (A1, . . . ,An ⊢ A ⋅ q)

ΛS,q βS,S′,i,q @S′,i,q

S S ▷i S
′ S′.

injl

injl

λ

injr

injr

@

Definition 24. Let SHON ∶L≥2 → Cospan(L̂)H denote the obtained functor.

We now need to construct our pseudo double category based on this. Before
proceeding, as we intend to provide a generic construction, we reflect a bit on the
properties of our functor SHON , which leads us to our notion of signature.
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3.2. Signatures. Our first observation is that the category L enjoys a natural
notion of dimension: each A has dimension 0, each sequent has dimension 1, each
ΛS,q and @S′,i,q have dimension 2, and each βS,S′,i,q has dimension 3. In particular,
L forms a direct category in the sense of Garner [11], i.e., it comes equipped with a
functor to the ordinal ω viewed as a category, which reflects identities. Presheaves
X themselves inherit a (possibly infinite) dimension: the least n such that X is
empty above dimension n. The dimension of any representable is thus that of the
underlying object.

Second, let us make a few additional observations on our functor SHON ∶L≥2 →

Cospan(L̂f)H :
(a) the middle object of each SHON (µ) is yµ;
(b) both legs of all selected cospans are monic;
(c) all morphisms between those cospans have monic components;
(d) for all such morphisms, both the bottom and top squares are pullbacks;
(e) finally, all initial positions X are tight, in the sense that all channels a ∈

X(A) are in the image of some X(si) or X(t).
So a first, naive notion of signature could consist of a direct category C, equipped

with a functor from C∣≥2 to Cospan(Ĉf)H satisfying (a)–(e). However, some of the
examples we have in mind require a bit more generality, so in our abstract definition
we relax things a bit. Let us briefly explain why we need to relax the definition.

In our model of the π-calculus [7], there is a morphism between seeds whose
bottom square is not a pullback; and there are natural, though unpublished ex-
amples in which the top square is not a pullback either. Similarly, in [7], we need
the generated pseudo double category to accomodate morphisms of cospans whose
components are non-injective. Let us thus generalise our tentative definition just
enough to accept these examples. In short, we pass from injective maps to maps
which are injective except perhaps on channels, and find an analogous generalisation
for bottom squares being pullbacks. We in fact completely drop the requirement
about top squares.

Let us fix any small, direct category C for the rest of this section. By analogy with
L, we think of objects of dimension 1 as players in a game, which may communicate
with each other through objects of dimension 0. Objects of dimensions > 1 are
thought of as moves in the game. Accordingly, we use the following terminology:

Terminology 25. The dimension of any object of C is its image in ω. A channel
is an object of dimension 0; a player is an object of dimension 1; a move is an
object of dimension > 1.

Definition 26. Let a natural transformation of presheaves over C be 1D-injective
when all its components of dimensions > 0 are injective.

A square in Ĉ is a 1D-pullback when it is a pullback in all dimensions > 0.

Notation 27. We mark 1D-pullbacks with a dotted little square, as below left

A B

C D

A B

C D,

whilst dashed little squares as on the right merely indicate a pullback in dimension
1.

Definition 28. Let D0
(C) denote the sub-pseudo double category of Cospan(Ĉf)

● whose horizontal category D0
(C)h is the subcategory of Ĉf consisting of

positions, i.e., finitely presentable presheaves of dimension ≤ 1, and 1D-
injective morphisms between them,
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● whose vertical morphisms are cospans with monic legs, and
● whose cells are those of Cospan(Ĉf) with 1D-injective components and 1D-
pullback bottom squares.

Terminology 29. For any vertical u∶Y X in D0
(C)v, X and Y are respectively

called the initial and final positions of u.

Definition 28 only makes sense because:

Proposition 30. D0
(C) forms a sub-pseudo double category of Cospan(Ĉf).

This relies on the following direct corollary of Lemma 17:

Corollary 31. In Ĉ, for any commuting cube

I B

A C

I ′ B′

A′ C ′,

f

with the marked pushouts and 1D-pullback,
● if I ′ → B′ is 1D-injective then the front square is a 1D-pullback, and
● if all arrows except perhaps f are 1D-injective, then f also is.

Proof. By pointwise application of Lemma 17. �

Proof of Proposition 30. The only non-trivial bit lies in showing that a vertical
composite of componentwise 1D-injective cells with 1D-pullback bottom squares
again has 1D-injective components and 1D-pullback bottom square. This is a simple
consequence of Corollary 31 and the pullback lemma. �

Let us finally give a definition of tightness which generalises the one given above
for L – though the presentation differs.

Definition 32. For all presheaves U in Ĉ, let us denote by pl(U) the set of players
of U , i.e., pairs (d, x) for all morphisms x∶d → U , where d is any representable
of dimension 1. Let Pl(U) denote the corresponding coproduct ∑(d,x)∈pl(U) d of
representables.

A position X is tight iff the canonical morphism Pl(X) →X is epi.

Definition 33. A signature consists of a small, direct category C, together with a
functor S∶C≥2 → D0

(C)H making the following square commute

(6)
C≥2 D0

(C)H

C Ĉf ,

S

y

m

where m denotes the middle projection functor. We further require that for all
µ ∈ C≥2, the initial position of S(µ) is tight.

Definition 34. Cospans in the image of S are called the seeds of S.

Letting X,Y,Z, . . . range over positions, we get that any signature S maps any
moveM to some cospan Y →M ←X which determines its initial and final positions.
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Example 35. The functor SHON of Definition 24 is a signature. Indeed, all mor-
phisms are evidently monic and both bottom squares are straightforwardly pullbacks,
hence 1D-pullbacks. Furthermore, all initial positions are clearly tight.

Here is an immediate, useful consequence of the definition:

Lemma 36. The functor S underlying any signature is fully faithful.

Proof. Faithfulness is trivial and fullness follows from monicity of legs of the in-
volved cospans. �

3.3. The construction. We now define and give an explicit description of the
pseudo double category D(S) associated to any signature S.

Let us start with the following observation:

Proposition 37. for any pushout square of the form

(7)
id●Z0

id●Z

S(µ) M

id●h

k

in Cospan(Ĉ)H , if h ∈ D0
(C)h(Z0, Z) and k ∈ D0

(C)H(id●Z0
,S(µ)), i.e., h is 1D-

injective and k has 1D-injective components and 1D-pullback bottom square, then
the whole square in fact lies in D0

(C).

Proof. Indeed, given h and id●Z0
→ S(µ) as above, the pushout M always exists in

Cospan(Ĉ)H . It is computed by taking pushouts levelwise, as in

(8)

Y0 Y

µ M

Z0 Z

X0 X,

where S(µ) = (Y0 → µ ← X0) and the dashed arrows are obtained by universal
property of pushout. Now, monos are stable under pushouts in Set and colimits
are pointwise in presheaf categories, so 1D-injectivity of all components follows
from 1D-injectivity of all involved morphisms. Finally, both bottom squares are
pullbacks, hence 1D-pullbacks as desired, by Lemmas 12 and 16. �

Definition 38. A move is any cospanM obtained as some pushout of the form (7).

Definition 39. The pseudo double category D(S) associated to any signature S is
the smallest sub-pseudo double category of D0

(C) such that
● D(S)h is D0

(C)h;
● D(S)H is replete and contains all moves;
● D(S) is locally full, i.e., if a cell of D0

(C) has its perimeter in D(S), then
it is in D(S).

Remark 4. By the proposition, saying that D(S) contains all moves entails that it
contains all associated pushout squares.

That D(S) is well-defined is easy: it is the intersection of all sub-pseudo double
categories of D0

(C) that verify all three points above, and D0
(C) is obviously one

such pseudo double category, so we are taking the intersection of a non-empty
family.
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It is still useful to give a concrete description of D(S). First, its horizontal
category is just (D0

(C))h. Regarding vertical morphisms, D(S) must contain all
moves, and since it should be stable under vertical composition it must also contain
all finite composites of moves. By repleteness, it should also contain all vertical
morphisms isomorphic to such vertical composites. We thus define:

Definition 40. A play is any vertical morphism isomorphic to some vertical com-
posite of moves.

Proposition 41. D(S) is precisely the locally full sub-pseudo double category of
D0

(C) obtained by restricting vertical morphisms to plays.

Proof. By construction, it is enough to show that the given data forms a sub-pseudo
double category of Cospan(Ĉ), which is easy. �

3.4. Fibredness and categories of plays. For a given pseudo double category
D, the categories of plays studied in previous work [19, 7] come in several flavours.
A first variant is based on the following category:

Definition 42. Let E denote the category

● whose objects are vertical morphisms of D,
● and whose morphisms u → u′ are pairs (w,α) as below left, considered
equivalent up to the equivalence relation generated by equating (w,α) with
(w′, α ○ (u ● γ)), for all cells γ as below right:

(9)

T Z ′

Z

Y Y ′

w

u

u′

r

s

α

T ′ T Z ′

Z

Y Y ′.

w
w′

u

u′

r

s

α

γ

Notation 43. We denote the involved equivalence relation by ∼. Furthermore, in
principle, E depends on D, which should appear in the notation. For readability, we
will rely on context to disambiguate.

In order to define composition in this category, one needs to consider all diagrams
of shape the solid part of

Z ′′ Z ′ Y ′′

Z Y ′

Y

X X ′ X ′′.

w

s

u

r

u′

w′

s′

r′

u′′

w′′

α

β

γ

Fibredness then comes in by requiring the existence of a cell γ as shown, which is
canonical in a certain sense. This allows us to define the composite of (w,α) and
(w′, β) as the equivalence class of (w ●w′′, β ○ (α ● γ)).

To formally state fibredness, let us recall [21] that for any functor p∶E → B,
a morphism r∶E′

→ E in E is cartesian when, as below, for all t∶E′′
→ E and

k∶p(E′′
) → p(E′

) such that p(r) ○ k = p(t), there exists a unique s∶E′′
→ E′ such

that p(s) = k and r ○ s = t:
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E′′

E′ E

p(E′′
)

p(E′
) p(E).

r

p(r)

t

p(t)

s

k

Definition 44. A functor p∶E→ B is a fibration iff for all E ∈ E, any h∶B′
→ p(E)

has a cartesian lifting, i.e., a cartesian antecedent by p.

Here is the long awaited fibredness property:

Definition 45. A pseudo double category D is fibred iff the functor cod∶DH → Dh
is a fibration.

Fibredness is related to Grandis and Paré’s double categorical Kan extensions [15]
and to Shulman’s framed bicategories [30].

Proposition 46. If D is fibred, then E is indeed a category.

The category of plays EX over any position X used in [19, 7] is then obtained
as comma categories of E over the functor ⌜X⌝ ∶1 → Dh picking X. For our study
of TO-views and plays, we will use another variant:

Definition 47. Let E(X) denote the fibre of E over X.

Explicitly, objects of E(X) are plays u∶Y X, and morphisms are those of E,
as on the left in (9), which have idX as their lower border.

Our next goal is now to prove that D(SHON ) is indeed fibred, which we will then
apply to compare the obtained categories E(X) to TO-plays. As announced, we
will proceed abstractly.

4. Fibredness

In this section, we study the fibredness property abstractly. In order to do so, we
first need to recall some facts about factorisation systems, which will be a crucial
tool in our investigation. We then recast the definitions of 1D-injectivity and 1D-
pullbacks in terms closer to the defining properties of injective maps and pullbacks.
We then give a necessary and sufficient condition for D(S) to be fibred. However,
this condition is not very useful in practice, so, in the last part, we give a sufficient
condition for D(S) to be fibred that is easier to verify.

4.1. Cofibrantly generated factorisation systems and fibredness. Our main
tool to prove that the pseudo double category D(S) generated by a signature S is
fibred will be cofibrantly generated factorisation systems: let us recall their defini-
tion. In any category C, we say that l∶A → C is left orthogonal to r∶B → D, or
equivalently that r is right orthogonal to l, iff for all commuting squares as the solid
part of

A B

C D,

u

l

v

d
r

there exists a unique d as shown making both triangles commute.

Notation 48. We denote by l � r the existence of a unique such d for all u and v,
and extend the notation to sets of arrows by writing L � R when l � r for all l ∈ L
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and r ∈ R. Similarly, L� denotes the class of all arrows that are right orthogonal to
all arrows of L, and symmetrically for �R.

Definition 49. A factorisation system on a category C consists of two classes of
maps L and R such that L =

�R, L�
= R, and any morphism f ∶C → D factors as

C
lf
Ð→ Af

rf
Ð→D with lf ∈ L and rf ∈ R.

Example 50. The first example of a factorisation system is given by the classes
Epi and Mono, respectively of surjections and injections, in sets. This extends to
presheaf categories: for any small category C, epi and monic natural transforma-
tions form a factorisation system on Ĉ, which we also denote by (Epi,Mono).

Cofibrant generation refers to the fact that L and R are defined from some
generating set J , merely by the lifting property: R = J� and L =

�R. The point
here is that J is a set, rather than a class. In fact, in many useful cases, it is even
a rather small set. In our case, it will be bounded by the cardinality of C. Though
it is not trivial – this uses the famous “small object” argument, we have:

Theorem 51 (Bousfield [4]). For any set J of maps in any cocomplete category C,
(
�
(J�), J�) forms a factorisation system.

Example 52. The (Epi,Mono) factorisation system on Set is cofibrantly generated
by the singleton {2→ 1}. For any C, the (Epi,Mono) factorisation system on Ĉ is
cofibrantly generated by the set of all maps [yidc , yidc]∶ yc + yc → yc, for c ∈ ob(C).

Let us now explain the core idea of the proof of fibredness. In the setting of
Example 11, any factorisation system (L,R) on C yields a fibred sub-pseudo double
category of Cospan(C). Indeed, recall the following well-known result [4, Lemma
2.4]:

Lemma 53. For any factorisation system (L,R), L contains all isomorphisms and
is stable under right cancellation, composition and pushout.

Stability under right cancellation means that if some composite g ○ h is in L for
h ∈ L, then so is g.

Stability under pushout means that given any pushout square

A B

C D,

f

l

g

l′

if l ∈ L, then also l′ ∈ L.
Dually, R contains all isomorphisms and is stable under left cancellation, com-

position and pullback (in the obvious dual sense to stability under right cancellation
and pushout).

So in particular both classes determine identity-on-objects subcategories of C.
Let us now consider the locally full sub-pseudo double category CospanL,R(C)

of Cospan(C)
● whose horizontal category is C,
● and whose vertical morphisms Y X are cospans Y

s
Ð→ U

l
←ÐX with l ∈ L.

Proposition 54. CospanL,R(C) forms a sub-pseudo double category of Cospan(C)
that is fibred if C has pullbacks.

Proof. That CospanL,R(C) forms a pseudo double category is a simple consequence

of Lemma 53. To see that it is fibred, consider any vertical morphism Y
f
Ð→ U

l
←ÐX

and horizontal morphism X ′ h
Ð→X. In order to construct a cartesian lifting of (f, l)
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along h, we factor the composite X ′ h
Ð→ X

l
Ð→ U as X ′ l

′
Ð→ U ′ h

′
Ð→ U , with l′ ∈ L and

h′ ∈ R, and then take the pullback of f and h′, as in the front face below:

(10)

Y ′′

Y ′ Y

U ′′

U ′ U

X ′′

X ′ X.

h′′

h′

h

f

l

q′′

q′

q

f ′′

l′′

s′′

s′

s

f ′

l′

The obtained morphism (h,h′, h′′) is generally not cartesian in Cospan(C)H , but
let us show that it is in CospanL,R(C). For this, consider any morphism (q, q′, q′′)
to U such that q = hs as above; then since l′′ ∈ L (by hypothesis) and h′ ∈ R (by
construction), we obtain by the lifting property a unique s′ making everything in
sight commute. But then the universal property of pullback gives the desired s′′. �

For any signature S over some base category C, we will try to apply this con-
struction to the pseudo double category of plays D(S) over S, with the factorisation
system generated by the set JS of all “t-legs”, i.e., the set of morphisms X

t
Ð→ M

for Y
s
Ð→ M

t
←Ð X spanning seeds. A map is then in J�S when no new move is

added “forwards”, i.e., following the direction of time. Indeed, recalling that each
M occurring in a seed should be representable, giving a square

X U

M V

f

t

µ

r

amounts by Yoneda to picking a move µ in V , whose initial position X is already
available in U . The map r is then in R when all such moves are also already in U .

Our goal now reduces to showing that D(S) is fibred as a sub-pseudo double
category of Cospan�(J�

S
),J�

S
(Ĉ) – which we henceforth abbreviate to CospanJS(Ĉ).

The difficulty is that, in a situation like (10), the factorisation system yields a
cartesian lifting (h,h′, h′′) in CospanJS(Ĉ), of which we will further need to prove
that (1) it lies in D(S)H , and (2) it is also cartesian there. Point (2) reduces to
proving that if (q, q′, q′′) is in D(S)H then so is (s, s′, s′′).

In fact, assuming that the candidate lifting is in D(S), its cartesianness follows
from the fact that all mediating arrows, computed as in (10), are also in D(S).
Indeed, we have:

Lemma 55. D(S)H has the left cancellation property: for all β and α in Cospan(Ĉ)

such that β ○ α and β are in D(S)H , then also α is in D(S)H .

Proof. By 1D-analogues of the pullback lemma and left cancellation for injectives.
�

It thus remains to prove that the candidate lifting is a play, and that the mor-
phism (h,h′, h′′) lies in D(S)H . Let us record this as:

Lemma 56. Assume that in all situations like (10), if U is a play and h is 1D-
injective, then U ′ is again a play and (h,h′, h′′) is in D(S)H . Then, D(S) is fibred.
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We thus consider conditions for this to hold. In Section 4.3, we show that if it
holds for seeds, then it extends to all plays. In Section 4.4, we investigate conditions
for the result to hold for seeds.

This all rests on a few elementary facts about 1D-pullbacks and 1D-injectivity
in presheaf categories, which we now prove.

4.2. A little theory of 1D-pullbacks and 1D-injectivity. Let us start by
recasting the definitions of 1D-injectivity and 1D-pullback in the following setting:

Definition 57. A one-way category consists of category C equipped with a functor
to 2, the ordinal 2 viewed as a category.

Any direct category d∶C → ω may be viewed as a one-way category by post-
composing with the functor ω → 2 mapping everyone to 1 except 0 which is mapped
to itself.

Definition 58. Let d∶C → 2 be a one-way category. The dimension of an object
of C is its image by d. A natural transformation between presheaves over C is
1D-injective iff its components on objects of dimension 1 are injective. A square of
natural transformations is a 1D-pullback iff it is at all objects of dimension 1.

Proposition 59. The definitions of dimension (or, more precisely, whether a di-
mension is equal to 0 or not), 1D-injectivity, and 1D-pullbacks given for direct
categories d∶C → ω coincide with their analogues for the corresponding one-way
category C→ ω → 2.

Proof. Trivial. �

We here work in the simpler setting of presheaves over a one-way category, but by
the proposition we may transport our results from the one-way categorical setting
to the direct categorical one. We will do so silently in the sequel.

There are several functors from one-way categories to categories, but the impor-
tant one for us restricts its argument to dimension 1:

Definition 60. Let π1∶Cat/2→ Cat denote pullback along ⌜1⌝ ∶1→ 2.

In principle, this should rely on some global choice of pullbacks, but the easiest
is to pick the pullbacks making each arrow i1∶π1(C) ↪ C an inclusion.

Notation 61. We denote π1(C) by C∣1.

We now have the standard chain of adjunctions:

Ĉ∣1 Ĉ,

∑i1

∏i1

∆i1

�

�

where ∆i1 , ∑i1 and ∏i1 respectively denote restriction, left Kan extension and right
Kan extension along the opposite of i1.

Proposition 62. A morphism in Ĉ is 1D-injective iff its image by ∆i1 is injective.
A square in Ĉ is a 1D-pullback iff its image by ∆i1 is a pullback.

Proof. By definition and the fact that limits are pointwise in presheaf categories.
�

It is instructive to push things just a bit further. In particular, we establish a
characterisation of 1D-injectivity and pullbacks analogous to the standard universal
properties of injectivity and pullbacks, though relative to objects of Ĉ∣1. Our first
step is:
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Proposition 63. The left adjoint ∑i1 is full and faithful, and the comonad ∑i1 ○∆i1

is idempotent, so that Ĉ∣1 is a coreflective, full subcategory of Ĉ.

Proof. It is well known [22, Proposition 4.23] that the unit of the adjunction is
an isomorphism when we extend and restrict along a fully-faithful functor. Fur-
thermore, it is also well-known [25] that if the unit of an adjunction is an isomor-
phism, then the left adjoint is full and faithful. The comultiplication of the induced
comonad is then an isomorphism by construction. �

Our characterisations will stem from the more general

Lemma 64. Consider any full coreflection L∶C � D ∶R. For any small

category J and functor D∶J → D, if RD has a limit in C, then L(limj RD(j)) has
the universal property of a limit of D relative to objects of C, i.e., we have for all
X ∈ C:

∫
j∈J

D(LX,D(j)) ≅ D(LX,L(lim
j
RD(j)))

naturally in X.

Proof. We have

∫
j∈J

D(LX,D(j)) ≅ ∫
j∈J

C(X,RD(j)) ≅ C(X, lim
j
RD(j)) ≅ D(LX,L(lim

j
RD(j))),

where the last step is by full faithfulness of L. �

Corollary 65. A square in Ĉ as below left is a 1D-pullback iff for all X ∈ Ĉ∣1, u and
v as below right making the outer diagram commute, there is a unique mediating
morphism h as shown, such that ph = u and qh = v:

A C

B D

q

p

f

g

∑i1(X)

A C

B D.

v

u

h
q

p

f

g

Proposition 66. Consider any morphism m∶X → Y in Ĉ. The following are
equivalent:

(1) m is 1D-injective;
(2) for all f, g∶∑i1(Z) →X, mf =mg implies f = g;
(3) the square

(11)
X X

X Ym

m

is a 1D-pullback.

Proof. By definition, these three items are respectively equivalent to
● (1’) ∆i1(m) is monic,
● (2’) for all f, g∶Z →∆i1(X), ∆i1(m)f = ∆i1(m)g implies f = g;
● (3’) the image by ∆i1 of the square (11) is a pullback.

But now these three are well-known to be equivalent. �
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4.3. A necessary and sufficient fibredness criterion. We now prove some ba-
sic facts about Cospan(Ĉ), D0

(C), and CospanJS(Ĉ), from which we derive useful
results about plays, and eventually our main abstract result, namely that, under
the hypothesis that seeds admit cartesian restrictions (which we investigate inde-
pendently in the next section), D(S) is fibred.

Let us start with some notation:

Notation 67. The cospan underlying any play u∶Y X will be denoted by Y
su
Ð→

U
tu
←Ð X (using capitalisation for the middle object). We will often denote cospans

Y
s
Ð→ U

t
←Ð X simply by ⟨U⟩, leaving the context provide the missing informa-

tion. Furthermore, pushouts exist in Cospan(Ĉ)H and any pushout of two maps in
D0

(C)H yields a square in D0
(C)H . However, this square may not be a pushout in

D0
(C)H – because mediating arrows may not be 1D-injective. We will slightly abuse

notation and mark such squares as pushouts even when considered in D0
(C)H .

Let us start with some preliminary work about tightness.

Lemma 68. For any position X, we have Pl(X) ≅ ∑i1(∆i1(X)) (recalling Defini-
tion 32). In particular, X is tight iff Pl(X) →X is epi.

Proof. By definition. �

Lemma 69. Consider any diagram

A B

C D

f

g

h

l
k

in Ĉ where only the outer square and the bottom right triangle are known to com-
mute, i.e., kf = hg and kl = h. If A is tight and k is 1D-injective, then also the top
left triangle commutes.

Proof. Post-composing with k, we have by hypothesis that kf = hg = klg, hence
kfεA = klgεA. By 1D-injectivity of k and Proposition 66, we get fεA = lgεA. By
tightness of A and Lemma 68, we finally obtain f = lg. �

Definition 70. The cofree invariant position of a cospan Y → U ← X is given by
the pullback

Z Y

X U .

The terminology is justified by the following

Proposition 71. Fixing any global choice of pullbacks, taking the cofree invariant
position Zu of any play u induces a functor Z−∶Cospan(Ĉ)H → Ĉ∣1 which is right
adjoint to the subcategory inclusion Ĉ∣1 ↪ Cospan(Ĉ)H . The inclusion being obvi-
ously full and faithful, the unit is an isomorphism, and the associated comonad is
idempotent.

Proof. By universal property of pullback. �
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Lemma 72. Any pushout in Cospan(Ĉ)H as below left, where Z is a position, may
be factored as below right, where Z0 is the cofree invariant position of U :

id●Z ⟨U⟩

⟨V ⟩ ⟨W ⟩

id●Z id●Z0
⟨U⟩

⟨V ⟩ ⟨V ′
⟩ ⟨W ⟩.

If ⟨V ⟩ is isomorphic to id●Z′ for some position Z ′, then ⟨V ′
⟩ is isomorphic to id●Z′0

for some position Z ′
0.

Proof. The last point is a consequence of colimits being pointwise in presheaf cate-
gories. For the first, we get a map Z → Z0 such that id●Z → ⟨U⟩ = id●Z → id●Z0

→ ⟨U⟩

by universal property of pullback. We can then define ⟨V ′
⟩ as the pushout of ⟨V ⟩

along id●Z → id●Z0
and obtain a unique morphism ⟨V ′

⟩ → ⟨W ⟩ by its universal prop-
erty: this yields a diagram as desired, whose right-hand square is again a pushout
by the pushout lemma. Moreover, if ⟨V ⟩ is isomorphic to id●Z′ for some position Z ′,
then we obviously have that ⟨V ′

⟩ is isomorphic to id●Z′
0
for some position Z ′

0. �

Lemma 73. Cofree invariant positions are stable under pushout in the following
sense: if Z is the cofree invariant position of ⟨U⟩ and

id●Z id●Z′

⟨U⟩ ⟨U ′
⟩

is a pushout, then Z ′ is the cofree invariant position of ⟨U ′
⟩.

Proof. Let us first name the involved presheaves: ⟨U⟩ = (Y → U ← X) and ⟨U ′
⟩ =

(Y ′
→ U ′

← X ′
). Since Z is the cofree invariant position of ⟨U⟩, we may apply

Corollary 18 to

Z Y

Z ′ Y ′

X U

X ′ U ′,

to obtain that the front face is also a pullback. �

Lemma 74. In Cospan(Ĉ)H , vertical composition preserves pushout squares. More
explicitly, given two vertically composable pushouts as below left and center, the
composite square below right is again a pushout:

⟨U0⟩ ⟨U1⟩

⟨U2⟩ ⟨U⟩

⟨V0⟩ ⟨V1⟩

⟨V2⟩ ⟨V ⟩

⟨U0⟩ ● ⟨V0⟩ ⟨U1⟩ ● ⟨V1⟩

⟨U2⟩ ● ⟨V2⟩ ⟨U⟩ ● ⟨V ⟩.

Proof. Let us first name the involved presheaves: ⟨Ui⟩ = (Yi → Ui ← Xi), ⟨Vi⟩ =
(Zi → Vi ← Yi), and similarly for ⟨U⟩ and ⟨V ⟩. If we call Λ the posetal category
with objects 0, 1, and −1, and morphisms generated by 0 < 1 and 0 < −1 (the
“walking span” category), we introduce a bifunctor from Λ × Λ to Ĉ through the
following diagram:
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V1 V0 V2

Y1 Y0 Y2

U1 U0 U2.

By computing its colimit first horizontally, then vertically, we get ⟨U⟩ ● ⟨V ⟩, which
by interchange of colimits is the desired pushout. �

Lemma 75. Any morphism in CospanJS(Ĉ)H is cartesian iff it has the shape of
the front face of (10), i.e., its top square is a pullback and its middle morphism is
in J�S .

Proof. The “if” direction follows from the proof of Proposition 54. For the “only
if” direction, the considered properties are stable under composition with isomor-
phisms in CospanJS(Ĉ)H . But any cartesian α∶ ⟨U⟩ → ⟨U ′

⟩ is uniquely isomorphic
in CospanJS(Ĉ)H/⟨U ′

⟩ to the cartesian lifting of ⟨U ′
⟩ along cod(α) computed as

in (10), hence the result. �

Lemma 76. Any commuting square in Ĉ which is a pullback in dimension 1 sat-
isfies the universal property of pullbacks w.r.t. tight positions. Concretely, for any
commuting diagram as the solid part of

T

A C

B D

f

h

k

with the marked mono and where T is a tight position (recalling that by Notation 27
the dashed little square means pullback in dimension 1), there exists a unique map
k making the diagram commute.

Proof. We construct in turn both dashed maps in

Pl(T ) A C

T B D ∶

εT

l f

k
h

● l follows from universal property of pullback in dimension 1;
● k then follows by tightness (which ensures that εT is epi) and lifting in the

(Epi,Mono) factorisation system.
The construction of k however does not a priori ensure that f ○k = h, but f ○k○εT =

f ○ l = h ○ εT which entails the result by tightness. �

This yields a cute analog of the pullback lemma:

Lemma 77. In any commuting diagram

A B C

D E F
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with the marked mono, 1D-pullback and pullback, the outer rectangle has the uni-
versal property of pullbacks w.r.t. tight positions.

Proof. A diagram chasing similar to the proof of the pullback lemma, using Lemma 76.
�

Corollary 78. For any seeds Y → M ← X and S → C ← T , any commuting
diagram as the solid part of

T U X

C V M

with the marked pullback in dimension 1, such that at least one of U → X and
U → V is monic, may be completed as shown.

Proof. Because M is a seed, the bottom square of S(C → M) yields a morphism
T →X making the diagram commute; we then conclude by the lemma. �

Lemma 79. For any two commuting squares

U W V

U ′ W ′ V ′

sU

fU

sU′

sV

fV

sV ′

f

of 1D-injective maps in Ĉ, such that
● both squares are pullbacks in dimension 1,
● sU and sV are jointly surjective and both monic,
● sU ′ and sV ′ are jointly surjective and both monic,
● fU and fV are in J�S ,

then f ∈ J�S .

Proof. Consider any morphism T → C in JS and commuting square

T W

C W ′.

We want to show that there is a unique diagonal filler C →W . Uniqueness follows
from 1D-injectivity of f and the fact that C ≅ Σπ1(∆i1(C)), so we only need to
show existence. Furthermore, by joint surjectivity and because C is a representable
of dimension > 1, C →W ′ factors either through U ′ or through V ′ (possibly both).

Both cases being symmetric, we only treat one. If C →W ′ factors through U ′,
then we get a commuting diagram as the solid part of

T W

U

U ′

C W ′,

l

k

hence a map k as indicated by Lemma 76, using monicity of sU . By hypothesis,
U → U ′ is in J�S , so there is a unique map l∶C → U making both triangles commute.
By composing it with U →W , we get the desired diagonal filler. �
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Lemma 80. Vertical composition in D0
(C) preserves CospanJS(Ĉ)-cartesianness.

Explicitly, if any two vertically composable double cells of Cospan(Ĉ) are both in
D0

(C) and CospanJS(Ĉ), and are cartesian in the latter, then their vertical com-
posite is again cartesian (in the latter).

Proof. Consider any two composable vertical morphisms ⟨U⟩ = (Y → U ← X) and
⟨V ⟩ = (Z → V ← Y ), and similarly ⟨U ′

⟩ and ⟨V ′
⟩, together with cartesian double

cells α∶ ⟨U⟩ → ⟨U ′
⟩ and β∶ ⟨V ⟩ → ⟨V ′

⟩. To show that the composite is cartesian, it
is enough by Lemma 75 to show that it has the shape of the front face of (10), i.e.,
that its top square is a pullback and that U ●V → U ′

●V ′ is right-orthogonal to JS.
Because ⟨U⟩ → ⟨U ′

⟩ is cartesian, by Lemma 75, the left face of

Y V

U U ● V

Y ′ V ′

U ′ U ′
● V ′,

is a pullback, so by two applications of Corollary 31 and Corollary 18 respectively,
its front face is a 1D-pullback and its right one is a pullback. By Lemma 79, the
obtained map U ● V → U ′

● V ′ is thus in J�S . Since ⟨V ⟩ → ⟨V ′
⟩ is cartesian, by

Lemma 75, the left-hand square below is a pullback, hence so is the right-hand one
by the pullback lemma:

Z Z ′

V V ′

Z Z ′

U ● V U ′
● V ′,

which concludes the proof. �

Lemma 81. For any pushout

(12)
id●Z id●Z′

P P ′

id●h

k

in Cospan(Ĉ)H where h ∈ D0
(C)(Z,Z ′

) and k ∈ D(S)H(id●Z , P ), P ′ is again a play
and P → P ′ is cartesian and lies in D0

(C)H (hence also in D(S)H).

Proof. The fact that P → P ′ lies in D0
(C)H follows form 1D-injectivity of h and

stability of monos under pushout in Set. For the rest, let us first show the desired
result for moves and then extend it to arbitrary plays by induction.

Let us thus assume that P = ⟨M⟩ is a move. We know that any move ⟨M⟩ is a
pushout of some seed ⟨M0⟩. By Lemma 72, we may assume that it is the pushout
of ⟨M0⟩ along a morphism Z0 → Z ′

0, where Z0 is the cofree invariant position of
⟨M0⟩. Since Z0 is the cofree invariant position of ⟨M0⟩, by Lemma 73, we know
that Z ′

0 is the cofree invariant position of ⟨M⟩. Therefore, id●Z → ⟨M⟩ factors as
id●Z → id●Z′0 → ⟨M⟩. Now, we define Z ′′ as the pushout below and id●Z′′ → ⟨P ′

⟩ by
its universal property:
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id●Z id●Z′

id●Z′
0

id●Z′′

⟨M⟩ ⟨P ′
⟩.

Now, two applications of the pushout lemma give that

id●Z0
id●Z′′

⟨M0⟩ ⟨P ′
⟩

is a pushout, so ⟨M ′
⟩ = ⟨P ′

⟩ is a move.
Let us now show that the obtained morphism ⟨M⟩ → ⟨M ′

⟩ is cartesian using
Lemma 75, i.e., by showing that it has the shape of the front face of (10). By the
pushout lemma, the top square

Y Y ′

M M ′

is a pushout along Y → M , which is monic, so it is a pullback by adhesivity.
Moreover, to show that M →M ′ is right-orthogonal to JS, we take any T → C in
JS and commuting square

T M

C M ′.

Since M → M ′ is an isomorphism in dimensions > 1 and C is a representable of
dimension > 1, C →M ′ can be factored uniquely as C →M →M ′. Now, since T is
tight and M →M ′ is 1D-injective, by Lemma 69, we get that the top-left triangle
commutes as well, hence C →M is the desired diagonal filler.

Now that we have shown that moves are stable under pushouts of the desired
form and that the resulting morphism is cartesian, we proceed to show that it is
also the case for arbitrary plays by induction on ⟨P ⟩.

If Y → P ← X contains zero moves, then the result is obvious. If Y → P ← X
contains at least one move, we decompose it as ⟨M⟩● ⟨U⟩, for some move T →M ←

X and play Y → U ← T containing fewer moves than P .
Because the marked square below

Z

T U

M P

is a pushout along a monomorphism, hence a pullback, we obtain a unique dashed
map as shown making everything commute. Thus, id●Z → P factors as a verti-
cal composite of two cells id●Z → U and id●Z → M . By Lemma 74, the desired
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pushout (12) is the vertical composite of the following two pushouts:

id●Z id●Z′

⟨U⟩ ⟨U ′
⟩

id●Z id●Z′

⟨M⟩ ⟨M ′
⟩.

Since ⟨U ′
⟩ and ⟨M ′

⟩ are plays by induction hypothesis, so is ⟨P ′
⟩. Moreover,

by induction hypothesis again, ⟨U⟩ → ⟨U ′
⟩ and ⟨M⟩ → ⟨M ′

⟩ are cartesian, and
therefore, so is ⟨P ⟩ → ⟨P ′

⟩, by Lemma 80. �

Remark 5. The morphism P → P ′ thus computed is not opcartesian in general.
To see this, consider P = ⟨ΛS,q⟩ for any sensible S and q, so that Z = S, and let Z ′

=

(S▷iS
′
) for some sensible i and S. Then P ′ could be denoted by ⟨ΛS,q▷iS

′
⟩. Now

consider the play P ′′
= ⟨βS,S′,i,q⟩ and the map P → P ′′ given by S(λ) (recalling (5)).

There can be no map P ′
→ P ′′, because the final position of P ′ contains a player

over S′, an object over which P ′′ is empty.

Lemma 82. If seeds admit cartesian restrictions in D(S), then so do moves.

Proof. Consider any move as in (8) and horizontal morphism h∶X ′
→ X. We start

by forming the cube

(13)

Z ′
0 Z ′

X ′
0 X ′

Z0 Z

X0 X,

h0
h

where the dashed arrow is obtained by universal property of pullback. By the
pullback lemma, the left-hand face is again a pullback. Now, by Lemma 72, we
may assume that Z0 → X0 is monic, so by adhesivity the top face of (13) is again
a pushout.

By Lemma 81, the morphism ⟨µ⟩ → ⟨M⟩ is cartesian. By hypothesis, we obtain
a cartesian lifting of ⟨µ⟩ along h0, say Y ′

0 → U ′
0 ← X ′

0. By Lemma 81, we push
the obtained lifting along Z ′

0 → Z ′ to obtain a play ⟨U ′
⟩ and a cartesian morphism

⟨U ′
0⟩ → ⟨U ′

⟩, which induce by universal property of pushout a morphism ⟨U ′
⟩ → ⟨M⟩

in Cospan(Ĉ) as in

id●Z′
0

id●Z′

⟨U ′
0⟩ ⟨U ′

⟩

id●Z0
id●Z

⟨µ⟩ ⟨M⟩.

We want to show that ⟨U ′
⟩ is the cartesian restriction of ⟨M⟩ along h. In order to

do that, we first need to show that ⟨U ′
⟩ → ⟨M⟩ is a morphism of plays, i.e., that it

belongs to D(S)H .
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Consider now the following cubes:

X ′
0 U ′

0

X ′ U ′

X0 µ

X M

Z ′
0 Z ′

Y ′
0 Y ′

Z0 Z

Y0 Y ,

where, in the left-hand case, both pushouts are obtained by the pushout lemma.
In the left-hand cube, by pointwise adhesivity and Corollary 31, we obtain that
U ′
→M is 1D-injective and that the front and right faces are 1D-pullbacks. In the

right-hand cube, Corollary 31 entails that Y ′
→ Y is 1D-injective. This entails in

particular that ⟨U ′
⟩ → ⟨M⟩ indeed is a morphism of plays.

It remains to show that ⟨U ′
⟩ → ⟨M⟩ is cartesian, for which by Lemma 75 it is

sufficient to show that it has the shape of the front face of (10).
First, the upper square is a pullback by pointwise application of Lemma 17 in

Y ′
0 U ′

0

Y ′ U ′

Y0 µ

Y M .

So the only point left to show is that U ′
→ M lies in J�S . To show this, we

consider any morphism T → C in JS and commuting square

T U ′

C M

and show that there is a unique diagonal filler. Uniqueness follows from the fact
that U ′

→ M is 1D-injective and that C ≅ Σπ1(∆i1(C)), so we only need to show
that there exists such a diagonal filler.

First, since µ→M is an isomorphism in dimensions > 1 and C is a representable
of dimension > 1, we know that C → M factors through µ → M in a unique way.
We now want to show that T → U ′ factors through U ′

0 → U ′ in such a way that

T U ′
0 U ′

C µ M

commutes.
Stepping back a little, let us recall a cube considered above, as below left
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T

X ′
0 U ′

0

X ′ U ′

C

X0 µ

X M

T U ′
0

C µ,

where we added the map T → X0 given by S(C → µ). By Lemma 77 on the front
and left faces, using tightness of T , we obtained a unique dashed arrow T → X ′

0

making everything commute. In particular, we obtain a square as the solid part
above right. But U ′

0 → µ is in J�S , so there is a unique dashed diagonal map as shown
making both triangles commute, which gives rise to a map C → U ′ by composition,
hence the result. �

Finally, we state and prove our first fibredness criterion:

Theorem 83. If seeds admit cartesian restrictions in D(S), then D(S) is fibred.

Proof. Let us consider any play Y → P ←X and show that its cartesian restriction
along X ′

→ X in CospanJS(Ĉ) lies in D(S), which is enough by Lemma 56. We
proceed by induction on Y → P ←X. If it is the composite of 0 moves, then X → P
and Y → P are isomorphisms and the result is obvious. If it is the composite of n+1
moves, then it can be decomposed as ⟨M⟩●⟨U⟩ for some move T →M ←X and play
Y → U ← T . By Lemma 82, we know that ⟨M⟩ admits a cartesian restriction along
X ′
→ X, say T ′ → V ′

← X ′. Furthermore, by induction hypothesis, ⟨U⟩ admits a
cartesian restriction along T ′ → T , say Y ′

→ U ′
← T ′. By Lemma 80, the vertical

composition of ⟨V ′
⟩ → ⟨M⟩ and ⟨U ′

⟩ → ⟨U⟩ is cartesian, hence the result. �

4.4. Cartesian lifting of seeds. In the previous section, we have shown that D(S)
is fibred as soon as seeds admit cartesian restrictions in D(S). In this section, we
exhibit sufficient conditions for this to be the case. I.e., possibly under additional
hypotheses, in the setting of (10), if ⟨U⟩ is a seed, then its restriction ⟨U ′

⟩ is a play
and (h,h′, h′′) is a morphism of plays.

The basic idea of our proof is that there are two possible cases: either X ′ “con-
tains all of” X, or it does not. In more precise terms, either h is a retraction, or it
is not. In both cases, for the given seed µ, we

● first construct a candidate restriction ⟨U ′
⟩,

● prove that it is indeed a play and that the morphism ⟨U ′
⟩ → ⟨µ⟩ is a

morphism of plays,
● and then finally show that it is a cartesian lifting of ⟨µ⟩ along h by showing
that it has the shape of the front face of (10).

The main difference between the two cases is that, in the first one, X can be thought
of as a sub-position of X ′, so we basically extend µ so that it is played from all of
X ′. By constrast, in the second case, X ′ does not contain X, so it is impossible
to play µ from it, and the restriction consists of all the “pieces” of µ that can be
played from X ′.

Let us make a first hypothesis that will be useful throughout the whole proof.
It is equivalent to asking that moves never erase channels, in the sense that, if a
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channel is in the initial position of a move, then it also is in its final position. The
hypothesis is the following:

Definition 84. A signature S is persistent when for any seed Y → M ← X, the
morphism Z →X from its cofree invariant position is an isomorphism in dimension
0.

Lemma 85. The seeds of any persistent signature admit cartesian liftings along
retractions.

Proof. Consider any such signature S. By Lemma 55, it is enough to prove that the
cartesian lifting in CospanJS(Ĉ) lies in D(S). Now consider any seed Y →M ← X
and 1D-injective retraction h∶X ′

→ X. Since h is a retraction, there is a section
h′∶X → X ′ such that hh′ = idX . We call Z the cofree invariant position of Y →
M ←X and define Z ′ as the pullback

Z

X Z ′ Z

X ′ X

r′
u

h′

r

u′ u

h

and r′∶Z → Z ′ by its universal property. As a section, it is injective. Since u is an
isomorphism in dimension 0 by persistence, so is u′, which entails by Lemma 12
that the left-hand square above is a pushout in dimension 0. But in dimensions
> 0, h is an isomorphism, hence so is r (as the pullback of an isomorphism); thus
the left-hand square is also a pushout in dimensions > 0, as the composite of a
pushout with an isomorphism in the arrow category Set→. It is thus a pushout in
all dimensions, hence a pushout in Ĉ.

We define the cospan ⟨M ′
⟩ as the pushout

(14)

id●Z id●Z′

⟨M⟩ ⟨M ′
⟩ id●Z

⟨M⟩

id●
r′

id●r

α′

α

and α∶ ⟨M ′
⟩ → ⟨M⟩ by its universal property. Now, letting (l, k, h̃) = α and

(l′, k′, h̃′) = α′, we can assume without loss of generality that the initial position of
⟨M ′

⟩ is X ′ and that h̃′ = h′, since both

Z Z ′

X X ′

r′

u u′

h′

and
id●Z id●Z′

⟨M⟩ ⟨M ′
⟩

id●
r′

α′

are pushouts. Similarly, by the pushout lemma, we get that

Z ′ Z

X ′ X

r

u′ u

h

and
id●I′ id●I

⟨M ′
⟩ ⟨M⟩

id●r

α
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are pushouts, so we can assume that h̃ = h. By Lemma 81 in the left-hand square
of (14), we get that ⟨M ′

⟩ is a play. Now, by Lemma 81 in the right-hand square,
we get that α is cartesian, so ⟨M ′

⟩ is the cartesian restriction of ⟨M⟩ along h. �

When h is not a retraction, we need some more hypotheses to construct restric-
tions (and ensure that they are indeed cartesian).

First, we want to limit the possible interactions between moves. Though it is
possible to relax some of these limitations, this would induce an explosion of the
number of cases to analyse, and the proof would quickly become very intricate,
which is why we decided to stick to a simple case:

Definition 86. A signature is monolithic when for all morphisms of plays f ∶ (Y →
M ← X) → (Y ′

→ M ′
← X ′

) between any two seeds, if X is not a representable,
then M =M ′.

Remark 6. Since the base category is direct, monolithicity ensures that, if there
is a morphism f between seeds as above, and X is not a representable, then f =

(idY , idM , idX).

A second hypothesis that we make says that ther should exist a “biggest part” of
any move from the point of view of any player involved in it. Basically, we want to
ensure that any seed Y → µ ← X has restrictions along all morphisms of positions
h∶X ′

→ X, and we prove this property by pasting together the “biggest part” of
what each player in X ′ sees of µ when restricted along h. We here give a notion
that entails the desired property, and basically amounts to asking that seeds admit
cartesian restrictions along morphisms of the form d → X with respect to other
seeds (as opposed to arbitrary plays):

Definition 87. A signature is fragmented iff for all seeds Y
s
Ð→ µ

t
←ÐX and players

x∶d→X, there exists a seed YM,x

sM,x
ÐÐÐ→M∣x

tM,x
←ÐÐ d and a morphism fM,x∶M∣x →M

in C such that:
(a) the top square of S(fM,x) is a pullback, and
(b) for any seed Y ′′

→ M ′′
← X ′′ and commuting diagram as the solid part

below, there is a map M ′′
→M∣x making the diagram commute:

(15)

M ′′

X ′′ M∣x M

d X,

fM,x

Remark 7. Since fM,x is 1D-injective and M ′′ is representable, the morphism
M ′′

→M∣x in the hypothesis above is necessarily unique.

Lemma 88. If S is persistent, monolithic, and fragmented, then each S(fM,x) is a
cartesian lifting of ⟨M⟩ along x in D(S).

Proof. By Lemma 75, it is enough to prove that the top square of S(fM,x) is a
pullback and that fM,x in J�S . The first point holds by (a). To prove the second
one, consider any morphism T → C in JS and commuting square

T M∣x

C M .
fM,x
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We need to show that there is a unique diagonal filler C →M∣x. By Corollary 78,
we obtain a unique morphism T → d making the diagram below left commute:

T d X

C M∣x M

C

T M∣x M

d X,

which may be arranged as on the right to have the shape of (15). We thus conclude
by (b). �

Lemma 88 exhibits cartesian liftings along players d → X. Let us now consider
more general cases, assuming a third property saying that each player involved in
a synchronisation M (i.e., a seed whose initial position contains several players)
is related to at most one of the “biggest parts” of M , in the sense of our above
explanation of fragmentedness.

Definition 89. A signature S is separated if, for all moves µ ∈ ob(C∣≥2) with seed
S(µ) = (Y → µ ← X), channels d ∈ ob(C∣1), players x1∶d1 → X and x2∶d2 → X and
commuting squares

d µ∣x1

µ∣x2
µ

y1

y2 fµ,x1

fµ,x2

in C, we have x1 = x2 (and hence fµ,x1 = fµ,x2).

Remark 8. Separation really only says something in the case where the diagonal
x∶d → µ does not factor through X. Indeed, if it does, then by the properties of
1D-pullbacks, x also factors through x1 and x2, hence by directedness of C is in
fact equal to x1 and x2.

Remark 9. Separation is related to views in game semantics (and indeed, in the
cases we are interested in, separation is derived from what is called the axiom of
views in [19]). It basically states that any player that is created in a move M is
created by at most one player.

When h is not a retraction, the restriction of a seed along h has a particular
form that we call a “quasi-move”, which basically consists of several moves played
“in parallel”, i.e., independently from one another.

Definition 90. A quasi-move is any cospan obtained as a pushout of the form

∑i∈n id
●
Zi id●Z

∑i∈n⟨Mi⟩ ⟨U⟩,

id●h

in D0
(C)H , where the ⟨Mi⟩’s are seeds.

Lemma 91. Every quasi-move is a play.

Proof. Let ⟨Mi⟩ = (Yi
si
Ð→ Mi

ti
←Ð Xi) for all i ∈ n. By Lemma 81, it is enough to

show that ∑i⟨Mi⟩ is a play. We proceed by induction on n. If n = 0 the result is
trivial. Otherwise, by Lemma 74, we have

∑

i

⟨Mi⟩ ≅ (⟨M1⟩ +∑

i>1

id●Xi) ● (id
●
Y1
+∑

i>1

⟨Mi⟩).
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By induction hypothesis and Lemma 74 again, both components are plays, so we
are done. �

We can now exhibit the construction of the restriction of a seed Y
s
Ð→ M

t
←Ð X

along a morphism h∶X ′
→X that is not a retraction.

Theorem 92. The seeds of any persistent, monolithic, fragmented, and separated
signature S admit cartesian liftings in D(S).

Proof. By Lemma 85, it is enough to deal with the case where h is not a retraction.
We first build the candidate restriction. By fragmentedness, we know that for
each player (d, x) ∈ pl(X), there is a seed YM,x

sM,x
ÐÐÐ→M∣x

tM,x
←ÐÐ d and a morphism

(lM,x, fM,x, x)∶ ⟨M∣x⟩ → ⟨M⟩. Letting Z ′
= X ′

×X Z, for any player (d, x) ∈ pl(X ′
)

we may thus construct a map rM,x as in

(16)

ZM,hx YM,hx

d M∣hx

Z ′ Z Y

X ′ X M ,
h

x

rM,x

where ZM,hx → Z comes from the universal property of Z. We first want to show
that

(17)
∑(d,x)∈pl(X′)ZM,hx Z ′

∑(d,x)∈pl(X′) d X ′

[rM,x](d,x)∈pl(X′)

[x](d,x)∈pl(X′)

is a pushout and that all involved maps are 1D-injective. First, it is a pullback:
by Lemma 13, it suffices to show ZM,hx = d ×X′ Z ′ for each x, which follows by
three applications of the pullback lemma in (16). Because it is a pullback of two
1D-injective maps, all of its maps are in fact 1D-injective. But then, recalling that
the pullback of any isomorphism is in fact a pushout square, we have:

● in dimension 1, ∑(d,x)∈pl(X′) d→X ′ is an isomorphism and
● in dimension 0, Z ′

→X ′ is an isomorphism by persistence,
so the square is a pushout in all dimensions, hence a proper pushout.

We now define our candidate restriction ⟨U ′
⟩ as the quasi-move below, and

⟨U ′
⟩ → ⟨M⟩ by its universal property:

∑(d,x)∈pl(X′) id
●
Z′
M,hx

id●Z′

∑(d,x)∈pl(X′)⟨M∣hx⟩ ⟨U ′
⟩ id●Z

⟨M⟩.

id●[rM,x](d,x)∈pl(X′)

id●r

(l′,k′,h′)

[S(fM,h(x))](d,x)∈pl(X′)

(l,k,h̃)

First, ⟨U ′
⟩ is a quasi-move, and therefore a play by Lemma 91. Moreover, be-

cause (17) is a pushout, we can assume without loss of generality that it is the
bottom square of the pushout defining ⟨U ′

⟩. Thus, h̃ = h.



JUSTIFIED SEQUENCES IN STRING DIAGRAMS 37

Furthermore, the morphism [S(fM,hx)](d,x)∈pl(X′) is in D(S)H . Indeed, that its
bottom square is a 1D-pullback follows from Lemma 13; 1D-injectivity of its bottom
component is 1D-injectivity of h○[x](d,x)∈pl(X′); 1D-injectivity of its top component
follows from that of its middle component, which itself follows from separation: the
only non-trivial bit is proving it in dimension 1. So consider any players x1 and x2

in the domain mapped to the same player. Each of them comes from some player
of X ′, say x′1 and x′2, respectively. So by Yoneda we get a commuting square

d M∣hx′2

M∣hx′1 M .

x2

x1

By separation, we then have hx′1 = hx′2, hence x′1 = x′2 by 1D-injectivity of h.
Finally, x1 = x2 follows from 1D-injectivity of fM,hx′1 .

Now, [rM,x](d,x)∈pl(X′) is bijective in dimensions > 0, as the pullback of
[x](d,x)∈pl(X′), which is by construction. Thus, the map (l′, k′, h′) is bijective in
dimensions > 0, which entails that ⟨U ′

⟩ → ⟨M⟩ is again in D(S)H .
Finally, let us prove that ⟨U ′

⟩ is the restriction of ⟨M⟩ along h. To this end, let
us first prove that k is in J�S : consider any T → C in JS and commuting square

T U ′

C M .

By Corollary 78, we get a dashed map as in

T X ′ X

C U ′ M ,

which makes the diagram commute. If C were equal toM , then T →X would be an
identity, so by Lemma 36 T →X ′

→X would also be the identity, which contradicts
the hypothesis that h is not a retraction. Thus, C is different from M . Therefore,
by monolithicity, we know that T is representable. It is in fact of dimension 1
by tightness. Hence, T → X ′ factors as T = d0 → ∑(d,x)∈pl(X′) d → X ′. Now,
by fragmentedness, this implies that there exists C → M∣hx0

making everything
commute, and we find a suitable C → U ′ by composing it with the obvious coproduct
injection M∣hx0

→ ∑(d,x)∈pl(X′)M∣hx and k′. Uniqueness of C → U ′ is given by 1D-
injectivity of k.

Lastly, we prove that the right-hand square below is a pullback:

(18)
Z ′

+∑(d,x)∈pl(X′) YM,hx Y ′ Y

Z ′
+∑(d,x)∈pl(X′)M∣hx U ′ M .

By Lemma 13, the outer square is a pullback because the square below left (by
Lemma 12) and each of the squares below right (by fragmentedness) are:

Z ′ Y

Z ′ M

YM,x Y

M∣x M .
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Moreover, the left-hand square in (18) is also a pullback by Lemmas 12 and 13,
and adhesivity. Since Z ′

+∑(d,x)∈pl(X′)M∣x → U ′ is epi, Lemma 14 entails that the
desired square is a pullback. �

Corollary 93. For any persistent, monolithic, fragmented, and separated signature
S, D(S) is fibred.

As an easy application, we get:

Proposition 94. D(SHON ) is fibred.

Proof. By Corollary 93, it suffices to verify that SHON is persistent, monolithic,
fragmented, and separated, which is routine. �

5. Application to Tsukada-Ong strategies

In this section, we apply our general results to relate the fibred pseudo double
category D(SHON ) to TO-views and plays. As announced, this finally yields

● an equivalence of categories between both notions of behaviour,
● a functor from our notion of strategy to theirs, which restricts to an equiv-
alence on (both subcategories of) innocent strategies.

We first define and study the relevant categories of views and plays E(X) and
EV

(X) in Section 5.1, which leads to their characterisation as subcategories of
X/L̂. We then state our main results in Section 5.2, deferring the most technical
points to the next sections: in Section 5.3, we actually construct our functor F
from TO-plays to plays, which is proved in Section 5.4 to be fully faithful. We then
show in Section 5.5 that F restricts to a functor FV from TO-views to views, which
is an equivalence of categories.

5.1. Views and plays. The relevant categories of plays for us are the “relative”
variants E(X) of our category E (Definition 47). We will in particular study E(A ⊢
B) for all sequents A ⊢ B. We now define the subcategory of views.

Definition 95. For any play u∶Z (A ⊢ B), we define the binary relation ≺ on
all moves of u by m ≺u m

′ iff m ⋅ s =m′
⋅ t. When m ≺u m

′, we say that m′ causally
depends on m. Furthermore, we omit the subscript when clear from context.

Let EV
(A ⊢ B) denote the full subcategory of E(A ⊢ B) spanning pre-views, i.e.,

those plays u∶Z (A ⊢ B)

Tom: A verifier! je vire “of even length”

such that the reflexive transitive closure ≺
∗ of ≺ is a total ordering.

A view is a preview of positive, even length (i.e., it is the composite of a positive,
even number of moves).

Remark 10. The condition imposed on pre-views by asking that ≺∗ be a total order
is simply that the player who plays the nth move in the preview was created by the
n − 1th move. In particular, no moves occur “in parallel” in a pre-view.

Remark 11. This notion of view is morally the same as in our previous sheaf mod-
els, but slightly differs from it in form, with good reason: following our usual pre-
sentation would in particular require adding a “partial” variant of each ΛS,q move,
in which the final position Y would consist of only the created player. But then,
letting S = (Γ ⊢ A), the conclusion A is absent from Y , which breaks persistency
and hence our proof of fibredness. We consider this to be a significant limitation of
our signature SHON .
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Before relating our categories of views and plays with Tsukada and Ong’s, we
digress a little in this section to establish the announced characterisation of E(A ⊢

B) and EV
(A ⊢ B), as subcategories of the slice (A ⊢ B)/L̂.

Definition 96. Let E′(A ⊢ B) denote the subcategory of (A ⊢ B)/L̂ spanning
morphisms t∶ (A ⊢ B) → U for which there exists a play Y

s
Ð→ U

t
←Ð (A ⊢ B), and

1D-injective morphisms between them.
Let (EV

)
′
(A ⊢ B) denote the full subcategory of E′(A ⊢ B) spanning views.

There is an obvious candidate functor U∶E(A ⊢ B) → E′(A ⊢ B) mapping any
Y

s
Ð→ U

t
←Ð (A ⊢ B) to t and any (w,α)∶u′ → u to the composite U ↪ (U ●W )

α
Ð→ U ′,

where (recalling Notation 67) u = (Y
s
Ð→ U

t
←Ð (A ⊢ B)), u′ = (Y ′ s

′
Ð→ U ′ t′

←Ð (A ⊢ B)),
and w = (Z

sw
Ð→W

tw
←Ð Y ).

Lemma 97. U is compatible with the equivalence relation ∼ (Notation 43) and
yields a functor U∶E(A ⊢ B) → E′(A ⊢ B)

Proof. Assume γ∶w′
→ w witnesses the equivalence (w,α) ∼ (w′, α′). By construc-

tion of U ● γ we have that U ↪ U ●W factors as U ↪ U ●W ′ U●γ
ÐÐ→ U ●W , so

U(w′, α′) = (U ↪ U ●W ′ α
′
Ð→ U ′

)

= (U ↪ U ●W ′ U●γ
ÐÐ→ U ●W

α
Ð→ U ′

)

= (U ↪ U ●W
α
Ð→ U ′

)

= U(w,α).

Functoriality of the obtained assignment is straightforward. �

The rest of this section is devoted to proving:

Theorem 98. U is an equivalence, and thus restricts to an equivalence UV
∶EV

(A ⊢
B) → (EV

)
′
(A ⊢ B).

It is enough to prove that the underlying functor to (A ⊢ B)/L̂ is faithful and
that its image on hom-sets precisely spans 1D-injective morphisms.

The theorem is in fact an easy consequence of:

Lemma 99. Assume given plays u∶Z (A ⊢ B) and u′∶Z ′
(A ⊢ B), and a

1D-injective morphism h∶U(u) → U(u′).
There exists a quasi-move w∶T Z and a morphism α∶ (u●w) → u′ in D(SHON )H

such that h = (U ↪ U ●W
α
Ð→ U ′

), which is minimal in the sense that for any (w′, α′)

such that h = (U ↪ U ●W ′ α′
Ð→ U ′

), there exists a unique γ∶w → w′ such that α
decomposes as α′ ○ (u ● γ), as in

T T ′ Z ′

Z

(A ⊢ B) (A ⊢ B).

w′
w

u

u′

s

α′
γ

In order to prove this, we need to analyse final positions of plays as follows.
Given a position X ∈ L̂, recalling Terminology 25, let us call a channel an input
when it occurs as x ⋅ si, for some player x ∈ X(S), and an output when it occurs
as x ⋅ t. In general positions, channels may be both inputs and outputs, but in
coproducts of sequents, each channel is one or the other, but not both.

Definition 100. A position is polar when each of its channels is either an input
or an output but not both.
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Non-polar positions either have disconnected channels (which are neither inputs
nor outputs) or channels which are both inputs and outputs.

Definition 101. An interface is a position consisting only of channels.

Any polar position X comes with a canonical (up to isomorphism) monic map
IX +OX ↪X from some coproduct of two interfaces IX and OX , surjective (hence
iso) in dimension 0, such that IX covers inputs and OX covers outputs. Note that
all maps preserve polarity (but they may also add polarities to some channels).

Lemma 102. Any polar position admits a surjective and 1D-injective map from a
coproduct of sequents, given by the counit of the comonad of Proposition 63.

Proof. Straightforward. �

Lemma 103. For all plays u∶Z (A ⊢ B), Z is polar.

Proof. This follows from the more general fact that Z is polar for any u∶Z X
with polar X, by induction on the length of u. �

Notation 104. We call any map as in Lemma 102 a polar cover of the given
position. We fix a global choice of such polar covers, which, for any polar Z, we
denote by Pl(Z) = (∑i∈PZ Z

P
i ) + (∑j∈NZ Z

N
j )

εZ Z, where each ZPi is a positive
sequent, i.e., one of the form Γ ⊢, and each ZNj is a negative sequent, i.e., one of
the form Γ ⊢ A.

Finally, by Lemma 81, any play u on Pl(Z) “descends” to a play εZ ⋅u∶ εZ ⋅Y Z,
as the pushout

id●IPl(Z)+OPl(Z) id●IZ+OZ

u εZ ⋅ u.
αuZ

We now need a further observation on final positions. These are a priori associ-
ated to some play, but in fact we may pose:

Definition 105. The final position ↑U of a presheaf U ∈ L̂ is the smallest sub-
presheaf of U containing all channels and negative players, as well as all positive
players x for which there exists no move m with m ⋅ t = x. We deem the elements
of ↑U final in U .

Accordingly, a morphism h∶Z → U with Z a position, is called final iff it is
isomorphic to ↑U (in L̂/U).

Intuitively, the final position retains only those positive players who haven’t yet
played any move.

Lemma 106. For all plays u∶Y X, su is final.

Proof. By induction on u. �

Our next step will have to do with fullness of U. It will rely on the following
notion:

Definition 107. For any play u′∶Z ′
(A ⊢ B), a 1D-injective morphism k∶Z → U ′

is P -ample iff for all S, i, q and m ∈ U ′
(@S,i,q), if m ⋅ t ∈ Im(k) then m ⋅ s ∉ Im(k).

Definition 108. For any play u′∶Z ′
(A ⊢ B), final players of U ′ are called

survivors, whilst non-final players are called doomed. The set of survivors of U ′ is
denoted by Surv(U ′

) and the set of doomed players by Doom(U ′
).

For any k∶Z → U ′, we reflect the decomposition of pl(U ′
) into survivors and

doomed players as pl(Z) = Surv(Z) ⊎Doom(Z).
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Of course, all doomed players are positive.

Notation 109. For any play u∶Y X, let ⌈u⌉ denote the cospan Y
su
Ð→ U U .

Lemma 110. Assume given any polar position Z, play u′∶Z ′
(A ⊢ B), and

P -ample morphism k∶Z → U ′.
Then there exist quasi-seeds (= vertical morphisms which are either seeds or

identities) Mi∶Yi ZPi for all i ∈ PZ and a 1D-injective αk as in

(∑i∈PZ Yi +∑j∈NZ Z
N
j ) εZ ⋅ (∑i∈PZ Yi +∑j∈NZ Z

N
j ) Z ′

(∑i∈PZ Z
P
i +∑j∈NZ Z

N
j ) Z U ′,

Mk

εZ

εZ ⋅Mk

α
Mk
Z

k

U ′αk

where Mk = (∑i∈PZ Mi +∑j∈NZ Z
N
j ) and, on the right, the cospan ⌈u′⌉ is viewed as

a vertical morphism in Cospan(L̂).

Proof. Let ZN = ∑j∈NZ Z
N
j and ZP = ∑i∈PZ Z

P
i . By Lemma 106, any negative

player x in Z uniquely corresponds to some negative player x′ in Z ′, mapped to
k(x) by su′ . This yields a cell

ZN Z ′

ZN U ′.
U ′αN

Now, for any positive survivor x in Z (over some sequent Sx), if we define Yx = Sx,
there is a cell

Yx Z ′

Sx U ′

⌜k(x)⌝

U ′αx

analogous to the above one.
Finally, for any doomed x ∈ Z(Sx), let x′ = k(x) denote its image in U ′

(Sx).
Because x is doomed, there exists a (unique) move m ∈ U ′

(@Sx,i,q) for some i and
q, such that m ⋅ t = x′. Let (Mx∶Yx Sx) = SHON (@Sx,i,q) denote the seed of m.
By definition of SHON , Yx is a negative sequent, and we let y = m ⋅ s ∈ U ′

(Yx). By
the same argument as above, y has a unique antecedent y′ in Z ′ and so there exists
a cell

Yx Z ′

Sx U ′.

⌜y′⌝

Mx

⌜k(x)⌝

U ′αx

By copairing all these cells, we obtain a cell α0
k ∶Mk → U ′ in Cospan(L̂), which

decomposes as desired by universal property of pushout and the fact that id●IU′+OU′
is the universal interface with a map to U ′. It remains to prove that all involved
maps are 1D-injective and that all bottom squares are 1D-pullbacks. Everything
except 1D-injectivity of α0

k follows from Lemmas 13 and 81, together with the fact
that id●IPl(Z)+OPl(Z) → id●IZ+OZ is bijective in dimensions > 0. Now, because k is 1D-
injective, the only non-trivial possibility for a lack of 1D-injectivity of α0

k lies in some
x ∈ Doom(U ′

) for which the unique player y ∈ Yx maps in U ′ to some y′ = k(x′).
But in that case, the m such that m ⋅ t = k(x) is such that m ⋅ s = k(x′) ∈ Im(k),
which contradicts P -ampleness of k. �
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From this point on until the end of the proof of Lemma 99, we will implicitly use
the fact that β moves never occur in the plays we consider, which holds because
we only consider plays starting from polar positions. In particular, we will use
notations such as m ⋅ t or m ⋅s for arbitrary moves m, which is ill-defined in general,
but well-defined for Λ and @ moves.

We have four further handy lemmas:

Lemma 111. For any horizontal morphism h∶X → Y and play u∶Z Y , there
exists at most one cell id●X → u with bottom border h.

For any @S,i,q ∈ ob(L), morphism h∶S → Y , and play u∶Z Y , there exists at
most one cell SHON (@S,i,q) → u with bottom border h.

Proof. The first proof is straightforward. For the second, by Yoneda, any cell
α∶SHON (@S,i,q) → u is uniquely determined by the image of m = id@S,i,q (which
is the move element in SHON (@S,i,q)). But this is in fact uniquely determined by
the image of x = idS ∈ yS (the player element). Indeed, by an easy induction on u,
there is at most one m′

∈ u(@S,i,q) such that m′
⋅ t = h(x). �

Lemma 112. For any play u∶Z Y and player x in U , either x is in the image
of tu or there exists a move m in U(@S,i,q), for some S, i, q, such that x = m ⋅ s.
Dually, either x is in the image of su or there exists m in U such that x =m ⋅ t.

Proof. By induction on u. �

Lemma 113. For any play u∶Z Y and moves m1 and m2 in U , if m1 ⋅s =m2 ⋅s,
then m1 =m2.

Proof. By induction on u �

We now define a relation analogous to ≺ (Definition 95), but on players:

Definition 114. For any players x and y in u, let x ≺u y iff there exists m such
that x =m ⋅t and y =m ⋅s. As before, we omit the subscript when clear from context.

Lemma 115. For all morphisms k∶U(u) → U(u′) in E′(A ⊢ B), if k(x) ≺u′ k(y)
with x positive, i.e., over some @S,i,q, then x ≺u y.

Proof. Let m′ witness k(x) ≺u′ k(y). By Lemma 112, we have k(y) ∉ Im(tu′), so
y ∉ Im(tu), and hence there exists m ∈ U such that m ⋅ s = y again by Lemma 112.
Now, by naturality of k, we have k(m) ⋅ s = k(y) so k(m) = m′ by Lemma 113.
Again by naturality of k, we get k(m ⋅ t) = m′

⋅ t = k(x), so by 1D-injectivity of k
we obtain x =m ⋅ t and hence x ≺ y. �

Lemma 99 now follows:

Proof of Lemma 99. Given u, u′ and h, let k = h ○ su. This morphism is P -ample
(Definition 107): consider any m′

∈ U ′
(@S,i,q) with k(x) =m′

⋅ t, and k(y) =m′
⋅ s.

Then we have k(x) ≺u′ k(y) so by Lemma 115, there exists m witnessing su(x) ≺u
su(y). But by positivity of x Lemma 106 implies su(x) ⊀u su(y), which is a
contradiction.

Since k is P -ample, we may apply Lemma 110, which yields a cell αk = (l, r, k)∶w →
⌈u′⌉ with w = εZ ⋅Mk ∶T Z a quasi-move. This in particular ensures that the
square

Z W

U U ′

h
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commutes. By universal property of pushout, this induces a unique morphism
α∶u●w → u′ such that α ○ injWU = h and α ○ injUW = αk (where injWU ∶U ↪ U ●W and
injUW ∶W ↪ U ●W are the pushout injections). This α is 1D-injective because the
images of U ∖Z and W ∖Z are disjoint in dimensions ≥ 1.

It remains to show that the pair (w,α) is minimal. Consider thus any (w′, α′)

such that α′ ○ injW
′

U = h.
By Lemma 112, a positive x ∈ U(S) in the image of tu is doomed iff there is a

move m ∈ u(@S,i,q), for some i and q, such that x =m ⋅ t.
Now, let us observe that for any positive player x of Z, tw(x) ∈ Doom(W ) iff

k(x) ∈ Doom(U ′
). To show this, we prove that the following are equivalent:

(i) ∃x1 ∈ T, tw(x) = sw(x1),
(ii) ¬(∃m ∈W, tw(x) =m ⋅ t),
(iii) ∃x′1 ∈ Z

′, k(x) = su′(x
′
1),

(iv) ¬(∃m′
∈ U ′, k(x) =m′

⋅ t).
Indeed, both equivalences (i) ⇔ (ii) and (iii) ⇔ (iv) follow from Lemma 112, so
that it is enough to show (i) ⇒ (iii) and (iv) ⇒ (ii). For the former, assuming
x1 ∈ T such that tw(x) = sw(x1), x′1 = l(x1) suits our needs, as

s′u(l(x1)) = r(sw(x1)) = r(tw(x)) = k(x).

For the latter, we show the contrapositive: assuming m ∈W such that tw(x) =m ⋅ t,
m′

= r(m) again suits our needs, as

r(m) ⋅ t = r(m ⋅ t) = r(tw(x)) = k(x).

But any doomed player x ∈ Z maps to some doomed player in W ′, so

(x ∈ Doom(W )) ⇔ (k(x) ∈ Doom(U ′
)) ⇔ (x ∈ Doom(W ′

)).

This entails that Mk → U ′ lifts through α′, as desired, uniquely by Lemma 111.
But then w → U ′ also lifts through α′ by universal property of pushout, uniquely
because αMk

Z is epi. �

Proof of Theorem 98. Lemma 99 easily entails that the image of U in (A ⊢ B)/L̂
on hom-sets spans 1D-injective morphisms. Faithfulness follows from minimality of
the constructed pair (w,α). �

5.2. Bridging the gap. We thus have, for all arenas A and B, on the one hand
Tsukada and Ong’s inclusion iTO ∶VA,B ↪ PA,B of TO-views into TO-plays, and on
the other hand the inclusion i∶EV

(A ⊢ B) ↪ E(A ⊢ B) described in the previous
section. We at last relate the two by constructing a functor F ∶PA,B → E(A ⊢ B),
which restricts to a functor from TO-views to views (Lemma 150), thus yielding
the announced commuting square (1), which we reproduce here for convenience:

(19)
VA,B PA,B

EV
(A ⊢ B) E(A ⊢ B).

iTO

FV

i

F

The functor F is constructed in Section 5.3, and FV at the beginning of Sec-
tion 5.5.

As we show below (Theorem 144), F is full and faithful. But as the right class
of an orthogonal factorisation system on categories (bijective-on-objects vs. fully
faithful functors), full and faithful functors enjoy the left cancellation property. So,
because both embeddings are full and faithful, FV is again full and faithful. But
we also show (Theorem 151) that it is essentially surjective on objects, hence an
equivalence. By the theory of exact squares [16], which we briefly recall below,
this implies the main results of this section (Corollary 116): in both approaches
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the innocent strategy associated to any behaviour is right Kan extension along
the opposite of the inclusion of views into plays. Let us denote these functors
respectively by ∏i∶

̂EV
(A ⊢ B) →

̂E(A ⊢ B) and ∏iTO
∶ V̂A,B → P̂A,B . Similarly, let

∆F and ∆FV respectively denote restriction along the opposites of F and FV. Our
result then reads:

Corollary 116. For all arenas A and B, the square

V̂A,B P̂A,B

̂EV
(A ⊢ B)

̂E(A ⊢ B).

∏iTO

∆
FV

∏i

∆F

commutes up to isomorphism.
Restriction along FV induces an equivalence between behaviours over A ⊢ B and

TO-behaviours over (A,B).
Restriction along F induces a functor from strategies over A ⊢ B to TO-strategies

over (A,B), which restricts to an equivalence on innocent strategies.

The moral of this result is that our views and plays faithfully represent Tsukada
and Ong’s. Indeed, both notions of behaviour essentially coincide and moreover,
although our categories of plays are slightly richer, our innocent strategies restrict to
theirs and furthermore their process of extending behaviours to innocent strategies
coincides with ours up to this restriction.

As mentioned above, assuming Theorems 144 and 151, Corollary 116 directly
follows from (a straightforward extension of) a well-known fact about exact squares,
which we now recall.

Definition 117. A square is a natural transformation as in:

(20)
A B

C D.

f

u

g

v
φ

Any square yields by restriction a square as on the left below, and so by adjunc-
tion a further square as on the right:

Â B̂

Ĉ D̂

∆f

∆u

∆g

∆v

∆φ

Â B̂

Ĉ D̂,

∏f

∆u

∏g

∆v

∏φ

where, e.g., ∆f denotes restriction along fop and ∏f denotes right Kan extension
along fop .

Definition 118. A square φ is exact iff ∏φ is an isomorphism.

Obviously, Corollary 116 reduces to exactness of (1) (filled with the identity).
In order to prove that (1) is exact, let us recall two basic results from Guitart [16]:

Lemma 119. For any functor f ∶A→ B, the square below left is exact; furthermore,
the square below right is also exact if f is fully faithful:

A B

A B

f

f

idf

A A

A B
f

f
idf
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These results appear as 1.14 (1) and (4) in Guitart’s paper. The next one appears
as 1.8:

Lemma 120. Exact squares are stable under horizontal composition.

We put these together to obtain:

Lemma 121. Any square (20) in which φ and u are identities and v is fully faithful
is exact.

Proof. We obtain the given square as the horizontal composite

A B B

A B C,

f

f

f

g

v

v

which is exact by the previous lemma, because both squares are exact by Lemma 119.
�

Lemma 122. Any square (20) in which φ is an identity, u is an equivalence, and
v is fully faithful is exact.

Proof. Similar to the previous lemma. �

This simply entails our main result:

Proof of Corollary 116. Theorems 144 and 151 allow us to apply the previous lemma.
The rest is a direct consequence of exactness. �

We thus devote the rest of the paper to constructing F (Section 5.3), prov-
ing Theorem 144 (Section 5.4), and finally proving Lemma 150 and Theorem 151
(Section 5.5).

5.3. Constructing the functor. By left cancellation and Theorem 98, construct-
ing F reduces to defining a fully-faithful functor F ∶PA,B → E′(A ⊢ B), which we
will then want to restrict to views, as in:

(21)
VA,B PA,B

(EV
)
′
(A ⊢ B) E′(A ⊢ B).

iTO

FV

i

F

We first construct F on objects, which requires some preparatory notation on
arenas and preplays.

Notation 123. From this point on, we use C/m to denote the sub-arena of C under
the move m, and only use C ⋅m to denote C/m when m is a root of C.

We further define (A,B)
/m = A/m when m is in A and (A,B)

/m = B/m when m
is in B.

We immediately notice:

Lemma 124. For all m, m′ in MA +MB, if m ⊢A⊸B m′ and ⋆ /⊢A m′, then
m′

∈

√

(A,B)
/m

and (A,B)
/m′ = (A,B)

/m ⋅m′.

Proof. Trivial. �
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Notation 125. In any preplay s = (n, f,ϕ) and i ∈ n, let Ks(i) denote the length
of ⌈s⌉i, and let ⌈s⌉i = (Is,i1 , . . . , Is,i

Ks(i)
). Furthermore, let Is,i0 = 0 for all i ∈ n.

By recasting the definition of views in HON games in terms of Ks(i) and Is,ij ,
we get a few useful relations relations. First, we can follow the Ks(−)’s through a
view. Indeed, for all i ∈ n:

● if i is odd, then Ks(i) = 1 +Ks(ϕ(i)) and for all j < Ks(i), Is,ij = I
s,ϕ(i)
j ,

with the convention that Ks(0) = 0;
● if i is even, then Ks(i) = 1 +Ks(i − 1) and for all j <Ks(i), Is,ij = Is,i−1

j .
Furthermore, the definition of views reflects into the following relations:

● Is,i
Ks(i)

= i;

● for all odd k ∈Ks(i), Is,ik−1 = ϕ(I
s,i
k );

● for all positive, even k ∈Ks(i), Is,ik−1 = I
s,i
k − 1.

We often omit both superscripts when clear from context. This in particular
gives ϕ in terms of I, for Opponent (odd) moves. Let us consider the even case.
For all j ∈ Ks(i), j and Ij have the same parity. By P -visibility, when j is even,
we have ϕ(j) ∈ ⌈s⌉i and so there exists a unique l ∈ Ks(i) such that ϕ(j) = Il. By
alternation, ϕ(j) is odd and so l also is. Thus, there exists a unique Ls(j) ∈Ks(i)/2
such that l = 2Ls(j) − 1. In summary, we have:

Lemma 126. For all i ∈ n and j ∈ ⌈s⌉i, letting k ∈ Ks(i) be such that Is,ik = j, we
have

● ϕ(j) = I2Ls(j)−1 if j is even and
● ϕ(j) = ϕ(Is,ik ) = Is,ik−1 if j is odd.

Furthermore, the sequence of all I2l−1 for l ∈ Ks(i)+1
2

(where the division is un-
derstood in the integer setting and thus in particular equals Ks(i)

2
when i is even)

is relevant. It consists of all odd indices in ⌈s⌉i. Let us provide some notation for
this:

Notation 127. For all maps x∶n → X to some set X, let us denote by [x(i)]i∈n
the sequence (x(1), . . . , x(n)).

So, e.g., the above subsequence of I is denoted by [I2l−1]l∈
Ks(i)+1

2

. Using this
notation, we may explicitly characterise the sequents associated to each stage of s.
As we will see below, for each move i ∈ n, Ss,i+1 will be the sequent of the player
“created by the i’th move” in F (s).

Notation 128. By convention, we extend the definition Is,i with Is,i0 = 0. Fur-
thermore, we define (A,B)

s
/i = (A,B)

/f(i), where s = (n, f,ϕ). We extend this by
convention to (A,B)

s
/0 = B.

Definition 129. For any i ∈ n ⊎ {0}, let Ss,i+1 denote the sequent defined by
● A, [(A,B)

s
/Is,i

2l−1

]
l∈
Ks(i)+1

2

⊢ if i is odd and

● A, [(A,B)
s
/Is,i

2l−1

]
l∈
Ks(i)

2

⊢ (A,B)
s
/Is,i
Ks(i)

if i is even.

In particular, when i = 0, the definition yields Ss,1 = (A ⊢ B).
First, let us observe:

Lemma 130. For all i ∈ ∣s∣, if f(i) ∉
√

A, then (A,B)
s
/i = (A,B)

s
/ϕ(i) ⋅ f(i).

Proof. If ϕ(i) = 0, then f(i) ∈
√

B, so the formula obviously holds because (A,B)
s
/0 =

B. Otherwise, the result is a direct application of Lemma 124, using the fact that
f(ϕ(i)) ⊢A,B f(i). �
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Which entails:

Corollary 131. The arenas (A,B)
s
/I1
, . . . , (A,B)

s
/IKs(i)

are related by

● (A,B)
s
/Ik

= (A,B)
s
/Ik−1

⋅ f(Ik) when k is odd,
● (A,B)

s
/Ik

= (A,B)
s
/I2Ls(Ik)−1

⋅ f(Ik) when k is even and f(Ik) ∉
√

A, and

● (A,B)
s
/Ik

= A ⋅ f(Ik) when k is even and f(Ik) ∈
√

A,
for all k ∈Ks(i).

Proof. By Lemmas 126 and 130 for the first two points. Thanks to our notation
above, this even works directly when k = 1: we know that ϕ(I1) = 0, so f(I1) ∈

rootsB and by definition (A,B)
s
/I1

= B ⋅ f(I1). Accordingly, the formula yields

(A,B)
s
/I1

= (A,B)
s
/0 ⋅ f(I1) = B ⋅ f(I1).

The last point is straightforward. �

We now show a few useful lemmas about HON plays and morphisms of such.
The first one simply states that morphisms of HO-preplays map views to views:

Lemma 132. If g∶ s→ s′ is a morphism of HO-preplays, then for all i ∈ ∣s∣:
● Ks′(g(i)) =Ks(i),
● for all j ∈Ks(i), I

s′,g(i)
j = g(Is,ij ).

Proof. Let us start with the first point, by induction on i. For the base case, we
have Ks′(g(0)) = Ks′(0) = 0 = Ks(0) by definition. Now, by case analysis on the
parity of i and then by induction hypothesis, we have:

Ks′(g(2k + 1))=1 +Ks′(ϕ
′
(g(2k + 1)))

=1 +Ks′(g(ϕ(2k + 1)))
=1 +Ks(ϕ(2k + 1))
=Ks(2k + 1)

Ks′(g(2k + 2))=Ks′(g(2k + 1) + 1)
=1 +Ks′(g(2k + 1))
=1 +Ks(2k + 1)
=Ks(2k + 2).

For the second point, we again proceed by induction on i. The base case trivially
holds. For the induction step, consider any i > 0. For all j < Ks(i), by taking
j′ = g(ϕ(i)) in the odd case and l = g(i) − 1 = g(2k + 2) − 1 = g(2k + 1) in the even
case, we obtain

I
s′,g(i)
j = I

s′,g(l)
j = g(Is,lj )

(by induction hypothesis). It thus remains to prove (using the first point):

I
s′,g(i)
Ks(i)

= I
s′,g(i)
Ks′(g(i))

= g(i) = g(Is,i
Ks(i)

),

as desired. �

Lemma 133. If g∶ s → s′ is a morphism of HO-plays, then for all i ∈ {0} ⊎ ∣s∣,
(A,B)

s′
/g(i) = (A,B)

s
/i.

Proof. We have (A,B)
s′
/g(i) = (A,B)

/f ′(g(i)) = (A,B)
/f(i) = (A,B)

s
/i. �

Lemma 134. If g∶ s → s′ is a morphism of HO-plays, then for all i ∈ {0} ⊎ ∣s∣,
Ss,i+1

= Ss
′,g(i)+1.

Proof. When i is odd, then g(i) is also odd, so

Ss
′,g(i)+1

= (A, [(A,B)
s′

/I
s′,g(i)
2l−1

]
l∈
Ks′ (g(i))+1

2

⊢).

By Lemma 132, we know that Ks′(g(i)) = Ks(i) and that for all l ∈ Ks′(g(i))+1
2

,
I
s′,g(i)
2l−1 = g(Is,i2l−1), which directly implies the result by Lemma 133. The proof is
similar when i is even. �



48 CLOVIS EBERHART, TOM HIRSCHOWITZ

Lemma 135. For all preplays s, i ∈ ∣s∣, and j ∈ ⌈s⌉i: Ks(j) ≤ Ks(i) and for all
k ∈Ks(j), I

s,j
k = Is,ik .

Proof. By induction on i. If i is odd and ϕ(i) = 0, then the result is obvious. If i is
odd and ϕ(i) > 0, then either j = i, in which case the result is obvious, or j ∈ ⌈s⌉ϕ(i),
in which case Ks(j) ≤ Ks(ϕ(i)) = Ks(i) − 1 by induction hypothesis, and for all
k ∈ Ks(j), Is,jk = I

s,ϕ(i)
k = Is,ik by induction hypothesis and the fact that k < Ks(i).

If i is even, the proof follows the same pattern. �

Utilisé où ?

Lemma 136. If g∶ s → s′ is a morphism of HO-preplays, then for any positive,
even i ∈ ∣s∣, we have Ls′(g(i)) = Ls(i).

Proof. Since ϕ′(g(i)) = g(ϕ(i)), we know that

I
s′,g(i)
2Ls′(g(i))−1

= ϕ′(g(i)) = g(ϕ(i)) = g(Is,i
2Ls(i)−1

) = I
s′,g(i)
2Ls(i)−1

by Lemma 132, which entails the desired result, since k ↦ I
s′,g(i)
k is monic. �

Returning to the contruction of F on objects, in fact, we construct it on all
preplays in PPA,B , by induction on their length, and eventually restrict to plays. In
order for our induction step to make sense, we should make explicit a few invariants
that our assignment will satisfy.

Notation 137. In the following, we will denote x ⋅ f by x⊙ f when x is a player,
and use x ⋅ f only when x is a move.

For any preplay s = (n, f,ϕ), the associated play F ′
(s) = (↑U ↪ U

t
←Ð X) will

satisfy:
(P1) The sets U(A) for all arenas A are pairwise disjoint, and ⊎A∈AU(A) = n+2;

this induces a map a∶n + 2 → A, where A denotes the set of all sub-arenas
of A or B, such that for all i ∈ n + 2, i ∈ U(a(i));

(P2) The sets U(S) for all sequents S are pairwise disjoint, and ⊎S∈SU(S) = n+1,
where S denotes the set of all sequents; this induces a map s∶n+1→ S such
that for all i ∈ n + 1, i ∈ U(s(i));

(P3) The sets U(µ) for all moves µ ∈ ob(L∣2) are pairwise disjoint, and ⊎µU(µ) =
n; this induces a map m∶n→ ob(L∣2) such that for all i ∈ n, i ∈ U(m(i));

(P4) for all i ∈ n, i ⋅ s = i + 1 (move i creates player i + 1);
(P5) the player n + 1 is final in U ;
(P6) for all i ∈ n + 1, s(i) = Ss,i.
When n = 0, the preplay s is mapped by definition to a cospan that is isomorphic

to the identity cospan on A ⊢ B and that verifies the conditions above. There are
infinitely many such cospans, and we (arbitrarily) choose U U −

∼
(A ⊢ B), where

such that U(A ⊢ B) = {1}, 1⊙ s1 = 1 and 1⊙ t = 2. For the induction step, consider

any s = (n + 1, f, ϕ) and assume that ↑U ′
↪ U ′ t′

←Ð X satisfies (P1)–(P6) for the
immediate prefix s′ of s.

We define F (s) = (↑U ↪ U
t
←Ð (A ⊢ B)) by a specific choice of composite

U ′
●M , for some move M ∶ ↑U ↑U ′, itself constructed by choosing some seed

Y0
s0
Ð→ µ

t0
←Ð X0 with representable X0 and final player x ∈ U ′

(X0), and taking the
pushout

X0 µ

↑U ′ M.

t0

⌜x⌝
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The map t0 being injective, so is the induced map U ′
→ U . We choose to make it an

inclusion, which makes it entirely determined by the choice of “created” elements,
i.e., of images of elements in µ∖X0. Because µ ∈ ob(L∣2), we know that in all cases
there is exactly one created edge, one created player, and one new move. Since the
edges, players and moves of U ′ respectively are the elements of n + 2, n + 1 and n,
we will systematically pick the created elements to be respectively n + 3, n + 2 and
n+ 1. Thus, we only need to choose x and µ with x final in U ′ and show that (P6)
is preserved. Let us proceed by case analysis:

● If n + 1 is odd and ϕ(n + 1) = 0, then f(n + 1) ∈

√

B so we may pick
µ = Λ(A⊢B),f(n+1), which leaves us with the task of picking some player in
U ′

(A ⊢ B). But by (P6), 1 ∈ U ′
(Ss,1) = U ′

(A ⊢ B), so we may simply pick
1.

● If n + 1 is odd and ϕ(n + 1) ≠ 0, then let i = ϕ(n + 1). Thus, we have
f(i) ⊢A⊸B f(n + 1), so by Lemma 124 we have f(n + 1) ∈

√

(A,B)
s
/i
.

Furthermore, by (P4), and (P6), (i ⋅ s) = (i + 1) is in U(Ss
′,i+1

), which,
because i is even by alternation, is equally

U(A, [(A,B)
s′

/Is
′,i

2l−1

]
l∈
Ks′ (i)

2

⊢ (A,B)
s′

/Is
′,i
Ks′ (i)

).

But Is
′,i
Ks′(i)

= i, so (A,B)
s′

/Is
′,i
Ks′ (i)

= (A,B)
s′
/i = (A,B)

s
/i, so we may pick

x = (i + 1) and µ = ΛSs′,i+1,f(n+1).
● If n + 1 is even, then we pick x = (n ⋅ s) = n + 1 (by (P4)). Moreover, n + 1

is in U(Ss
′,n+1

) by (P6), which, because n is odd, is equally

U(A, [(A,B)
s′

/Is
′,n

2l−1

]
l∈
Ks′ (n)+1

2

⊢).

If now f(n + 1) ∈

√

A, then we pick µ = @Ss′,n+1,1,f(n+1). Otherwise, by
Corollary 131, taking k = n + 1 yields

(A,B)
s
/n+1 = (A,B)

s
/Is,n

2Ls(n+1)−1
⋅ f(n + 1) = (A,B)

s′
/Is,n

2Ls(n+1)−1
⋅ f(n + 1),

But since n+1 is even and 2Ls(n+1)−1 <Ks(n+1), Is,n
2Ls(n+1)−1

= Is
′,n

2Ls(n+1)−1
,

so in particular f(n + 1) ∈
√

(A,B)
s′

/Is
′,n

2Ls(n+1)−1

and, in view of the form of

Ss
′,n+1, we may pick

µ = @Ss′,n+1,1+Ls(n+1),f(n+1).

The chosen player is final by definition when n + 1 is odd, and by (P5) other-
wise. Finally, (P6) follows straightforwardly. For example, in the second case,
since the move played is ΛSs′,ϕ(n+1)+1,f(n+1), we know that n + 2 is in U(µ) for
µ = (A, [(A,B)

s′

/I
s′,ϕ(n+1)
2l−1

]
l∈
Ks′ (ϕ(n+1))

2

, (A,B)
s′

/I
s′,ϕ(n+1)
Ks′ (ϕ(n+1))

⋅ f(n + 1) ⊢) = Ss,n+2 (using

Corollary 131).
We now want to show that F as defined here extends to a functor. We will define

the image of a morphism of HO-plays below, but we first need a few preparatory
lemmas to show that this image is a natural transformation.

We first state and prove a few lemmas about the presheaf U obtained by applying
the construction above.

Lemma 138. For all preplays s, if F ′
(s) = (X → U), then for all i ∈ ∣s∣:

● i ∈ U(ΛSs,ϕ(i)+1,f(i)) if i is odd,
● i ∈ U(@Ss,i,1,f(i)) if i is even and f(i) ∈

√

A,
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● i ∈ U(@Ss,i,1+Ls(i),f(i)) if i is even and f(i) ∉
√

A.

Proof. By induction on s:
● if s is empty, then the result is obvious,
● otherwise, there are two possible cases. Either i < ∣s∣, in which case, if we
denote by s′ the immediate prefix of s, and F ′

(s′) = (X → U ′
), we know

by induction hypothesis that i belongs to U ′
(µ) ⊆ U(µ) for the desired µ

(because Ss,i = Ss
′,i and Ls(i) = Ls′(i)). Or i = ∣s∣, in which case the result

holds by construction.
�

Lemma 139. For all preplays s, if F ′
(s) = (X → U), then for all i ∈ ∣s∣, i + 2 ∈

U((A,B)
s
/Is,i
Ks(i)

).

Proof. Like in the proof of Lemma 138, we proceed by induction on s: the result
is obvious when s is empty, follows from Is

′,i
Ks′(i)

= Is,i
Ks(i)

for i < ∣s∣, and holds by
Definition 129 and Corollary 131 for i = ∣s∣. �

We can now state and prove the lemma we are interested in:

Lemma 140. If g∶ s → s′ is a morphism of HO-plays, F ′
(s) = (X → U), and

F ′
(s′) = (X → U ′

), then:
● for all µ ∈ L∣2, if i ∈ U(µ), then g(i) ∈ U ′

(µ),
● for all S ∈ L∣1, if i + 1 ∈ U(S), then g(i) + 1 ∈ U ′

(S),
● for all C ∈ L∣0, if i + 2 ∈ U(C), then g(i) + 2 ∈ U ′

(C).

Proof. For the first point, let us assume that i is odd. We know that if i is in U(µ),
then by Lemma 138 we have µ = ΛSs,ϕ(i)+1,f(i). But then Ss,ϕ(i)+1

= Ss
′,g(ϕ(i))+1

=

Ss
′,ϕ′(g(i))+1 by Lemma 134 and the fact that gϕ = ϕ′g, so µ = ΛSs′,ϕ′(g(i))+1,f ′(g(i))

(since f ′(g(i)) = f(i)), so by Lemma 138 we have g(i) ∈ U ′
(µ). The proof is similar

in the other cases (note that, in particular, the proof uses Lemma 136 when i is
even and f(i) ∉

√

A).
The proofs of the other two points follow a similar pattern. �

We will use the following notation to define F ′
(g):

Definition 141. If f is a function from n to m, we define f̃ ∶n + 1 → m + 1 by
f̃(1) = 1 and f̃(i + 1) = f(i) + 1 for all i ∈ n.

Now, if g∶ s → s′ is a morphism of HO-plays, F ′
(s) = (X → U), and F ′

(s′) =

(X → U ′
), we define k = F ′

(g)∶U → U ′ as:
● kµ(x) = g(x) for all µ ∈ L∣2 and x ∈ U(µ),
● kS(x) = g̃(x) for all S ∈ L∣1 and x ∈ U(S),
● kA(x) = ˜̃g(x) for all A ∈ L∣0 and x ∈ U(A).

This is indeed well-defined by Lemma 140. We need to prove two other lemmas in
order to show that k is natural.

Lemma 142. For all preplays s, i ∈ ∣s∣, if F ′
(s) = (X → U), then:

● i ⋅ t = i if i is even,
● i ⋅ t = ϕ(i) + 1 if i is odd.

Proof. By induction on s and i, where the only intersting case is when i = ∣s∣, in
which case both points hold by construction. �
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By (P4), the player created by each move i is i + 1. The next lemma describes
how its associated sequent, Ss,i+1 (Definition 129), connects to its environment.
Intuitively, this is quite simple: all non-new connections are as in Ss,i; and the new
formula connects to the created edge, i + 2. The technical statement is obfuscated
by index handling, so let us explain this a bit. By construction, if i is odd, Ss,i+1

is positive and has 1 + Ks(i)+1
2

hypotheses. If i is even, Ss,i+1 is negative and has
1 + Ks(i)

2
hypotheses. In both cases, the first hypothesis is A, and the others have

been created by previous moves. In fact, when i is even, so is Ks(i), hence as the
division is Euclidean, 1 + Ks(i)

2
= 1 + Ks(i)+1

2
. So for all i ∈ n, Ss,i+1 has 1 + Ks(i)+1

2
hypotheses.

Lemma 143. For all preplays s, i ∈ ∣s∣, if F ′
(s) = (X → U), then, recalling

Definition 129 and the fact that i ⋅ s = i + 1, we have:
● if i is odd:

– (i + 1) ⊙ sj = (ϕ(i) + 1) ⊙ sj for all j ∈ Ks(i)+1
2

and
– (i + 1) ⊙ sKs(i)+1

2 +1
= i + 2;

● if i is even:
– (i + 1) ⊙ sj = i⊙ sj for all j ∈ Ks(i)

2
+ 1,

– (i + 1) ⊙ t = i + 2.

Proof. By induction on s and i, where the only intersting case is when i = ∣s∣, in
which case all points hold by construction. �

We can now prove that k defined above is a natural transformation, which
amounts to showing that all diagrams of the form

(22)
U(µ) U ′

(µ)

U(S) U ′
(S)

kµ

U(α) U ′
(α)

kS

or
U(S) U ′

(S)

U(C) U ′
(C)

kS

U(β) U ′
(β)

kC

commute, for all α∶S → µ and β∶C → S. The left-hand side diagram can now be
shown to commute using Lemma 142, and the right-hand side one using Lemma 143
within an induction. For example, the following computation show that the right-
hand side diagram commutes for i > 1 odd and β = sj (i = 1 can easily be verified
by hand):

˜̃g(i⊙ sj) = ˜̃g((ϕ(i − 1) + 1) ⊙ sj) by Lemma 143
= g̃(ϕ(i − 1) + 1) ⊙ sj by induction hypothesis
= (g(ϕ(i − 1)) + 1) ⊙ sj

= (ϕ′(g(i − 1)) + 1) ⊙ sj because gϕ = ϕ′g

= (g(i − 1) + 1) ⊙ sj by Lemma 143
= g̃(i) ⊙ sj .

The other points either follow a similar pattern or are proved directly by Lemma 142
or 143.

When restricted to X, k turns into idX , as desired. Finally, k is 1D-injective by
injectivity of g, which ends the definition of F on morphisms.

It remains to prove functoriality of F , which follows directly from functoriality
of −̃.

5.4. Full faithfulness. This section is devoted to proving

Theorem 144. The functor F ′
∶PA,B → E′(A ⊢ B) is a full embedding.
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First, F is clearly injective on objects, and faithfulness is easy: if g and g′ are two
morphisms s → s′, then, letting k = F ′

(g) and k′ = F ′
(g′), we know by (P3) that

the U(µ)’s form a partition of n, and by definition of k and k′ that kµ(x) = g(x)
and k′µ(x) = g′(x) for all x ∈ F ′

(s)(µ) and µ ∈ L∣2. Therefore, if kµ = k′µ for all
µ ∈ L∣2, then g = g′.

Proving fullness is a bit more involved. Let us start with a lemma asserting that
any natural transformation k∶F ′

(s) → F ′
(s′) is layered just as any F ′

(g). In order
to formalise this, let us state:

Definition 145. For any TO-play s and i ∈ {0,1,2}, let F ′
(s)∣i = ⊎O∈L∣i F

′
(s)(O).

For any k∶F ′
(s) → F ′

(s′) in E′(A ⊢ B) and i ∈ {0,1,2}, let

k∣i∶F
′
(s)∣i → F ′

(s′)∣i

denote the restrictions of k to each given domain and codomain.

When U = F ′
(s) for some s = (n, f,ϕ), we know by construction that F ′

(s)∣2 = n,
F ′

(s)∣1 = n + 1, and F ′
(s)∣0 = n + 2. This allows us to state:

Lemma 146. For any k∶F ′
(s) → F ′

(s′) in E′(A ⊢ B),

k∣1 = k̃∣2 and k∣0 =
̃̃
k∣2.

Proof. Because E′(A ⊢ B) is a subcategory of the coslice (A ⊢ B)/L̂, we know that
k∣1(1) = 1, k∣0(1) = 1, and k∣0(2) = 2. It thus remains to prove that k∣1(i + 1) =

k∣2(i) + 1 and k∣0(i + 2) = k∣1(i + 1) + 1, for all i ∈ n.
We have

k∣1(i + 1)=k∣1(i ⋅ s)
=k∣2(i) ⋅ s (by naturality of k)
=k∣2(i) + 1

for the first point. We treat the second point by case analysis on the parity of i,
using naturality and Lemma 143:

k∣0(2i + 1)=k∣0((2i) ⊙ sN)

=k∣1(2i) ⊙ sN
=k∣1(2i) + 1

and k∣0(2i + 2)=k∣0((2i + 1) ⊙ t)
=k∣1(2i + 1) ⊙ t
=k∣1(2i + 1) + 1

where in the odd case N =
Ks(i)+1

2
+ 1. �

Consider any s = (n, f,ϕ) and s′ = (n′, f ′, ϕ′), with F (s) = ↑U → U ← X and
F (s′) = ↑U ′

→ U ′
← X, together with a morphism k∶U → U ′ in E′(A ⊢ B). We

know by (P3) that the U(µ)’s form a partition of n for µ in L∣2. We can therefore
define the map g∶n→ n′ by g = k∣2. Our goal is to show that g is a morphism s→ s′

of TO-plays and that F ′
(g) = k. But given the first point, the latter follows from

g = k∣2 by definition of F ′ and Lemma 146.
So let us show that g is a morphism of TO-plays. First, f ′(g(i)) = f(i) holds by

construction. Furthermore, g is injective by 1D-injectivity of k. We also know that
k is natural, so we get commuting diagrams as in (22) for all α∶S → µ and β∶C → S.
By taking α = s, we get that g(2i − 1) = g(2i) − 1 and g(ϕ(2i − 1)) = ϕ′(g(2i − 1))
for all i ∈ n/2. The last point we need to show is that g(ϕ(2i)) = ϕ′(g(2i)) for all
i ∈ n/2, which requires three additional lemmas.

Lemma 147. For all preplays s, i ∈ ∣s∣, and j ∈ ⌈s⌉i, and k ∈
Ks(j)+1

2
+1: (j+1)⊙sk =

(i + 1) ⊙ sk.

Proof. By induction on i − j and Lemma 143. �
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The next lemma expresses the justifier ϕ(i) of i in terms of F ′
(s), using the fact

that moves and created edges are in bijection, each move i creating edge i+ 2. The
idea here is that if some positive move i is played on a sequent A1, . . . ,AN ⊢, say on
Ak, then ϕ(i) should be the move that has created Ak. But, i being positive, the
involved player is just i itself, and the corresponding edge is i⊙ sk, which has been
created by move i⊙ sk − 2. There is one exception though: when k = 1, the move is
played on A, so by definition of A⊸ B its justifier is the first move played on B in
the corresponding view. But this is precisely the move having created i ⊙ s2, i.e.,
i⊙ s2 − 2.

Lemma 148. For all preplays s, if F ′
(s) = (X → U) and i ∈ U(@S,k,m), then:

● ϕ(i) = i⊙ sk − 2 if k > 1,
● ϕ(i) = i⊙ s2 − 2 if k = 1.

Proof. Let us assume k > 1 (the other case is similar). By construction, k = 1+Ls(i),
but on the one hand ϕ(i) = Is,i

2Ls(i)−1
, and on the other hand ϕ(i) = I

s,ϕ(i)

Ks(ϕ(i))
=

Is,i
Ks(ϕ(i))

, so 2Ls(i) − 1 = Ks(ϕ(i)), since k ↦ Is,ik is monic. Therefore, we have

k =
Ks(ϕ(i))+1

2
+ 1, so since ϕ(i) ∈ ⌈s⌉i−1, Lemma 147 entails that (ϕ(i) + 1) ⊙ sk =

(i+ 1)⊙ sk. By Lemma 143, since i is even, we also have (i+ 1)⊙ sk = i⊙ sk. Thus:

(ϕ(i) + 1) ⊙ sk = i⊙ sk.

On the other hand, by Lemma 143 again, since k = Ks(ϕ(i))+1
2

+ 1,

(ϕ(i) + 1) ⊙ sk = ϕ(i) + 2.

We thus derive ϕ(i) + 2 = i⊙ sk, hence the result. �

Returning to the proof that g(ϕ(2i)) = ϕ′(g(2i)), let us consider the case where
m(2i) = @S,k,m and k > 1 (the proof is similar for k = 1). Because k > 1, ϕ(2i)
is odd, so ϕ(2i) ≥ 1 and hence (2i) ⊙ sk = ϕ(2i) + 2 ≥ 3. Thus, by definition,
˜̃g((2i) ⊙ sk) = g((2i) ⊙ sk − 2) + 2. This entails:

g(ϕ(2i)) = g((2i) ⊙ sk − 2) (by Lemma 148)

= ˜̃g((2i) ⊙ sk) − 2 (as we just saw)

=
˜̃
k∣2((2i) ⊙ sk) − 2 (because g = k∣2 by definition)

= k∣0((2i) ⊙ sk) − 2 (by Lemma 146)
= k∣1(2i) ⊙ sk − 2 (by naturality)
= g̃(2i) ⊙ sk − 2

= g̃(2i − 1 + 1) ⊙ sk − 2

= (g(2i − 1) + 1) ⊙ sk − 2 (by definition of −̃)
= (g(2i) − 1 + 1) ⊙ sk − 2 (by g(2i) = g(2i − 1) + 1)
= g(2i) ⊙ sk − 2

= ϕ′(g(2i)) by Lemma 148 and g(2i) ∈ F ′
(s′)(@S,k,m).

This proves that g is indeed a morphism of HO-plays, hence ends the proof of
Theorem 144.

5.5. Restriction to views. In this final section, we show how our functor F ∶PA,B →
E′(A ⊢ B) restricts to an equivalence on views, which achieves the construction of
our candidate exact square (21).

We start with:

Lemma 149. If Y → U ← (A ⊢ B) is a play, then ≺
∗
u (Definition 95) is an order.
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Proof. It suffices to show that ≺∗ is antisymmetric, which we do by induction on
U . If U ≅ idA⊢B , then the result is direct. Otherwise, it is the composite of a move
Y → M ← Y ′ and a play Y ′

→ U ′
← (A ⊢ B), and ≺

∗
U ′ is an order by induction

hypothesis. Now, it suffices to notice that ≺∗U is an extension of ≺∗U ′ , and that adding
the move M can only add pairs x ≺ y in which y is an element that is not in U ′,
but there is only one such element, so this cannot break antisymmetry of ≺∗U . �

This allows us to show:

Lemma 150. The functor F restricts to a functor FV
∶VA,B → (EV

)
′
(A ⊢ B).

Proof. Let s = (n, f,ϕ) be any view. By Lemma 149, ≺∗v is an order. Therefore, to
show that it is a total order, it is enough to show that it is a total preorder. But
for all i ∈ n − 1, using Lemma 142:

● if i is odd: (i + 1) ⋅ t = i + 1 = i ⋅ s,
● if i is even: (i+ 1) ⋅ t = ϕ(i+ 1) + 1, but because s is a view and i+ 1 is odd,
ϕ(i + 1) = i, hence (i + 1) ⋅ t = i + 1 = i ⋅ s.

In both cases, we have i ≺ i + 1 as desired. �

As alluded to before, the properties of fully-faithful functors entail that FV is
fully faithful. If we prove that it is also essentially surjective, we will obtain:

Theorem 151. The restriction FV
∶VA,B → (EV

)
′
(A ⊢ B) is an equivalence.

Let us start by showing that any preview V ← (A ⊢ B) in (EV
)
′ is isomorphic

to some canonical preview, in the following sense.

Definition 152. A preview V of length n is canonical iff
(i) it satisfies points (P1)–(P3);
(ii) the element of V (A ⊢ B) corresponding to (A ⊢ B) → V via Yoneda is 1,

with 1⊙ s1 = 1 and 1⊙ t = 2;
(iii) for all i ∈ n, i ⋅ t = i, i ⋅ s = i + 1, and i ⋅ ν = i + 2,

where i ⋅ ν denotes the channel created by move i, i.e.,
● if i ∈ V (@S,k,m), then i ⋅ ν = i ⋅ s⊙ t, whereas
● if i ∈ V (ΛS,m), then i ⋅ ν = i ⋅ s⊙ s∣S∣+1 (with ∣A1, . . . ,Am ⊢ C ∣ =m).

In words, a preview is canonical when the ith move is represented by i and played
by i, and its created player and channel are respectively i + 1 and i + 2.

Of course, we have:

Lemma 153. For all views s, F ′
(s) is canonical.

Proof. By induction on s. �

Lemma 154. Any preview is isomorphic to a unique canonical preview.

Proof. By induction on the given preview. �

Lemma 155. In any canonical preview V , for any sequent S and player i ∈ V (S),
we have ∣S∣ = i/2 + 1 and furthermore for all 0 ≤ k < ∣S∣, i⊙ sk+1 = 2k + 1.

Proof. By induction on V . �

Proof of Theorem 151. The lemma allows us to restrict attention to the claim
that all canonical previews have antecedents in TO-previews (i.e., TO-preplays
s = (n, f,ϕ) such that ⌈s⌉n = s). We again proceed by induction on the given
canonical view V . If V is the identity preview, then an antecedent is given by
the empty TO-preview. Now, assume V ′ is any canonical preview of length n and
V = V ′

●M is a canonical preview. By induction hypothesis, we get s′ = (n, f ′, ϕ′)
such that F ′

(s′) = V ′.
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We will define our candidate antecedent s for V by case analysis on M . In both
cases, we will first need to show that s is indeed a TO-preview, and then that
F ′

(s) = V . By construction, F ′
(s) will be determined by picking a player in V ′

(i.e., a valid index in n + 1) and a valid move object in L. By canonicity of V , it
will thus be enough to show that these correspond to those of V .

There are two cases, depending on M :
● if (n+1) ∈ V (ΛS,m) with S = (A1, . . . ,AN ⊢ C) and m ∈

√

C, then we define
s = (n + 1, f, ϕ) as the extension of s′ by
– f(n + 1) =m,
– ϕ(n + 1) = n.
Let us first show that s is a TO-preview. Alternation is trivial, so we

only need to verify that s is a justified sequence equal to its view:
– ϕ(n + 1) < n + 1 holds trivially;
– if ϕ(n + 1) = 0, then f(n + 1) ∈

√

B: if ϕ(n + 1) = 0, then by definition
n = 0, so C = B and f(n + 1) =m ∈

√

B, as desired;
– if ϕ(n + 1) ≠ 0, then f(ϕ(n + 1)) is the parent of f(n + 1) in A ⊸ B:

indeed, in that case, n ∈ V (@(A1,...,AN⊢),k,m′), for some k ∈ N and
m′

∈

√

Ak, and C = Ak ⋅m
′;

– finally, ⌈s⌉n+1 = {n + 1} if ϕ(n + 1) = 0, and otherwise ⌈s⌉n+1 = ⌈s′⌉n ∪
{n + 1} = s′ ∪ {n + 1}, as desired.

By construction, the image of s under F ′ is obtained by adding a new
move, n+1, to F ′

(s′) (i.e., to V ′ by induction hypothesis), with (n+1) ⋅ t =
n + 1, of the form ΛSs′,n+1,m. This agrees with V , so F ′

(s) = V , as desired.
● if (n + 1) ∈ V (@S,k,m), with S = (A1, . . . ,AN ⊢) and m ∈

√

Ak, then we
define s = (n + 1, f, ϕ) as the extension of s′ by
– f(n + 1) =m,
– ϕ(n + 1) = (n + 1) ⊙ sk − 2 if k > 1,
– ϕ(n + 1) = (n + 1) ⊙ s2 − 2 if k = 1.
Let us first show that s is a TO-preview. Again alternation is trivial, so

we only need to verify that s is a justified sequence equal to its view:
– ϕ(n + 1) < n + 1: if k = 1, then by Lemma 155 we have ϕ(n + 1) =

(n + 1) ⊙ s2 − 2 = 2 + 1 − 2 = 1 < n + 1 because n + 1 is even; otherwise,
by Lemma 155 again we have

ϕ(n + 1) = (n + 1) ⊙ sk − 2 = 2(k − 1) + 1 − 2 = 2k − 3

and N = (n + 1)/2 + 1; but k ≤ N , so ϕ(n + 1) ≤ 2((n + 1)/2 + 1) − 3 =

n < n + 1;
– if ϕ(n + 1) = 0, then f(n + 1) ∈

√

B: we in fact have ϕ(n + 1) ≠ 0,
because as we saw just before

∗ if k = 1, then by Lemma 155 ϕ(n + 1) = 1, and
∗ if k > 1, then by Lemma 155 ϕ(n + 1) = 2k − 3 > 1;

– if ϕ(n+1) ≠ 0, then f(ϕ(n+1)) is the parent of f(n+1) in A⊸ B: in-
deed, in that case, letting p = ϕ(n+1), we have p ∈ V (Λ(A1,...,Ak−1⊢C),m′),
for some m′

∈

√

C, with Ak = C ⋅m′; but then f(ϕ(n+ 1)) = f(p) =m′

is indeed the parent of f(n + 1) =m ∈

√

Ak;
– finally, ⌈s⌉n+1 = ⌈s′⌉n ∪ {n + 1} = s′ ∪ {n + 1}, as desired.
By construction, the image of s under F ′ is obtained by adding a new

move, n+1, to F ′
(s′) (i.e., to V ′ by induction hypothesis), with (n+1) ⋅ t =

n + 1, of the form @Ss′,n+1,k′,m for some valid k′. The equation agrees with
V , so by canonicity it is enough to show k = k′.

Again, there are two cases:
– if f(n + 1) ∈

√

A, then k′ = 1 but also k = 1;
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– otherwise k′ = 1 +Ls(n + 1) by definition of F ′.
In the latter case, recall that Ls(n + 1) is the index of ϕ(n + 1) in the
sequence of odd moves in ⌈s⌉n+1. As we saw above, ϕ(n + 1) = 2k − 3. But,
s being a TO-preview, we have for all l that Isl = l, so Ls(n+ 1) = k − 1 and
k′ = k, as desired. This achieves the proof that F ′

(s) = V .
�

6. Conclusion and perspectives

We have introduced a notion of signature for the sheaf-based approach to con-
current game semantics [19, 7]. We have then provided sufficient conditions for
the pseudo double category D(S) associated to a signature S to be fibred. We
have also instantiated this framework by defining a signature SHON for standard
HON games. We have related the obtained pseudo double category to Tsukada
and Ong’s categories of views and plays, by defining a full embedding of TO-plays
into ours (Theorem 144) which restricts to an equivalence on views (Theorem 151).
The theory of exact squares has then entailed the following correctness result: in
both settings, right Kan extension provides a functor from innocent strategies as
presheaves on views to innocent strategies as presheaves on plays; Corollary 116
shows that both processes coincide up to the above full embeddings, and records our
main result that restriction along F forms a functor from our innocent strategies
to Tsukada and Ong’s, which restricts to an equivalence on innocent strategies. In
passing, we have established characterisations of our categories of views and plays
for HON games as subcategories of slices of the presheaf category L̂.

A lot of future work remains. First of all, as observed in Remark 11, the notion of
view used in Section 3.1 is not entirely in line with our previous models. Mimicking
those models would lead to adding a new seed cospan

(B1, . . . ,Bm,A ⋅ q ⊢)
s
Ð→ λS,q

t
←Ð S,

which presents the inconvenience of breaking persistence, one of our sufficient con-
ditions for D(SHON ) to be fibred. In fact, in this case, one can exhibit a counterex-
ample: consider restricting the above cospan along S +A → S (where, recall, A is
the conclusion of S). Indeed, with our current version of SHON , such a move does
not have any cartesian lifting along its sub-position A. A first open problem is thus
to extend the framework to work around this difficulty.

A second important open issue lies in extending the correspondence exhibited in
Section 5 to account for composition, starting with so-called interaction sequences.
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