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Whole-Body Contact Force Sensing From Motion Capture

Tu-Hoa Pham1,2, Adrien Bufort2, Stéphane Caron2 and Abderrahmane Kheddar1,2

Abstract— Using motion capture only, we challenge in this
paper the estimation of the contact forces –backed with
ground-truth sensing, in human whole-body interaction with
the environment. Our method is novel and makes it possible
to get rid of cumbersome force sensors in monitoring multi-
contact motion and its interaction force data. This problem is
very difficult. Indeed, while a given force distribution uniquely
determines the resulting kinematics, the converse is generally
not true in multi-contact. In such scenarios, physics-based
optimization alone may only capture force distributions that
are physically compatible with a given motion rather than
the actual forces being applied. We address this indeterminacy
by collecting a large-scale dataset on whole-body motion and
contact forces humans apply in multi-contact scenarios. We
then train recurrent neural networks on real human force
distribution patterns and complement them with a second-order
cone program ensuring the physical validity of the predictions.
Extensive validation on challenging dynamic and multi-contact
scenarios shows that the method we propose can outperform
physical force sensing both in terms of accuracy and usability.

I. INTRODUCTION

Humans purposefully interact with their environment
through physical contact to manipulate and move themselves
or objects. The contact forces that are applied during a given
task are informative on both the resulting motion and the
underlying intent. Thus, force sensing has direct applications
in research fields such as robot learning from demonstration
and control [1], [2], physics-based animation [3], [4] and
visual tracking [5], [6]. Contact forces are typically measured
using force transducers that are costly, cumbersome and
of limited, varying accuracy under repeated stress [7]. In
this work, we propose a method to infer human whole-
body contact forces from motion capture alone. If combined
with markerless visual tracking technologies [8], this would
enable the non-intrusive monitoring of contact forces in daily
activities. However, the problem is very challenging.

By means of the equations of motion for articulated
rigid bodies, the knowledge of external and internal forces
uniquely determines the resulting kinematics. In contrast, the
reverse problem is generally indeterminate in multi-contact
with the environment and the knowledge of a given motion
may not suffice to fully characterize the underlying force dis-
tribution. For instance, one can stand still while applying foot
forces of varying magnitude in opposite, lateral directions.
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(a) Motion capture suit, contact force (red) and torque (yellow) visualization.

(b) Shoes equipped with inertial measurement units and force-torque sensors.

Fig. 1. Acquisition system for whole-body kinematics and contact forces.

The force distribution problem is an active research topic in
multiple fields (Section II). We address it as follows:
• We construct a dataset on whole-body kinodynamics in

the form of 100min of motion and force measurements
for diverse contact configurations (Section III).

• We propose a force estimation framework relying jointly
on a recurrent neural network that learns how humans
instinctively distribute contact forces in multi-contact
and a second-order cone program that guarantees the
physical plausibility of the resulting distributions (Sec-
tion IV).

• We consistently validate our approach with ground-truth
measurements throughout our work and demonstrate its
accuracy on challenging scenarios (Section V).

Finally, we discuss the current limitations of our work as
well as possible applications and extensions (Section VI).
To accelerate the research on this new topic and encourage
alternative implementations, we make our datasets and algo-
rithms publicly available1.

II. RELATED WORK

The identification of the objective function optimized by
the central nervous system in daily activities (e.g., locomo-
tion, manipulation) is a long-standing problem in kinesiology

1The dataset and algorithms will be released at https://github.
com/jrl-umi3218/WholeBodyKinodynamics.

https://github.com/jrl-umi3218/WholeBodyKinodynamics
https://github.com/jrl-umi3218/WholeBodyKinodynamics


research [9]. A major difficulty lies in the high dimension-
ality of the human body and the limited observability of
its parameters without invasive surgery [10]. Notably, [11]
and [12] showed that inverse dynamics solutions during
gait and other motions could vary significantly by using
different existing models of body segment inertial parameters
(BSIP) [13], [14]. Towards this issue, [15] introduced an
optimization framework for the online estimation of robot
and human BSIPs from force-torque measurements.

In the context of simulation, physically plausible forces
are commonly computed using constrained optimization [16].
However, in multi-contact, such methods may fail to capture
workless forces that humans apply in addition to the ‘mini-
mal’ distributions supporting a given stance or task. Penalty
or deformation-based approaches depend on the accurate
physical identification of the contacting materials, and their
relative pose can be difficult to accurately estimate in real
experiments (e.g., from vision). Such methods were used to
estimate manipulation forces on deformable objects [17] or
by considering the human body elastic [18]. Our work was
also inspired by [19], which computed ground reaction forces
and joint torques from vision using a damped spring model.

The recent successes of deep learning for whole-body
control [20] showed that data-driven approaches could suc-
cessfully account for model or perception uncertainties. Arti-
ficial neural networks were used in [21] to capture recurring
patterns in human manipulation from ground-truth measure-
ments and infer realistic hand-object interaction forces from
vision. Our current work expands this idea to whole-body
interactions with the environment.

III. WHOLE-BODY KINODYNAMICS DATASET

A. Experimental Setup

We collect kinodynamic measurements (motion and
forces) on human activities using two types of sensors in
parallel. First, the human whole-body motion is tracked using
a motion capture system (Xsens MVN Awinda) consisting of
17 wireless inertial measurement units (IMU) and batteries
strapped at specified body landmarks. The choice of this
motion capture technology is motivated by our intention to
collect human kinodynamic measurements in confined and
eventually outdoor environments. Vision-based systems (e.g.,
Vicon) are limited by strong occlusions occurring in whole-
body interactions with the environment, and difficult to apply
in uncontrolled environments on the fly (e.g., outdoor).

The motion of the subject’s body, modeled as a 23-segment
skeleton, is recorded at 100Hz. For each sample, the system
provides the 6-DoF pose of each segment as well as the
corresponding linear and rotational velocity and accelera-
tion. To facilitate the dynamics analysis, we transform the
motion capture output into a kinematic tree comprised of
23 segments linked by 22 spherical joints and rooted at the
subject’s pelvis. The BSIPs are computed from the subject’s
weight and measurements using anthropomorphic tables [22].
Contact forces at the subject’s feet are monitored with
instrumented shoes (Xsens ForceShoe), equipped with 6-DoF
force-torque sensors at the heel and toes and IMUs recording

Fig. 2. Dataset examples (from left to right): walking, upper-body balancing
with static contacts, taking support on a wall, leaning on a table.

the sensor orientations. We measure other interaction forces
with the environment using an additional 6-DoF force-torque
sensor (ATI Mini-45) held in the subject’s hand. All force-
torque measurements are recorded at 100Hz. We depict our
acquisition setup in Fig. 1.

Being based on inertial measurements, the motion capture
system is prone to drift compared to marker-based tracking
methods (e.g., Vicon). We are working on a solution to
attenuate this problem. Similarly, wearable force sensors
can be of lower accuracy than force plates due to repeated
pressure and deformations. Still, a major benefit of our
lightweight setup is the efficient and continuous acquisition
of kinematics and contact forces on highly-dynamic motions
through time, which is generally not possible with static
force plates. Additionally, the simultaneous monitoring of
the whole-body motion and forces allows their correction
as follows. First, the measurements are subject to noise,
either from the sensors themselves or due to interferences
in the wireless transmission. We attenuate it by smoothing
all signals with a Gaussian filter of kernel σ = 0.05 s.
Second, a slow-varying bias can appear in the force-torque
measurements with repeated stress and battery drain. We
compute the bias through time by averaging the signals that
persist when a sensor is not in contact with the environment,
which should only be caused by the sensor moving parts.

B. The Dataset

In a preliminary study, four male volunteers took part as
subjects in our experiments. Their weights (between 69.6 kg
and 79.8 kg, plus the 3.5 kg acquisition system), heights
(between 1.79m and 1.94m), and individual body segment
lengths were measured to initialize the motion capture skele-
tal tracking model and BSIPs following [22]. All sensors
(motion and force-torque) were calibrated and reset between
experiments following the manufacturers’ recommended ac-
quisition procedure to reduce the effects of measurement drift
and hysteresis. The subjects were instructed to perform the
following tasks:
• walking at different speeds (slow, normal, fast) and fol-

lowing different trajectories (circular, back and forth);
• moving the upper body while maintaining the feet static;
• taking support against a wall with the left or right hand;
• leaning on a table with the left or right hand.



We illustrate these experiments in Fig. 2. The goal of the
first task is to allow neural networks to capture the centroidal
dynamics relationship between motion and forces in bipedal
contact. The second task follows the same principle and also
provides examples of static indeterminacy, i.e., how humans
apply forces that cancel each other out and do not affect their
state of equilibrium. The third and fourth tasks go further and
are typical scenarios where the straightforward minimization
of multi-contact forces leads to distributions that are physi-
cally plausible but not representative of those humans really
apply, as discussed in Section IV. Overall, we construct a
dataset of total duration 100min comprising synchronized
motion and force-torque measurements on 51 experiments.

IV. FORCE SENSING FROM WHOLE-BODY MOTION

A. Whole-Body Force Optimization

For an articulated system of rigid bodies subject to nτ
joint torques τ and nc external wrenches Fk = (ωk, fk),
with ωk and fk the respective external torque and force at
contact k, the equations of motion can be expressed as:

H(q)q̈+C(q, q̇) = τ +

nc∑
k=1

JTkFk, (1)

with q the vector of the position and orientation of the base
link and joint angles, H and C the mass and bias matrices,
respectively, and Jk the Jacobian matrices at contact k.

With zk the normal at contact k and xk and yk two
orthogonal vectors in the tangential plane, we express the
wrench Fk in the contact space Ck = (xk,yk, zk):

CkFk = (ωx
k , ω

y
k , ω

z
k, f

x
k , f

y
k , f

z
k )
T
. (2)

With the convention that z is oriented from the environment
to the contacting segment, the normal force is such that:

fzk ≥ 0. (3)

The Coulomb model with friction coefficient µk implies that:

‖fxk x+ fyk y‖ ≤ µkf
z
k . (4)

Eq. (1), (3) and (4) can be respectively integrated as
equality, linear inequality and cone constraints of a second-
order cone program (SOCP) of optimization parameters:
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(5)

From this formulation, physically plausible force distri-
butions can be constructed by minimizing a cost function
depending only on the optimization parameters, e.g., the
(squared) L2 norm of the internal and external wrenches:

CL2(x) = ‖x‖2 =

nτ∑
k=1

τk
2 +

nc∑
k=1

‖Fk‖2. (6)

The resulting forces, by construction, are necessarily com-
patible with the observation motion. However, in multi-
contact, when there exists more than a single distribution
for a given task, there is no guarantee that the L2-optimal
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Fig. 3. In this sequence, the subject stays still while applying varying forces
in triple contact with the environment. The equations of motion dictate that
the net contact force should be constant (top row), which is not apparent on
the force sensor measuments (red line) due to sensing uncertainties. Forces
compatible with the observed kinematics can be computed using an SOCP
(green and blue lines). The minimization of the L2 norm alone yields forces
that are physically plausible but differ significantly from the measurements.
Instead, minimizing the discrepancy to the uncertain measurements yields
forces that are realistic both physically and compared to actual distributions.

distribution coincides with the actual forces being applied.
As discussed in Section II, the identification of the actual cost
function optimized by the human central nervous system is
still an active research topic. Recall that due to measurement
uncertainties, the preliminary correction process described
in Section III-A does not fully ensure that the force-torque
measurements are physically consistent with the motion. We
do so by incorporating the force-torque sensor measurements
F̃k into the SOCP cost function [23]:

Cdisc(x) =

nc∑
k=1

∥∥∥Fk − F̃k

∥∥∥2. (7)

Thus, we extract the force distribution that is the closest to
the uncertain sensor measurements, while also being phys-
ically compatible with the observed motion, see Fig. 3. In
the following, we denote by ground truth the SOCP-corrected
sensor measurements (relative to the dynamic model).

B. Learning Features

Our goal is to construct a mapping F between a set of
input features K representing the whole-body kinematics and
contact configuration, and output features D representing the
underlying dynamics, i.e., external wrenches:

D = F(K). (8)

For the sake of generality, we aim at modelling human force
distribution patterns based on an optimal selection of high-



level features rather than a large set of hand-engineered
parameters. Alternatively to the whole-body equations of
motion described in Eq. (1), we consider the corresponding
centroidal dynamics [24]:

ḣ =

nc∑
k=1

GFk, (9)

with h the 6× 1 centroidal momentum vector and GFk the
external wrenches applied to the center of mass G. Denoting
by Pk the location of contact k, Eq. (9) can be rewritten as:

ḣ =

nc∑
k=1

[
ωk +

−−−→
GPk × fk

fk

]
. (10)

This compact representation makes it a good candidate for
the selection of optimal learning features extracting the gist
of locomotory dynamics. Recall that the whole-body motion
is expressed in the world frame. To account for translational
and rotational invariances, we consider the quantities of
Eq (10) in a reference frame G of origin G and parallel to a
chosen body frame (e.g., that of the pelvis). Thus, walking
straight to the North is perceptually equivalent to walking
straight to the East. The kinematics-based features are:
• The centroidal momentum time derivative Gḣ
• The position of each contact GPk

In practice, the mapping F of Eq. (8) may require a fixed-
size input vector. Instead of only considering the location of
the contacts GPk,i existing at timestamp i, we monitor a set
of Nc possible contact locations through time and encode
contact configurations using parameters δk,i such that:

δk,i =

{
1 if contact k is active at timestamp i
0 otherwise.

(11)

In our experiments, we continuously monitored the position
of the subject’s feet and hands. Since our whole-body track-
ing system relies on inertial measurements, simple contact
identification criteria based on contact staticity or distance to
the environment could not be reliably applied. Therefore, we
extracted the parameters δk by applying thresholding to force
sensor measurements. Note that this material limitation does
not affect the generality of our approach and can be fully
circumvented with additional visual observations. Overall,
the complete input features at timestamp i are:

Ki =
(
Gḣi,

(GPk,i, δk,i)k=1,Nc

)T
(12)

Similarly, the output features are the target wrenches in G:

Di =
((GFk,i)k=1,Nc

)T
(13)

C. Neural Network Model
In Eq. (8), the mapping F does not account for temporal

continuity. As such, consecutive force distributions are inde-
pendent of each other. Instead, we introduce a dependency
on both the current motion and the past trajectory using the
following formulation:

Di = F
(
(Kj)j=1,i

)
. (14)

Body kinematics, contact config. (i)

WBN-DKi D(raw)
i

(i− 1) (i+ 1)

Ki+1 WBN

(a) Forces are direcly computed from the kinematics and contact configuration.

Body kinematics, contact config. (i)

WBN-F
Ki

Di−1SOCP

(i− 1) (i+ 1)

SOCPD(raw)
i Di

Ki+1

WBN

(b) Force predictions are corrected between consecutive time steps.

Fig. 4. Direct and feedback whole-body network architectures.

We model this time series structure using recurrent neural
networks (RNN) [25] with long short-term memory neurons
(LSTM) [26]. A simple network architecture, which we de-
note by WBN-D (whole-body network, direct), thus consists
in a simple RNN directly mapping Ki to Di while keeping
track of long-term dependencies to the past:

Di = WBN-D (Ki) . (15)

A typical iteration at timestamp i is as follows:

1) from the whole-body motion, compute the kinematics-
based input features Ki

2) feed Ki into WBN-D, get raw predictions D(raw)
i

3) extract predicted contact wrenches F̃k,i

We illustrate the WBN-D architecture in Fig. 4a. Although
the RNN is expected to implicitly capture the relationship
between kinematics and forces, the raw predicted forces
are not guaranteed to fully comply with the whole-body
equations of motion and friction constraints. Therefore, we
compute physically plausible solutions Fk in the vicinity of
the raw wrench predictions F̃k using the SOCP of section IV-
A with the discrepancy cost function of Eq. (7). This step
can be done offline, after the prediction of the complete raw
wrench sequence from kinematics alone.

Alternatively, we propose an architecture that implements
a feedback loop, WBN-F, allowing the correction of raw
wrenches between consecutive predictions:

Di = WBN-F (Ki,Di−1) . (16)

For prediction, the force distribution sequence is initialized
with the distribution D0 of minimal L2 norm, as described in
Eq. (6). Such a distribution is computed from the kinematics
alone. Subsequent iterations i are then as follows:

1) fetch the previous force features Di−1
2) from the current whole-body motion, compute Ki

3) feed Ki,Di−1 into WBN-F, get raw predictions D(raw)
i

4) extract predicted contact wrenches F̃k,i
5) find correct forces Fk,i in the vicinity of F̃k,i
6) extract corrected features Di for iteration i+ 1

We depict the WBN-F architecture in Fig. 4b.



TABLE I
FORCE ESTIMATION ERRORS ON TESTING SET (16min)

Raw Corrected
Force sensors −4.58 (46.1) ground truth
Min. L2 N/A 2.19 (46.0)

WBN-D 0.75 (38.4) 0.89 (29.4)

WBN-F 1.26 (48.1) 0.77 (47.3)

V. EXPERIMENTS

A. Results on Complete Dataset

For the purpose of training, validation and testing, we con-
struct a random partitioning of the whole-body kinodynamics
dataset into three subsets of respective size 70%, 15% and
15%. We implement the WBN-D and WBD-F neural net-
work architectures within the Torch7 framework [27]. Both
architectures take the kinematics features Ki as input (as
well as Di−1 for WBD-F), pass them into two LSTM hidden
layers of size 256, and compose the results with a linear layer
returning the dynamics features Di. We train the networks
using mini-batch stochastic gradient descent with a standard
regression criterion (mean square error) and dropout to avoid
overfitting [28]. The SOCP correction is implemented using
the CVXOPT library for convex optimization [29].

In Table I, we summarize the average error and standard
deviation (between parentheses) between ground truth and
the following force data:
• raw force sensor measurements
• forces obtained from direct L2 norm minimization
• WBN-D outputs: raw and corrected offline
• WBN-F outputs: raw and corrected after each iteration

We observe the following:
• Force-torque sensors are rather unreliable without

physics-based correction (Table I, first row, first col-
umn), in terms of bias (average error) and repeatibility
(standard deviation).

• On the other hand, forces computed with a direct L2

criterion also greatly differ from actual measurements
(see Fig. 3). Thus, physics-based optimization, by itself,
is not enough to capture the real forces being applied.

• Finally, the accuracy of all methods relying on learning
and optimization is at least comparable (WBN-F) or
significantly better (WBN-D) than that of the force-
torque sensors.

Our main outcome is thus that, provided a rich dataset on
human kinodynamics, the method we propose can outper-
form physical force sensing both in terms of accuracy and
usability.

B. Results on Restricted Training

During walking, most of the time is spent with only
one foot on the ground. In single contact, the equations
of centroidal dynamics, see Eq. (9), dictate that the contact
wrench can be uniquely identified from the body kinematics.
Therefore, it may not be necessary to extensively train neural
networks on such examples. Instead, the prediction accuracy
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Fig. 5. Triple contact example. Trained on similar examples, WBN-D-M
successfully estimates the actual forces being applied. In contrast, WBN-
D-W predicts physically valid but significantly different force distributions.

may suffer if multi-contact examples (where the difficulty
resides) represent a minority of the dataset. We assess this
effect by training the previous neural network architectures
not on the whole dataset, but on two sets containing only
either walking or multi-contact examples. Both are again
randomly partitioned into training (70%), validation (15%)
and testing (15%) subsets. We denote by WBN-D-W and
WBN-F-W the respective direct and feedback architectures
trained on walking examples only, and by WBN-D-M and
WBN-F-M the networks trained on multi-contact examples.

We apply each network type on both its own testing set
and that of the other type. We illustrate the application
of WBN-D-W and WBN-D-M on a triple contact example
(leaning on a table) in Fig. 5 and on walking in Fig. 6. In
both cases, the raw predictions are corrected with the SOCP
to ensure their physical compatibility with the observed
motion. As it can be expected, the architecture trained only
on walking fails at capturing the actual force distributions
applied by humans in multi-contact (see Fig 5). In contrast,
the architecture that was not extensively trained on walking
accurately reconstructs contact forces even on such scenarios
(see Fig. 6). This confirms that physics-based optimization
is a valuable complement to recurrent neural networks for
the latter to focus on multi-contact indeterminacy.

VI. DISCUSSION AND FUTURE WORK

Our work introduces a novel method for the inference of
contact forces applied by human subjects from their motion
only. Our system estimates forces that are both physically
plausible and in agreement with ground-truth measurements,
even in challenging contact configurations where the force
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Fig. 6. Walking example. Despite not having been extensively trained on
such examples, the performance of WBN-D-M used in conjunction with
physics-based optimization is comparable to that of WBN-D-W.

distribution problem is highly indeterminate. Trained on our
(public) dataset, the neural network architectures can be
applied to any centroidal representation, while the SOCP
can be formulated for any articulated body. As such, our
approach can be seamlessly generalized to any whole-body
tracking system. Applying our method to markerless visual
tracking would thus enable fully non-intrusive monitoring
of whole-body forces in daily activities. Still, our approach
would certainly benefit from the further collection of ground-
truth force measurements on even more rich motion and
contact configurations. Another possibility could be to in-
tegrate convex optimization and learning into a unified
computational framework [30]. In the long term, we also plan
to apply our framework to force-based robot learning from
demonstration, on-line multi-contact motion retargeting and
knowledge-based multi-contact planning and control [31].
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