
HAL Id: hal-01372505
https://hal.science/hal-01372505v1

Submitted on 21 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kemeny Elections with Bounded Single-peaked or
Single-crossing Width

Denis Cornaz, Lucie Galand, Olivier Spanjaard

To cite this version:
Denis Cornaz, Lucie Galand, Olivier Spanjaard. Kemeny Elections with Bounded Single-peaked or
Single-crossing Width. 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013),
Aug 2013, Beijing, China. pp.76-82. �hal-01372505�

https://hal.science/hal-01372505v1
https://hal.archives-ouvertes.fr


Kemeny Elections with Bounded Single-Peaked or Single-Crossing Width

Denis Cornaz
LAMSADE-CNRS, UMR 7243
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Abstract

This paper is devoted to complexity results re-
garding specific measures of proximity to single-
peakedness and single-crossingness, called “single-
peaked width” [Cornaz et al., 2012] and “single-
crossing width”. Thanks to the use of the PQ-tree
data structure [Booth and Lueker, 1976], we show
that both problems are polynomial time solvable
in the general case (while it was only known for
single-peaked width and in the case of narcissistic
preferences). Furthermore, we establish one of the
first results (to our knowledge) concerning the ef-
fect of nearly single-peaked electorates on the com-
plexity of an NP-hard voting system, namely we
show the fixed-parameter tractability of Kemeny
elections with respect to the parameters “single-
peaked width” and “single-crossing width”.

1 Introduction
Social choice theory deals with making collective choices on
the basis of the individual preference relations of a set of vot-
ers (or agents) over a set of candidates (or alternatives). This
issue does not occur only in voting, but also in all situations
involving the aggregation of several rankings coming from
many different sources, e.g. sports (think of the Formula 1
championship), meta-search engines (merging the results of
various search engines) [Dwork et al., 2001], collaborative
filtering [Pennock et al., 2000]. One of the most popular
method to aggregate rankings is the Kemeny rule [Kemeny,
1959], which minimizes the number of cases where the fi-
nal ranking disagrees with the input rankings on the order of
two alternatives. However, this rule is NP-hard to implement
[Bartholdi et al., 1989], even in the case of four input rank-
ings [Dwork et al., 2001]. Many computational studies have
been carried out for this aggregation rule: polynomial time
algorithms that give provably good solutions [van Zuylen
and Williamson, 2007; Ailon et al., 2008], a Polynomial
Time Approximation Scheme [Kenyon-Mathieu and Schudy,
2007] which has impractical running times, heuristics, branch
and bound procedures [Davenport and Kalagnanam, 2004;
Conitzer et al., 2006]. To illustrate the interest of computer
scientists for this rule, note that a recent paper performs a

comparison of no less than 104 algorithms devoted to Ke-
meny aggregation [Ali and Meilǎ, 2012]. Fixed-parameter al-
gorithms for Kemeny rankings is another very active research
direction [Betzler et al., 2009]. Our work follows it. More
precisely, our contribution is twofold:
- We propose new fixed-parameter tractability results for
computing an optimal ranking according to the Kemeny rule.
To that end, we follow the approach suggested by Guo et al.
[2004]: we introduce parameters that measure the distance
from instances that are solvable in polynomial time. As an
illustration, consider instances where all input rankings are
identical. The problem is then easy since an optimal rank-
ing is of course that identical ranking. One can define the
distance of an instance from the case of identical rankings
as the average pairwise distance between two input rank-
ings (for example), and investigate if the problem is fixed-
parameter tractable with respect to this parameter “average
pairwise distance”. Actually, this question has already been
answered positively by Betzler et al. [2009]. We focus here
on new parameters that measure the distance from the single-
peaked and single-crossing domains. Single-peakedness and
single-crossingness are the most popular domain restrictions
in social choice theory. Preferences are single-peaked (SP
for short) if there exists a linear ordering of the alternatives
such that, for all input rankings, the ranks deteriorate along
the axis when moving away from the preferred alternative.
Preferences are single-crossing (SC for short) if there exists
a linear ordering of the input rankings such that, for any pair
of alternatives, they can be partitioned into a left and a right
block where all rankings on the left (resp. right) coincide
on the preference over these two alternatives. After recalling
that the computation of an optimal ranking can be performed
in polynomial time if the preferences are SP (resp. SC), we
show that the problem is fixed-parameter tractable with re-
spect to the parameter “single-peaked width” [Cornaz et al.,
2012] (resp. “single-crossing width”), that measures how far
the preferences are from being SP (resp. SC). To our knowl-
edge, this result is one of the first concerning the effect of
nearly SC/SP electorates on the complexity of an NP-hard
voting system.
- We establish the polynomial time computability of the
single-peaked and single-crossing widths. There are multi-
ple ways of defining a distance measure regarding SPness or
SCness [Escoffier et al., 2008; Conitzer, 2009; Faliszewski

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

76



et al., 2011]. Most of these measures are NP-hard to com-
pute [Erdélyi et al., 2012]. Interestingly, Cornaz et al. [2012]
showed that computing the SP width is polynomial for nar-
cissistic preferences. We strengthen and extend this result, by
providing an algorithm with a better complexity in the nar-
cissistic case and by establishing the polynomial time com-
putability in the general case (which was an open question).
We also prove that the computation of the single-crossing
width, which had not yet been studied, can also be performed
in polynomial time. All these positive results rely on the use
of a data structure called PQ-tree, introduced by Booth and
Lueker [1976] to represent a family of permutations (rank-
ings) on a set of elements. As noted by Elkind et al. [2012],
in the context of computational social choice, it can be fruit-
fully used to represent the structure of the input rankings and
devise efficient algorithms taking advantage of that structure.
The paper is organized as follows. In Section 2, we present
how to determine a Kemeny ranking if the preferences are SP
or SC. In Sections 3 and 4, we present our fixed-parameter
algorithm for the Kemeny ranking problem with respect to
the parameter SC or SP width. In Section 5 we show how to
compute the value of these parameters in polynomial time.

2 Rank Aggregation
Let V be a set of n voters and C a set of m candidates. Let
P denote the set of preference relations�v over C for v ∈ V .
This set is called a preference profile. The problem studied in
social choice theory aims at determining a collective rank-
ing based on P . Thanks to appealing properties, the Kemeny
voting scheme is very popular to perform this aggregation
[Kemeny, 1959]. Given two votes v, w, and two candidates
a, b, let δab(v, w) = 1 if v and w disagree on the relative
ranking of a and b, and 0 otherwise. The Kendall-Tau dis-
tance (KT-distance for short) between v and w is defined as
KT-dist(v, w) =

∑
{a,b}⊆C δab(v, w). A Kemeny ranking r

minimizes the Kemeny score KS(r) =
∑

v∈V KT-dist(r, v).
Note that a Kemeny ranking is not necessarily unique. For
the Kemeny voting scheme, the Condorcet property holds:
whenever a weak Condorcet winner exists (i.e., a candidate
that beats every other candidate in at least half of the votes),
she is ranked first in at least one Kemeny ranking.

We propose here a fixed-parameter algorithm for comput-
ing a Kemeny ranking. Several parameters have already been
considered in the literature, for which fixed-parameter al-
gorithms have been proposed (for details see the survey by
Betzler et al. [2012]): the number m of candidates [Bet-
zler et al., 2009], the value k of the optimal Kemeny score
[Betzler et al., 2009; Simjour, 2009; Karpinski and Schudy,
2010], the maximum range of candidates positions rm =
maxc∈C w(c) − b(c) + 1 where b(c) (resp. w(c)) is the best
(resp. worst) position of c in the votes [Betzler et al., 2009;
Simjour, 2009; Karpinski and Schudy, 2010], the average KT-
distance da = 2

n(n−1)
∑
{v,w}⊆V KT-dist(v, w) [Betzler et

al., 2010]. We establish new parameterized complexity re-
sults, by considering a parameter measuring how far a given
profile is from being SP, and another parameter measuring
how far it is from being SC.

Definition 1 A preference profile P is single-peaked with re-
spect to a numbering (c1, . . . , cm) of the candidates if for all
v ∈ V there exists p in {1, . . . ,m} such that: if p > j > i or
i > j > p then cp �v cj �v ci.

Definition 2 The single-crossing condition holds for a pref-
erence profile P with respect to a numbering (v1, . . . , vn) of
the voters if for all {a, b} ⊆ C with a �v1

b there exists p in
{1, . . . , n} such that a �vi b for i ≤ p and b �vi a for i > p.

Interestingly, computing a Kemeny ranking is polynomial
if the preference profile is SP or SC. We quickly present
the result because it eases the understanding of the fixed-
parameter algorithms. To that aim, we need to introduce the
notion of Condorcet ranking. We call a ranking r of the can-
didates a Condorcet ranking if the candidate ranked first in r
is a weak Condorcet winner, the candidate ranked second is
a weak Condorcet winner over the remaining candidates, etc.
(Note that the definition used here differs from the standard
definition.) A Condorcet ranking does not necessarily exist
but this is the case if the preferences are SP or SC. These do-
main restrictions indeed imply the existence of a Condorcet
ranking by the two following properties: if the preferences
are SP (resp. SC), 1) a weak Condorcet winner always exists
and 2) the restriction of the profile to every subset C ′ ⊆ C
is also SP (resp. SC). A Condorcet ranking, if it exists, can
clearly be computed in polynomial time. The polynomiality
of computing a Kemeny ranking on SP and SC domains is
then a direct consequence of the following result:

Proposition 1 ([Barbut, 1980]) A Condorcet ranking is a
Kemeny ranking.

We will show that this approach generalizes to profiles not
far to belong to the SP or SC domain. To that aim, we need
to define a distance from SPness or SCness.

3 Single-peaked and Single-crossing Widths
The distance we consider is based on the notion of compo-
nent on profile [Laffond et al., 1996], also called clone set
[Tideman, 1987] or interval of candidates. A subset I ⊆ C
of candidates is an interval if the candidates in I are consec-
utive in the preferences of every voter in P . More formally:
Definition 3 A subset I ⊆ C of candidates is an interval if
∀v ∈ V,∀a, b ∈ I, ∀c ∈ C \ I, a �v c ⇐⇒ b �v c

For instance, consider the profile depicted on the left hand
side of Figure 2 (the first column means: a �1 b �1 c �1

d �1 e �1 f �1 g): subsets {a, b, c}, {e, f, g} and {f, g}
are intervals (among others).

We can now introduce the distance we consider. In the pre-
vious profile, the preferences are not SP. However, consider
the partition of the candidates into intervals {a, b, c}, {d} and
{e, f, g} and the profile obtained by substituting each interval
by a single representative candidate within it: for instance, re-
place {a, b, c} by a, {d} by d and {e, f, g} by e. The obtained
profile over a, d, e is SP. We call the operation of substitution
a contraction of interval. Any profile P ′ obtained from P by
contraction of intervals is called a minor of P . The width of a
partition of C into intervals I1, . . . , Iq is maxi |Ii|−1. Given
a profile, the minimum width among all partitions yielding an
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SP contracted profile is called SP width [Cornaz et al., 2012].
We define the SC width similarly: it is the minimum width
among all partitions such that the SC condition holds.

4 Parameterization by the Width
We now detail how to extend the polynomial algorithm for
SP or SC domains to obtain a positive result based on the pa-
rameters SP width and SC width. Following Conitzer [2006]
and Betzler et al. [2010], the idea is to break instances into
several subinstances to be handled independently, that is, the
relative order between the candidates in two different subin-
stances is already determined. The subinstances correspond
to intervals I1, . . . , Iq of a partition yielding an SP or SC mi-
nor when contracting I1, . . . , Iq . The algorithm is written:
1. Compute a Condorcet ranking over representative candi-
dates within I1, . . . , Iq;
2. Compute a Kemeny ranking independently for each subin-
stance Ik (k = 1, . . . , q);
3. Concatenate the Kemeny rankings over I1, . . . , Iq accord-
ing to the Condorcet ranking obtained at Step 1.
The ranking obtained at Step 3 is a Kemeny ranking over C.

Example 1 Come back to the profile of Figure 2 and parti-
tion the candidate set into intervals I1 = {a, b, c}, I2 = {d},
I3 = {e, f, g}, with representative candidates a, d, e. In Step
1, a Condorcet ranking is a � d � e. In Step 2, a Kemeny
ranking for I1 (resp. I3) is a � c � b (resp. e � f � g). In
Step 3, the Kemeny rankings over I1, I2, I3 are concatenated
to obtain: a � c � b � d � e � f � g.

The validity of the approach is related to the following ob-
servation, where Vcc′ = {v ∈ V : c �v c

′}:
Observation 1 ([Betzler et al., 2010]) LetC ′ ⊆ C be a can-
didate subset with |Vc′c| ≥ |Vcc′ | for every c′ ∈ C ′ and
c ∈ C \ C ′. Then there must be a Kemeny ranking where all
candidates in C ′ are ranked before all candidates in C \ C ′.

Note that it corresponds to a special case of composition-
consistency, a useful property to compute tournament solu-
tions (i.e., functions that associate with each complete and
asymmetric relation on a set of alternatives a non-empty sub-
set of the alternatives) by decomposing the tournament into
subtournaments [Brandt et al., 2011]. Let Ik0

denote an in-
terval in I1, . . . , Iq whose representative candidate is a weak
Condorcet winner in the minor obtained by contraction of
the intervals. Then |Vc′c| ≥ |Vcc′ | for every c′ ∈ Ik0 and
c ∈ C \Ik0 . By Observation 1, there must be a Kemeny rank-
ing r where all candidates in Ik0 are ranked before all candi-
dates in C \ Ik0 . Moreover, it is easy to show that the ranking
over Ik0

(resp. C \ Ik0
) should be a Kemeny ranking for the

subinstance over Ik0
(resp. C \ Ik0

). By inductively applying
these arguments, the validity of the algorithm follows. Note
that, to compute a Kemeny ranking for each subinstance Ik in
Step 2, rather than using brute force (in O(m!)), one can per-
form dynamic programming in O(2m) [Betzler et al., 2009].

Let (I1, . . . , Iq) be a partition of the candidates into q inter-
vals which minimizes the SP (or SC) width, and let w denote
the width of this partition. Step 1 of the algorithm (compute
a Condorcet ranking) is then in O(nq2), Step 2 (compute a

Q1

P

a b c

d Q2

e f g

Figure 1: A PQ-tree.

Kemeny ranking within each interval Ik) is in O(q2w), and
Step 3 (concatenate the rankings) is in O(m). Since q ≤ m:

Proposition 2 The Kemeny ranking problem can be solved
in O(m2w + nm2), where w is the single-peaked or single-
crossing width of the preference profile.

The rest of the paper is dedicated to a study of the com-
plexity of determining the SP or SC width of a profile.

5 Computing the Width of a Profile
In order to determine the SP or SC width of a profile P , a pre-
liminary task is to compute the set I(P) of all intervals. This
set is closed under intersection [Elkind et al., 2012]. Given
a, b ∈ C (possibly equal), the minimal interval w.r.t. inclu-
sion that contains a and b is thus uniquely defined: we denote
it by I(a, b). Conversely, for every interval I , there exists a
pair a, b of candidates such that I = I(a, b): pick for instance
the first and the last candidates from I in the preferences of
a voter. Thus, set I(P) has a cardinality in O(m2) (number
of pairs of candidates). Due to space constraint, the (fairly
simple) algorithm in O(nm3) to compute this set is omitted.

Our study makes extensive use of the PQ-tree data struc-
ture. We therefore recall here the definition. A PQ-tree T
on a set C is an ordered tree (that is, a tree with leaf set C
together with a linear ordering of C) that represents a fam-
ily of orderings over C. The internal nodes of T are either
Q-nodes or P-nodes and have at least two children (by con-
vention, all internal nodes with exactly two children are P-
nodes). The family of orderings O(T ) of T is the set of or-
derings of all trees in its equivalence class. Two PQ-trees on
C are equivalent if one may be obtained from the other by
arbitrarily reordering the children of a P-node or by reversing
the children of a Q-node. For illustration, a PQ-tree T over
C = {a, b, c, d, e, f, g} is depicted in Figure 1. For instance,
ordering e � f � g � d � b � c � a belongs to O(T ).

The next section is devoted to the presentation of algo-
rithms for recognizing SC/SPness, which will be building
blocks for computing the width of a profile.

5.1 Recognizing SP/SCness
Bartholdi and Trick [1986] showed that recognizing SPness
of a profile P amounts to testing if a binary matrix has the
consecutive ones property, i.e. if there is a permutation of
its columns that places the 1’s consecutive in every row.
Note that a profile P can be SP with respect to several axes.
There can even be an exponential number of such compati-
ble axes [Escoffier et al., 2008]. The interest of the method
by Bartholdi and Trick is that it enables to compute a com-
pact representation of all axes in polynomial time. Before
detailing the binary matrix to consider, let us first give the
characterization of SPness that led to it: a profile is SP iff all
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input rankings are searches over a single chain Γ whose ver-
tices are the candidates. Associate a 0-1 matrix N(P) to P
as follows: N(P) has row-set V × {1, . . . ,m}, column-set
C, and N(P)vk,a = 1 if a is one of the k first-ranked can-
didates for v, and 0 otherwise. Clearly, if the preferences are
SP w.r.t. axis Γ, the subgraph H of Γ induced by the k first-
ranked candidates of a voter v is a path for any k = 1, . . . ,m
and for any voter v ∈ V . Hence one has:

Observation 2 ([Bartholdi III and Trick, 1986]) P is SP if
and only if N(P) has the consecutive-ones property.

In a seminal paper, Booth and Lueker [1976] provides a poly-
nomial time algorithm to decide if a binary matrix M has
the consecutive ones property and, if yes, compute a PQ-
tree for M , which gives an implicit representation of all the
consecutive-ones orderings of the columns of M . For in-
stance, consider the matrix on the left hand side of Figure 2
(denote it by M ). Booth and Lueker’s algorithm computes
fromM the PQ-tree in Figure 1 (denote it by T ), whereO(T )
correspond to the consecutive-ones orderings of M . The al-
gorithm runs in O(x+ y+ z), where x and y are respectively
the number of columns and rows, and z is the total number of
ones in the matrix. Here, matrix N(P) has m columns, nm
rows and O(nm2) ones. It follows that all axes compatible
with P can be determined in O(nm2). The complexity of
recognizing SPness can be improved to O(nm) if looking for
only one compatible axis [Escoffier et al., 2008].

Bredereck et al. [2012] showed that recognizing SCness
of a profile P also amounts to testing the consecutive ones
property. For the reduction, they define the matrix M(P)
obtained from P as follows: the row-set of M(P) is indexed
by (a, b) ∈ C2 (a 6= b), the column-set is indexed by V , and
M(P)ab,v = 1 if a �v b. Clearly P is SC iff M(P) has the
consecutive ones property. The complexity is O(nm2).

5.2 The Narcissistic Case
Preferences are called narcissistic when each candidate is
most preferred by some voter [Bartholdi III and Trick, 1986;
Trick, 1989]. The computation of the SP width in the nar-
cissistic case has been investigated by Cornaz et al. [2012].
Furthermore, an algorithm proposed by Elkind et al. [2012]
for a closely related problem also makes it possible to com-
pute the SP width in this case (both problems become equiv-
alent). Concerning the SC width, since the notion has been
introduced in the present paper, no algorithm has been pro-
posed up to now. We propose here a general method for com-
puting the SP/SC width if preferences are narcissistic. This
method is much faster than Cornaz et al.’s algorithm (that
runs in O(m3n2 max{m,n})) and much simpler than that of
Elkind et al. (for a similar complexity). The key property is:

Proposition 3 If the preferences are narcissistic, then for any
pair I , I ′ of intervals: I ∩ I ′ = ∅ or I ⊆ I ′ or I ′ ⊆ I .

Proof. By contradiction. Assume that I ∩ I ′ 6= ∅ and I 6⊆ I ′

and I ′ 6⊆ I . Let c ∈ I ∩ I ′. Consider the ranking of a voter
v whose most preferred candidate is c (v exists since the
preferences are narcissistic). Let c′ denote the last candidate
of I ∪ I ′ in the ranking of v. If c′ ∈ I (resp. c′ ∈ I ′) then
I ′ ⊆ I (resp. I ⊆ I ′). Contradiction.



a a e
b c f
c b g
d d d
e g c
f f a
g e b



a b c d e f g
abc 1 1 1 0 0 0 0
abcd 1 1 1 1 0 0 0
defg 0 0 0 1 1 1 1
ef 0 0 0 0 1 1 0
fg 0 0 0 0 0 1 1
efg 0 0 0 0 1 1 1

Figure 2: A preference profile and its interval matrix.

To test whether the SP width (resp. SC width) of a profile is
at most w, one can proceed as follows. Let P(w) denote the
profile obtained by contracting all the intervals of cardinality
at most w + 1. If P(w) is SP (resp. SC) then the SP width
(resp. SC width) is at most w. To compute the SP (resp. SC)
width, it suffices therefore to simply iterate from w = 0 until
the test is successful (threshold method). The SP or SC width
is equal to the first value w for which the test succeeds. The
number of iterations is of course bounded by m− 1.

The complexity of the threshold method is strongly related
to that of Booth and Lueker’s algorithm, but also to the time
spent on computing the set of all intervals of P . As indi-
cated previously, the computation of all the intervals is in
O(nm3). Both in M(P) and N(P), the total number of ones
is within O(nm2), hence in both cases Booth and Lueker’s
algorithm runs in O(nm2). Since the algorithm is launched
at most m− 1 times in the threshold method, the complexity
is O(m2 max{m,n}) in the solution phase. The most costly
phase from the computational viewpoint is therefore the pre-
calculation of the set of intervals in O(nm3), and the overall
complexity of the threshold method is thus O(nm3).

5.3 The General Case
To propose polynomial time algorithms for computing the
widths in the general case, following Elkind et al. [2012],
we will use a PQ-tree representation of the interval structure.

Preliminaries
Determining the interval structure of a profile P is actually
equivalent to identifying the set of all preferences that are
compatible with I(P). We say that a preference over the can-
didates is compatible with I(P) if, for all interval I ∈ I(P),
the candidates of I are consecutive in the preference. Let us
consider the 0-1-matrix defined from I(P) in the following
way (see Figure 2). For each candidate c, the matrix contains
a corresponding column. For each interval I , the matrix has
a corresponding row with value 1 at column c if candidate
c belongs to interval I and value 0 otherwise. The result-
ing matrix (interval matrix) has m columns and |I(P)| rows.
Clearly, a preference is compatible with I(P) iff the corre-
sponding ordering of the candidates permutes the column of
the matrix so that the ones in each row are consecutive.

The PQ-tree T generated from the interval matrix repre-
sents the consecutive ones orderings of the columns. Here,
set O(T ) is the set of all preferences compatible with I(P).
That PQ-tree is denoted by T (P) and is called the PQ-tree of
P . For illustration, the PQ-tree of the profile in Figure 2 is de-
picted in Figure 1. Computing T (P) from I(P) is in O(m3)
(using Booth and Lueker’s algorithm) because the size of the
interval matrix is O(m2) × m. Before coming back to the
interval structure, we need to introduce some definitions con-
cerning PQ-trees. A segment of a Q-node is a subset of its
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children which are consecutively ordered. A segment of car-
dinality one (resp. at least two) is called degenerate (resp.
non-degenerate). For a Q-node x, we denote by (y1, . . . , yk)
the sequence induced by the order on its children y1, . . . , yk.
So a segment of x is a subsequence of the form (yi, . . . , yj)
with 1 ≤ i ≤ j ≤ k. The following proposition makes the
link between the PQ-tree and the interval structure:

Proposition 4 Let T be the PQ-tree of a profile P , then I is
an interval of P iff I is of one of the following types:
(i) |I| = 1; or
(ii) T has a P-node x such that I is the set of all leaves reach-
able from x; or
(iii) T has a Q-node x with segment (yi, . . . , yj) (i 6= j) such
that I is the set of all leaves reachable from yi, . . . , yj .

Proof. Sufficiency being trivial we only show necessity.
By contradiction, assume there exists an interval I which
satisfies none of conditions (i)-(iii). So |I| ≥ 2. Let x be
the minimum height internal node of T from which each
candidate in I is reachable. If x is a P-node, then there exists
a candidate a ∈ C \ I reachable from x. So there is an order
in O(T ) containing a subsequence (b, a, c) with b, c ∈ I; this
is impossible. So x is a Q-node with a children subsequence
(yi, yj , yl) and there are three candidates a, b, c s.t. b ∈ I is
reachable from yi, c ∈ I is reachable from yl, and a ∈ C \ I
is reachable from yi. Again, there is an order in O(T ) con-
taining a subsequence (b, a, c) with b, c ∈ I; a contradiction.

For instance, in Figure 1, {a} is an interval of type (i),
{a, b, c} of type (ii) and {a, b, c, d} of type (iii).

Our approach to compute the SC/SP widths is based on la-
belings of the PQ-tree: determining the SC/SP widths will
amount to finding a labeling L minimizing w(L), each label-
ing L (fulfilling conditions detailed further) inducing a parti-
tion into intervals and w(L) denoting the width of this parti-
tion. We call “optimal” a labeling minimizing w(L) among
the labelings for which the induced partitions is SC/SP. We
now detail the labelings we consider: each P-node is either
labeled contracted or relaxed, and each Q-node is either la-
beled contracted, segmented (in which case the children of
the Q-nodes are partitioned into segments, with at least two
segments in the partition and at least one non-degenerate seg-
ment) or relaxed. A labeling should satisfy the following
rules: all nodes that are descendants of a node labeled con-
tracted are also labeled contracted, as well as all nodes that
are descendants of a node belonging to a non-degenerate seg-
ment. A partition into intervals can be inferred from the la-
beling by starting from the root of the PQ-tree and recursively
considering the labels of each encountered node x:
- if x is a node labeled contracted then create the interval in-
cluding all the descendant leaves of node x;
- if x is a Q-node labeled segmented then, for each segment,
create the interval including all its descendant leaves, and
consider the labels of those of its children that are not in a
non-degenerate segment;
- if x is a node labeled relaxed then consider the labels of each
of its children.
For instance, in Figure 1, if node Q1 is labeled seg-
mented with a segment that includes the two left children,

and node Q2 is labeled relaxed, then the obtained partition
into intervals is ({a, b, c, d}, {e}, {f}, {g}). Note that any
valid partition can be obtained by a convenient labeling of the
nodes, and conversely any labeling of the nodes yields a valid
partition into intervals, where we mean by “valid” that the el-
ements of the partition are intervals. There is thus a bijection
between the partitions into intervals and the valid labelings.

Before moving on to the results, we need to introduce some
further notions and notation. Let P be a profile. Given a la-
beling L of T (P), the minor obtained by contracting each
interval I in the corresponding partition is denoted by P(L).
For instance, consider again the profile of Figure 2. The pro-
file induced by the previous labeling is : a �1 e �1 f �1 g,
a �2 g �2 f �2 e, e �3 f �3 g �3 a. By abuse of
language, we say that a labeling L is SC if P(L) is SC. The
following result holds both for SCness and SPness.

Lemma 1 If P ′ is a minor of P and P is SC (resp. SP), then
P ′ is SC (resp. SP).

Proof. Consider the reduction to the consecutive ones
problem. Matrix M(P ′) (resp. N(P ′)) is obtained from
M(P) (resp. N(P)) by deletion of rows (resp. rows and
columns). Hence if the consecutive ones property holds for
M(P) (resp. N(P)), it holds for M(P ′) (resp. N(P ′)).

Single-crossing Width
The following lemma will reveal useful to compute SC width
since it implies that there always exists an optimal labeling
where all nodes are labeled either relaxed or contracted:

Lemma 2 If a Q-node x is labeled segmented in an SC la-
beling L, then x can be labeled relaxed in L while preserving
SCness.

Proof. Let x be a node labeled segmented in L. Consider
labeling L′ obtained from L by labeling relaxed node x and
labeling contracted the children involved in non-degenerate
segments of x. We claim that the SCness of P(L) implies
that P(L′) is also SC: if (x, y, z) is a children subsequence
of a Q-node, then the rows of ab (resp. ba) and bc (resp. cb)
are indeed identical in M(P), for any candidates a ∈ Tx,
b ∈ Ty and c ∈ Tz , where Tx (resp. Ty , Tz) is the subtree
of T (P) rooted in x (resp. y, z). Hence matrix M(P(L′))
differs from M(P(L)) only by adding rows that are already
present in M(P(L)). Thus if the consecutive ones property
holds for M(P(L)) then it holds for M(P(L′)).

The following result is crucial for computing the SC width.

Theorem 1 Let P be a profile and L(w) be the labeling of
T (P) where all nodes with at most w + 1 descendant leaves
are labeled contracted and all nodes with more than w + 1
descendant leaves are labeled relaxed. The single-crossing
width of P is at most w iff L(w) is SC.

Proof. The other part being obvious, we only prove that
L(w) is SC if the SC width of P is at most w. Let L∗ denote
an optimal labeling where at least one Q-node is labeled
segmented. By reiterating the transformation of Lemma 2
for any Q-node labeled segmented, we then obtain a labeling
L where all nodes are labeled either relaxed or contracted.
Moreover we clearly have w(L) ≤ w(L∗). Thus L is an
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optimal labeling where all nodes are labeled either relaxed or
contracted. Note that all nodes labeled contracted in L are
also labeled contracted in L(w) (they have at most w+ 1 de-
scendant leaves). It follows that P(L(w)) is a minor of P(L).
By Lemma 1, the SCness of P(L) implies that of P(L(w)).

As in the narcissistic case, to compute the SC width ofP , it
suffices therefore to implement a threshold method where one
iterates from w = 0 until labeling L(w) (on PQ-tree T (P))
is SC. We briefly study the complexity of this procedure. The
preliminary computation of T (P) (by generating the inter-
val matrix and applying Booth and Lueker’s algorithm) is in
O(nm3). The computation of P(L(w)) is in O(m) and rec-
ognizing SCness of P(L(w)) is in O(nm2). Since the num-
ber of iterations of the threshold method is inO(m), we have:

Theorem 2 The single-crossing width of a profile can be
computed in O(nm3).

Interestingly, this result contrasts with that of Elkind et al.
[2012], who show that the closely related problem consisting
of finding an SC partition of maximal cardinality is NP-hard.
This comes from the fact that identifying the subset of nodes
to label contracted is much more intricate in their problem.

Single-peaked Width
Contrary to the SC case, label segmented cannot be omit-
ted when computing an optimal labeling according to the SP
width. Nevertheless, the following result holds:

Lemma 3 If a Q-node x is labeled segmented with a segmen-
tation into more than two segments in an SP labeling L, then
x can be labeled relaxed in L while preserving SPness.

The proof is omitted due to space constraint. It uses a char-
acterization of SPness by forbidden configurations [Ballester
and Haeringer, 2011; Cornaz et al., 2012]. It follows from
the lemma that we can focus on labelings where Q-nodes are
labeled contracted, relaxed or bisegmented which means seg-
mented into exactly two segments. This allows us to identify
necessary and sufficient conditions for a labeling to be SP.
Let us denote by Lc(x) the labeling of T (P) where all nodes
but the set A(x) of ancestors of x (including x itself) are la-
beled contracted. Furthermore, in this labeling, any Q-node
z ∈ A(x) is labeled segmented with a partition where the
child c of z belonging to A(x) is a degenerate segment (the
rest of the partition consists of one or two segments accord-
ing to the position of c in the children sequence). Finally, any
P-node in A(x) is labeled relaxed. If x is a Q-node, let Ls(x)
denote a labeling of T (P) defined as Lc(x) except that node
x is segmented with a partition into two segments. Note that
Ls(x) is not uniquely defined: there are as many labelings
Ls(x) as bipartitions of the children set of x. Nevertheless,
the minor P(Ls(x)) is uniquely defined (up to isomorphism),
and therefore the choice of the bipartition does not impact on
the SPness of the obtained minor. We are now able to state the
necessary and sufficient conditions for a labeling to be SP:

Theorem 3 Let P be a profile. Let C(P) denote the set of all
internal nodes x ∈ T (P) such that Lc(x) is not SP. Let S(P)
denote the set of all Q-nodes x ∈ T (P) such that Lc(x) is
not SP but Ls(x) is SP. A labeling L of T (P) is SP iff:
(i) every node x ∈ C(P) is labeled contracted;

(ii) every Q-node x ∈ S(P) is labeled contracted or biseg-
mented.

Proof. Necessity: Let x ∈ C(P). By Lemma 1, if x is not
labeled contracted in L, then P(L) is not SP since Lc(x) is
a minor of P(L) (and Lc(x) is not SP). So (i) holds. Let
now x be a Q-node in S(P). Since Lc(x) is not SP, any
labeling L where x is labeled relaxed is not SP (Lc(x) is a
minor of L). By Lemma 3, any labeling L where x is labeled
segmented with a segmentation into more than two segments
is not SP (otherwise Lc(x) would have been SP). Thus (ii)
holds. Sufficiency: (sketch) This proof is here again based on
the characterization of SPness by the absence of forbidden
configurations in the profile [Ballester and Haeringer, 2011;
Cornaz et al., 2012] (as in Lemma 3): if (i)-(ii) hold, then
L(P) cannot include any forbidden configuration.

Theorem 4 The single-peaked width of a profile P can be
computed in O(nm3).

Proof. The PQ-tree T (P) is computed in O(nm3). For each
node x of the PQ-tree T (P) of P , it takes time O(mn) to
assign two new attributes: one stating whether x is in C(P),
in S(P), or in none of these sets, and a second, denoted by
s(x), indicating the number of leaves (candidates) in the
subtree rooted in x. The overall time for all nodes is therefore
O(m2n) (there areO(m) nodes). By Theorem 3, we can con-
tract all nodes in C(P), and, furthermore, now we only need
all Q-nodes in S(P) to be labeled segmented with two seg-
ments. Let x ∈ S(P) with children sequence (y1, . . . , yk).
Notice that k ≥ 3. Denote sx(i, j) :=

∑l=j
l=i s(yl) the

number of leaves descending from segment (yi, . . . , yj). Let
γ denote the minimum among sx(1, k − 1), sx(2, k) and
maxi∈{2,...,k−1}{sx(1, i), sx(i + 1, k)}. Since x is labeled
segmented and there are exactly two segments, the SP width
of P is at least γ − 1. We partition the children of x into
two segments, each one of cardinality at most γ (it exists by
definition of γ). We segment that way, greedily (in O(m2)),
all nodes in S(P). All contracted intervals have a cardinality
which is at most the SP width (plus 1) of P , and the profile is
now SP. The overall complexity is O(nm3).

6 Conclusion
In this paper, we have established the fixed-parameter
tractability of Kemeny elections with respect to the parame-
ters “single-peaked width” and “single-crossing width”. Fur-
thermore, we have shown that, for any preference profile, the
values of these parameters can be computed in polynomial
time. Booth and Lueker’s algorithm has proved a powerful
tool in this concern. An interesting research direction would
be to study if a reduction to the consecutive ones problem can
be used for recognizing other domain restrictions than single-
peakedness or single-crossingness.
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