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PHASE UNMIXING : MULTICHANNEL SOURCE SEPARATION
WITH MAGNITUDE CONSTRAINTS
Antoine Deleforge and Yann Traonmilin

Inria Rennes - Bretagne Atlantique, France

ABSTRACT
We consider the problem of estimating the phases ofK mixed
complex signals from a multichannel observation, when the
mixing matrix and signal magnitudes are known. This prob-
lem can be cast as a non-convex quadratically constrained
quadratic program which is known to be NP-hard in gen-
eral. We propose three approaches to tackle it: a heuris-
tic method, an alternate minimization method, and a convex
relaxation into a semi-definite program. The last two ap-
proaches are showed to outperform the oracle multichannel
Wiener filter in under-determined informed source separation
tasks, using simulated and speech signals. The convex relax-
ation approach yields best results, including the potential for
exact source separation in under-determined settings.

Index Terms— Informed Source Separation, Phase Re-
trieval, Semidefinite Programming

1. INTRODUCTION
Let M sensors record K complex signals through linear in-
stantaneous mixing. The noisy observation y ∈ CM is ex-
pressed as:

y = As0 + n, (1)
where s0 ∈ CK is the source vector, n ∈ CM is the noise
vector and A ∈ CM×K is the mixing matrix. This model is
very common in signal processing and occurs, for instance,
when looking at a single time-frequency bin of the discrete
short-time Fourier domain. In that case, each entry am,k of A
may be viewed as a frequency-dependent gain and phase off-
set from source k to sensor m. The classical problem of mul-
tichannel source separation consists in estimating the source
signals s0 given one or several observations y. Even with-
out noise, this problem is fundamentally ill-posed. This is
always true in the blind case where A is unknown, but also
when A is perfectly known and full-rank, as long as M < K
(under-determined setting). Due to these ambiguities, source
separation under various prior knowledge on A, s0 or n is
a long-standing and still active research topic. Often, spe-
cific structures are imposed on A based on physical [1, 2] or
learned [3] models of signal propagation. It is also quite com-
mon to add statistical assumptions on source and noise sig-
nals. For instance, signals may be assumed pairwise statisti-
cally independent such as in independent component analysis
(ICA [4]), or non-Gaussian and non-white such as in TRINI-
CON [5]. If signals are assumed wide-sense stationary, their
respective observed (image) covariance can be estimated and
used to compute the well-known multichannel Wiener filter
(e.g. [6]), which is then the optimal linear filter in the least

squared error sense. Although very powerful, the stationar-
ity assumption is unrealistic for many signals of interest such
as speech or music in audio. For this reason, Wiener filter-
ing is often used in combination with time-frequency vary-
ing source variances and a Gaussian [1, 7] or alpha-stable [8]
signal model. To avoid over-parameterization, variances are
either assumed to be known such as in informed source sepa-
ration [9, 10], or to be provided by a low-dimensional model
such as nonnegative matrix factorization (NMF) [2, 11] or
more recently deep neural networks [12]. A common prop-
erty of all Wiener-filter-based approaches is that they rely on
a good model of source variances, while the source phases are
left unconstrained and estimated from observations. The ora-
cle Wiener-filter corresponds to the case where instantaneous
source variances and mixing matrices are known.

In this paper, we introduce a slight shift of this paradigm
by replacing the prior knowledge on instantaneous source
variances by a prior knowledge on instantaneous source
magnitudes. Note that both quantities are related, the for-
mer being the maximum-likelihood estimate of the latter for
non-stationary Gaussian signals. We refer to this problem
as phase unmixing and focus here on the oracle case where
the source magnitudes and the mixing matrix A are exactly
known, while only source phases need to be estimated. Ap-
plications are hence informed source separation or situations
where good magnitude and mixing models are available. We
show that multichannel phase unmixing can be expressed as a
non-convex quadratically constrained quadratic minimization
problem, which is known to be NP-hard in general and hard
to solve in practice. We propose three different approaches
to tackle it: a heuristic approach, an alternated minimiza-
tion approach, and a convex relaxation of the problem into a
semi-definite program (SDP). Some preliminary theoretical
insights and a detailed experimental study on simulated data
are presented to compare the proposed methods to the oracle
multichannel Wiener filter. A task of informed multichannel
speech source separation is also performed. The proposed
convex scheme yields particularly encouraging results, in-
cluding stability to noise and the potential for exact source
separation in under-determined settings.
Related work. The considered problem of phase unmixing
is related but not to be confused with the problem of phase
retrieval, which has triggered considerable research interest
over the past 30 years [13, 14] and has recently regained mo-
mentum thanks to novel methodologies [15, 16]. In phase re-
trieval, only the magnitudes of y are observed while s0 is
completely unknown. This problem occurs in applications



such as adaptive optics [17] or X-ray crystallography [18],
where the phases of the Fourier transform are intrinsically lost
during measurement. Phase retrieval is also sometimes used
to find phase estimates which are consistent [19] with mag-
nitudes estimates of a single-channel signal of interest. This
consistency may be imposed by the properties of the short-
time Fourier transform [19, 20] or sinusoidal source models
[21]. In contrast, the proposed framework solely relies on
complex multichannel observations to perform recovery and
does not require any structure on phases.

2. PHASE UNMIXING
Under model (1), we consider the problem of estimating the
phases of s0 ∈ CK given strictly positive magnitudes b =
|s0|, the multichannel observation y ∈ CM and the mixing
matrix A ∈ CM×K , which we assume full rank. A natural
approach is to minimize the Euclidean norm of the residual:

ŝ = argmin
s
‖As− y‖22

s.t. |sk|2 = b2k, k = 1 . . .K.
(ΦLS)

We refer to this problem as phase least-squares (ΦLS), be-
cause without constraints, it becomes a standard least-squares
problem. Least squares has infinitely many solutions in
the under-determined case (K > M ) and a unique closed-
form solution ŝLS = A†y otherwise, where {·}† denotes the
Moore-Penrose pseudo-inverse. On the other hand, (ΦLS) is
an instance of quadratically constrained quadratic program
(QCQP). These problems are non-convex, and solving them
or even finding whether they have a solution is NP-hard
in general [22]. While branch-and-bound methods exist to
solve non-convex QCQPs [22,23], they are extremely slow in
practice1. A generally exact and efficient solution to (ΦLS) is
thus most likely out-of-reach, but we propose in the following
three practical approaches to tackle it.

Normalized multichannel Wiener filter. The multichan-
nel Wiener filter (MWF) is one of the most widely used
methods in signal processing [6]. One interpretation of MWF
is that it is the maximum a posteriori estimator of s0 given
y, assuming that source and noise signals are zero-mean
complex circular-symmetric Gaussian (e.g. [1]). For an i.i.d.
noise with variance σ2

n and independent sources with vari-
ances b21, . . . , b

2
K , the MWF estimate ŝMWF is2

ŝMWF = argmin
s

1

σ2
n

‖As− y‖22 +
∑K
k=1 |sk|2/b2k (2)

= (σ2
nDiag{b}−2 + AHA)−1AHy (3)

where {·}H denotes Hermitian transposition. While (ΦLS) as-
sumes that source magnitudes are known, MWF assumes that
source variances are known, which is the same quantity of

1Solving one instance of (ΦLS) using the Matlab version of BARON [23]
on a regular laptop takes over a minute with M = 2, K = 3.

2In the under-determined case, the expression (3) is equivalently replaced
by Diag{b}2AH(ADiag{b}2AH + σ2

nIM )−1y for numerical stability.

prior information. Note that adding the magnitude constraint
|sk|2 = b2k to (2) recovers (ΦLS). A simple heuristic approach
to (ΦLS) is thus to normalize ŝMWF by changing its magni-
tudes to b while keeping its phases unchanged. We refer to
this as normalized multichannel Wiener filtering (NMWF).
Alternated minimization. A second approach to solve
(ΦLS) is by alternated minimization w.r.t. each coordinate
si until convergence, i.e., by coordinate descent. The La-
grangian of (ΦLS) writes:

L(s,λ) = ‖As− y‖22 +
∑K
k=1 λk(|sk|2 − b2k). (4)

Finding the zeros of the derivatives of (4) w.r.t. to the real and
imaginary parts of si and λi yields

si = bi〈y − A:,icsic ,ai〉/|〈y − A:,icsic ,ai〉|, (5)

where ai is the i-th column of A, sic is s deprived of its
i-th element and A:,ic is A deprived of its i-th column. Note
that (5) is almost surely well-defined (see3 for detailed deriva-
tions). Given an initial guess s(0) ∈ CK , repeatedly applying
(5) for i = 1 . . .K until convergence yields the phase unmix-
ing by alternated minimization (PhUnAlt) method, described
in Alg. 1. PhUnAlt converges because the nonnegative resid-
ual error r(p) decreases at each iteration. Since (ΦLS) is not
convex, it does not generally converge to a global minimum
but to a local minimum which depends on the initial guess.

Lifting scheme. We first note the following identity:

‖As− y‖22 =
∥∥(A −y

)(s
1

)∥∥2
2

= ‖Ãx‖22

= xHÃ
H

Ãx = trace
(

Ã
H

ÃxxH
)

= trace (CX), (6)
where Ã = [A,−y], x = [s, 1]> ∈ CK+1, X = xxH ∈
C(K+1)2 and C = [A,−y]H[A,−y] ∈ C(K+1)2 . We can now
consider the following convex relaxation of (ΦLS):

X̂ = argmin
X

trace (CX)

s.t. diag{X} = b̃, X � 0
(PhUnLift)

where b̃ = [b.2, 1]> and PhUnLift stands for phase un-
mixing by lifting. Note that the rank-1 constraint on X has
been removed. Using (6) and observing that the diagonal
of X contains the squared magnitudes of s, it is easy to
see that if X̂ = x̂x̂H is a rank-1 solution of (PhUnLift),
then ŝ = x̂1:K/x̂K+1 = X̂1:K,K+1 is a global solution
of (ΦLS). Hence, the NP-hard quadratic problem (ΦLS)
has been relaxed to a simple convex, linear semi-definite
program (SDP). SDPs have been extensively studied over
the past decades, and many methods are available to solve
them efficiently [24, 25]. Following [16], we propose to use
the particularly inexpensive block-coordinate descent (BCD)
method of [25]. Algorithm 2 shows the method adapted
to (PhUnLift). Each iteration only requires two matrix-
vector multiplications, which makes iterations of PhUnAlt
and PhUnLift of comparable computational complexity.

3http://people.irisa.fr/Antoine.Deleforge/
supplementary_material_ICASSP17.pdf.

http://people.irisa.fr/Antoine.Deleforge/supplementary_material_ICASSP17.pdf
http://people.irisa.fr/Antoine.Deleforge/supplementary_material_ICASSP17.pdf


Algorithm 1 PhUnAlt

Input: y ∈ CM , A ∈ CM×K , b ∈ RK+ , s(0) ∈ CK .
Output: Source estimate ŝ with |ŝ| = b.

1: p := 0; r(0) := +∞;
2: repeat
3: for i = 1→ K do
4: s

(p)
i := bi〈y − A:,ics

(p)
ic ,ai〉/|〈y − A:,ics

(p)
ic ,ai〉|;

5: s
(p+1)
i := s

(p)
i ;

6: end for
7: p := p+ 1; r(p) := ‖y − As(p)‖22; // Residual error
8: until (r(p−1) − r(p))/r(p) < 10−3

9: return s(p)

The problem is that solutions of (PhUnLift) are not nec-
essarily rank-1. To understand why this relaxation may still
be a viable approach to phase unmixing, let us first draw
a connection to related works. Without loss of generality,
b̃ can be set to 1 by changing C to Diag{b̃}CDiag{b̃}.
Then, (PhUnLift) has the same form as the SDP PhaseCut,
recently introduced in [16] for phase retrieval. The name
PhaseCut was chosen because the real rank-1 counterpart of
the problem is known to be equivalent to the classical NP-
hard MaxCut problem in graph theory. An SDP relaxation of
MaxCut was proposed 20 years ago [26], and since then many
extensions have been developed. For the phase retrieval ap-
plication, it was showed through a connection to the method
PhaseLift [15] that PhaseCut does yield a rank-1 solution
with high-probability when some stringent conditions on C
are verified [16]. In the presence of noise, solutions are no
longer rank-1 but some stability results are available. Unfor-
tunately, none of these results can be directly transposed to
the phase unmixing problem. Indeed, the PhaseCut/PhaseLift
equivalence only occurs when C has a specific form involving
an orthogonal projection matrix [16], which is not the case
for phase unmixing. We provide here a first stability theorem
for PhUnLift in the determined case only (K ≤M ). A proof
of this theorem is available in the supplementary material3:

Theorem 1 Let y = As0 + n, b = |s0|, A be full-rank and
K ≤M . Let ŝ be the output of Algorithm 2. We have:

‖ŝ− s0‖2 ≤
2
√

2

σmin(A)
‖n‖2 (7)

where σmin(A) is the smallest singular value of A.

In other words, PhUnLift recovers the true source vector up
to an error proportional to the noise level. In particular, a
rank-1 solution and exact recovery is obtained in the noiseless
case. Note that for K ≤M , bounds similar to (7) can also be
obtained for the least-squares, MWF and NMWF estimates.
For the more interesting under-determined case, a different
approach is needed because then σmin(A) = 0. A theoretical
extension of theorem 1 to K > M and additional properties
on A is likely intricate to obtain, although numerical results
of section 3 do suggest that this is possible.

Algorithm 2 PhUnLift (Block-coordinate descent)
Input: y ∈ CM , A ∈ CM×K , b ∈ RK+ , ν > 0, typically
small [25] (in fact, ν = 0 worked well in practice).
Output: Source estimate ŝ with |ŝ| = b.

1: C = [A,−y]H[A,−y];
2: p := 0; r(0) := +∞; X(0) := IK+1;
3: repeat
4: for i = 1→ K do
5: z := X(p)

ic,icCic,i; γ := zHCic,i; X(p+1)
ic,i :=

6: X(p+1)H
i,ic := −

√
bi−ν
γ z for γ > 0, 0 otherwise;

7: end for
8: p := p+ 1; r(p) := trace (CX(p)); // Residual error
9: until (r(p−1) − r(p))/r(p) < 10−3

10: return ŝ with the same phases as X(p)
1:K,K+1 and |ŝ| = b

3. EXPERIMENTS AND RESULTS
We now compare the efficiency of MWF (3), NMWF, PhUnAlt
(Alg.1) and PhUnLift (Alg. 2) on the task of estimating the
phases of s0 given an M -channel mixture y = As0 + n. All
these methods are compared in the oracle setting: the true
magnitudes b = |s0| and the true mixing matrix A are pro-
vided. Moreover, Wiener-filter-based methods are given the
true variance σ2

n used to generate the noise in all experiments
(interestingly, this is not needed by PhUnAlt or PhUnLift).
Three initializations are considered for PhUnAlt: random
phases (PhUnAlt), the output of NMWF (NMWF+) or the
output of PhUnLift (PhUnLift+). Moreover, a brute-force ap-
proach (PhUnAlt*5) is considered, which picks the PhUnAlt
estimate with smallest residual out of 5 randomly initialized
runs. Phase unmixing problems are generated by randomly
picking all the elements of A, s0 and n from i.i.d. zero-mean
complex Gaussian distributions of respecive standard devi-
ations σA, σs and σn. In each experiment, σA and σs are
randomly uniformly picked in [0, 2] while σn is adjusted to
the desired signal-to-noise-ratio SNR = ‖As0‖22/(Mσ2

n).
For each considered combination of (M,K,SNR), all meth-
ods are ran on 1000 random tests.

Fig. 1(a) shows the mean relative error ‖ŝ − s0‖22/‖s0‖22
as a function of M when K = M (determined case), under
low-noise conditions (SNR = 60dB). As predicted by The-
orem 1, near-exact recovery is possible with PhUnLift, and
MWF and NMWF yield similarly low errors. PhUnLift+ does
not improve over PhUnLift suggesting that the global mini-
mum of (ΦLS) is already reached, while NMWF+ leads to
the same solution as PhUnLift. PhUnAlt and PhUnAlt*5 per-
form relatively less well due to local-minimum convergence.
Fig. 1(b)-(c) shows the same experiment in under-determined
settings. PhUnLift seems to yield solutions sufficiently close
to the global optimum to achieve again near-exact reconstruc-
tion with PhUnLift+ for M sufficiently large. This does not
seem to be the case with other methods. This is further illus-
trated in Fig. 1(d) and Fig. 1(e), which show the probability of
exact reconstruction of PhUnLift and PhUnAlt for different
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Fig. 1. (a)-(c) : Mean relative error for a fixed SNR of 60dB. (d)-(e) Probability of exact reconstruction with PhUnLift+ and PhUnAlt
(noiseless). (f)-(g): Robustness to noise in determined cases and under-determined cases (M = 2 . . . 10).

M,K → 2, 2 2, 3 2, 4 4, 4 4, 5 4, 6

Input 0.49 -2.70 -4.66 -4.51 -5.76 -7.27
Rand -6.44 -6.28 -4.99 -4.41 -4.46 -5.28
MWF 59.6 21.7 17.0 58.6 27.9 25.0

NMWF 59.9 21.6 16.9 59.4 28.6 25.9
NMWF+ 59.9 22.8 19.2 59.7 34.1 31.6
PhUnAlt 22.7 17.6 15.3 25.8 21.5 22.0

PhUnAlt*5 43.5 35.4 21.5 47.7 37.3 33.6
PhUnLift 59.9 37.6 22.3 59.0 57.3 40.9

PhUnLift+ 59.9 39.6 21.2 58.0 59.3 44.8

Table 1. Mean SDR (dB) for 1-second M -channel mixtures of K
speech sources. Means are over the K sources for each mixture.

values of (M,K). Here, exact means a relative error lower
than 10−8. 100% exact recovery seems possible with PhUn-
Lift+ in a number of under-determined cases where PhUnAlt
only achieves around 80%. Fig. 1(f) illustrates that the error
of PhUnLift is proportional the noise error when K ≤ M , as
predicted by Theorem 1. This is also true for MWF, NMWF
and NMWF+, but not for PhUnAlt due to local-minima. In
the under-determined setting showed in Fig. 1(g), stability to
noise is less obvious. PhUnLift and PhUnLift+ perform best,
closely followed by PhUnAlt*5. In general, the fair results
obtained with PhUnAlt*5 suggests that the number of local-
minima is often not too high, making multiple initialization of
PhUnAlt a feasible approach. From a computational point-of-
view, the non-iterative methods MWF and NMWF are much
faster but also perform less well. The computational times
of other methods depend on the number of iterations needed
for convergence. PhUnAlt generally converges in a few hun-
dred iterations. The same is observed for PhUnLift, except
in under-determined cases with high SNRs (≥ 30dB), where
tens of thousands of iterations are often needed. This calls for
using an SDP solver with faster convergence rate.

We finally conduct an informed speech separation task us-

ing random 1 second utterances from the TIMIT dataset [27].
The clean speech signals are sub-sampled at 16 kHz and trans-
formed to the short-time Fourier (STF) domain using a 64 ms
sliding window with 50% overlap, yielding F = 512 positive-
frequency bins and T = 33 time bins. They are then mixed
using a global gain g(m, k) ∈ [−5dB,+5dB] and a discrete
time-domain delay τ(m, k) ∈ [0, 50] in samples from each
source k to each microphone m. The corresponding mixing
matrices used in the STF domain are defined by Af (m, k) =
10g(m,k)/20 exp(jτ(m, k)f/F ) were f = 0 . . . F − 1 is the
frequency index. For each experiment, both gains and delays
are uniformly picked at random such that mixing matrices re-
main full rank. To save computational time, when a source
has its magnitude lower than -40dB in a given time-frequency
bin, the source is ignored and assigned a random phase by
all methods. Mean signal-to-distortion-ratios (SDRs) calcu-
lated with [28] for each considered method are showed in ta-
ble 1 (Rand means random phases with correct magnitudes).
PhUnLift and PhUnLift+ outperform the other methods in
under-determined settings, while MWF, NMWF, NMWF+,
PhUnLift and PhUnLift+ performs similarly for K = M .

4. CONCLUSION
The problem of oracle phase unmixing, i.e., multichannel
source separation with known magnitudes and mixing matrix,
was introduced and cast as a non-convex quadratic problem.
Three approaches were proposed to tackle it, including a
lifting scheme which showed best performance in practice.
The proposed methods outperformed the oracle multichannel
Wiener filter in under-determined settings. More theoreti-
cal investigations are needed to understand why the lifting
scheme works well in the latter case. Moreover, the generic-
ity of proposed methods calls for a number of extensions to
more realistic scenarios, e.g., estimation of A, more flexible
magnitude constraints and additional phase structure.
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