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Abstract.  The increasing power of computer hardware and the sophistication 
of computer software have brought many new possibilities to information 
world. On one side the possibility to analyze massive data sets has brought new 
insight, knowledge and information. On the other, it has enabled to massively 
distribute computing and has opened to a new programming paradigm called 
Service Oriented Computing particularly well adapted to cloud computing. Ap-
plying these new technologies to the transport industry can bring new under-
standing to town transport infrastructures. The objective of our work is to man-
age and aggregate cloud services for managing big data and assist decision 
making for transport systems. Thus this paper presents our approach to propose 
a service oriented architecture for big data analytics for transport systems based 
on the cloud. Proposing big data management strategies for data produced by 
transport infrastructures, whilst maintaining cost effective systems deployed on 
the cloud, is a promising approach. We present the advancement for developing 
the Data acquisition service and Information extraction and cleaning service as 
well as the analysis for choosing a sharding strategy. 

1 Introduction 

During the last five years, the problem of providing intelligent real time data man-
agement using cloud computing technologies has attracted more and more attention 
from both academic researchers, e.g. P. Valduriez team in France  [1], Freddy Lecue’s 
work at Ireland IBM Research Lab [2], Big Data Initiative CSAIL Laboratory in MIT, 
USA, Cyrus Shahabi’s team University of Southern California in USA [3] and indus-
trial practitioners like Google Big Query, IBM, Thales. They mostly concentrate on 
modelling stream traffic flow, yet they barely combine different data flows with other 
big data to provide new intelligent transport services (ITS). ITS apply technology for 
integrating computers, electronics, satellites and sensors for making every transport 
mode (road, rail, air, water) more efficient, safe, and energy saving. ITS effectiveness 
relies on the prompt processing of the acquired transport-related information for react-



ing to congestion, dangerous situations, and, in general, optimizing the circulation of 
people and goods. Integration, storage and analysis of huge data collections must be 
adapted to support ITS for providing solutions that can improve citizens’ lifestyle and 
safety.  

In order to address these challenges it is important to consider that big data intro-
duce aspects to consider according to its properties described by the 5V's model [4]: 
Volume, Velocity, Variety, Veracity, Value. 

 Volume and velocity (i.e., continuous production of new data) have an important 
impact in the way data is collected, archived and continuously processed. Transport 
data are generated at high speed by arrays of sensors or multiple events produced by 
devices and transport media (buses, cars, bikes, trains, etc.). This data need to be pro-
cessed in real-time, near real-time or in batch, or as streams. Important decisions must 
be made in order to use distributed storage support that can maintain these data col-
lections and apply on them analysis cycles. Collected data, involved in transport sce-
narios, can be very heterogeneous in terms of formats and models (unstructured, 
semi-structured and structured) and content. Data variety imposes new requirements 
to data storage and database design that should dynamically adapt to the data format, 
in particular scaling up and down. ITS and associated applications aim at adding val-
ue to collected data. Adding value to big data depends on the events they represent 
and the type of processing operations applied for extracting such value (i.e., stochas-
tic, probabilistic, regular or random). Adding value to data, given the degree of vol-
ume and variety, can require important computing, storage and memory resources. 
Value can be related to quality of big data (veracity) concerning (1) data consistency 
related to its associated statistical reliability; (2) data provenance and trust defined by 
data origin, collection and processing methods, including trusted infrastructure and 
facility. 

Processing and managing big data, given the volume and veracity and given the 
greedy algorithms that are sometimes applied to it, for example, giving value and 
making it useful for applications, requires enabling infrastructures. Cloud architec-
tures provide unlimited resources that can support big data management and exploita-
tion. The essential characteristics of the cloud lie in on-demand self-service, broad 
network access, resource pooling, rapid elasticity and measured services [5]. These 
characteristics make it possible to design and implement services to deal with big data 
management and exploitation using cloud resources to support applications such as 
ITS. 

The objective of our work is to manage and aggregate cloud services for managing 
big data and assist decision making for transport systems. Thus this paper presents our 
approach for developing data storage, data cleaning and data integration services to 
make an efficient decision support system. Our services will implement algorithms 
and strategies that consume storage and computing resources of the cloud. For this 
reason, appropriate consumption models will guide their use. 

The remainder of the paper is organized as follows. Section 2 describes work relat-
ed to ours. Section 3 introduces our approach for managing transport big data on the 
cloud for supporting intelligent transport systems applications. Section 4 presents a 



case study of the application that validates our approach. Finally, Section 5 concludes 
the paper and discusses future work. 

2 Related work 

2.1 Big data transport systems 

This section focuses on big data transport projects, namely to optimize taxi usage, and 
on big data infrastructures and applications for transport data events. 

Transdec [3] is a project to create a big data infrastructure adapted to transport. It is 
built on three tiers comparable to the MVC (Model, View, Controller) model for 
transport data. The presentation tier, based on GoogleTM Map, provides an interface 
to express queries and expose the result, the query interface provides standard queries 
for the presentation tier and a data tier is spatiotemporal database built with sensor 
data and traffic data. This work provides an interesting query system taking into ac-
count the dynamic nature of town data and providing time relevant results in real-
time.  

Urban insight [6] is a project studying European town planning. In Dublin they are 
working event detection through big data, in particular on an accident detection sys-
tem using video stream for CCTV (Closed Circuit Television) and crowdsourcing. 
Using data analysis they detect anomalies in the traffic and identify if it is an accident 
or not. When there is an ambiguity they rely on crowdsourcing to get further infor-
mation. The project RITA [7] in the United States is trying to identify new sources of 
data provided by connected infrastructure and connected vehicles. They work to pro-
pose more data sources usable for transport analysis. L. Jian and co [8] propose a 
service-oriented model to encompass the data heterogeneity of several Chinese towns. 
Each town maintains its data and a service that allows other towns to understand their 
data. These services are aggregated to provide a global data sharing service. These 
papers propose methodologies to acknowledge data veracity and integrate heteroge-
neous data into one query system. An interesting line to work on would be to produce 
predictions based on this data to build decision support systems.  

N. J. Yuan and co [9], Y. Ge and co [10] and D. H. Lee and co [11] worked a 
transport project to help taxi companies optimize their taxi usage. They work on op-
timizing the odds of a client needing a taxi to meet an empty taxi, optimizing travel 
time from taxi to clients, based on historical data collected from running taxis. Using 
knowledge from experienced taxi drivers, they built a mapping of the odds of passen-
ger presence at collection points and direct the taxis based on that map. These re-
search works do not use real-time data thus making it complicated to make accurate 
predictions and react to unexpected events. They also use data limited to GPS and taxi 
usage, whereas other data sources could be accessed and used. 

D. Talia [12] presents the strengths of using the cloud for big data analytics in par-
ticular from a scalability stand point. They propose the development of infrastruc-
tures, platforms and service dedicated to data analytics. J. Yu and co [13] propose a 
service oriented data mining infrastructure for big traffic data. They propose a full 
infrastructure with services such accident detection. For this purpose they produce a 



large database with the collected data by individual companies. Individual services 
would have to duplicate the data to be able to use it. This makes for highly redundant 
data as the same data is stored by the centralized database, the application and proba-
bly the data producers. What is more, companies could be reluctant to giving away 
their data with no control for its use.  

The state of the art reveals a limited use of predictions from big data analytics for 
transport-oriented systems. The heavy storage and processing infrastructures needed 
for big data and the current available data-oriented cloud services make possible the 
continuous access and processing of real time events to gain constant awareness, pro-
duce big data-based decision support systems, which can help take immediate in-
formed actions. Cloud based big data infrastructure often concentrate around the mas-
sive scalability but don’t propose a cheap method to simply aggregate big data ser-
vices. 

2.2 Big data analysis 

H. V. Jagadish and co [4] propose a big data infrastructure based on five steps: data 
acquisition, data cleaning and information extraction, data integration and aggrega-
tion, big data analysis and data interpretation. X. Chen and co [14] use Hadoop-gis to 
get information on demographic composition and health from spatial data. J. lin and 
D. Ryaboy [15] present their experience on twitter to extract information from log 
information. They concluded that an efficient big data infrastructure is a balancing 
speed of development, ease of analysis, flexibility and scalability. Proposing a big 
data infrastructure on the cloud will make developing big data infrastructures more 
accessible to small businesses for several reasons: little initial investment, ease of 
development through Service-Oriented Architecture (SOA) and using services devel-
oped by specialist of each service. 

Satish Narayana Srirama  and co [16] demonstrated their cloud infrastructure for 
scientific analysis. Using Hadoop mapreduce, they classified the scientific algorithms 
according to how easy they could be adapted to mapreduce. Thus class 1 is when an 
algorithm can be executed with one mapreduce, class 2 is when the algorithm needs 
sequential mapreduce, class 3 is when each iteration of an algorithm executes one 
map reduce and class 4 is when each iteration needs multiple mapreduce. 

Kurt Thearling [17] has put online a document  introducing to the main families 
and  technics for data mining.  Whilst he claims the statistical technics are not data 
mining under the strictest of definitions, he included them since they are very used. 
He classified into two main families. The classical technics include statistical models 
very good for making predictions, nearest neighbour, clustering and generally tech-
nics visualizing data as space with as many dimensions as variable. The second is the 
Next Generation Techniques that include decision trees, neural networks and rules 
induction, they view data analysis as a series of test. There are also more advanced 
methods [18]. 

And finally, Ricardo [19] is a tool which proposes to integrate the R scripting lan-
guage and Hadoop. The objective of this tool is to provide data analyst easy tools to 
use mapreduce. Ricardo provides an Application Programing Interface to R that con-



nects to a Hadoop cluster. It can convert R object into JaQL [20] queries to analyses 
the data. Whilst this technique has been proven successful with analytical technics 
like Latent-Factor Model or principal component analysis it showed less efficient than 
a straightforward mapreduce, on the other hand this tools greatly reduce the time of 
development. 

2.3 Service oriented big data 

Domenico Talia [12] proposes three levels of big data analytical service to the image 
of the three levels of services in cloud. The SaaS provides data mining algorithms and 
knowledge discovery tools. The PaaS provides a platform for the development of new 
data analytical services. The IaaS provides the low level tools to data mining. In the 
same way Zibin Zheng and co [21] have proposed a similar vision applied to analyz-
ing logs. 

H. Demirkan and D. Delen [22] proposes a service oriented decision support sys-
tem using big data and the cloud. They do this by combining data from multiples 
databases into a single database then duplicate it to services.  

Eric E. Schadt and co [23] demonstrate the efficiency that cloud computing could 
have for big data analytics, showing that analysis of 1 peta Byte of data in 350 
minutes for 2040 dollars. 

Zhenlong Li and co [24] proposed a service oriented architecture for geoscience 
data were they separate  the modelling service for geoscience, the data services, pro-
cessing service and the cloud infrastructure. 

Several articles have demonstrated the strength of cloud and big data in particular 
for instancing large quantities of computing power [25], [26], [27]. 

2.4 Conclusion of the state of the art 

These papers have shown that using big data for transport can provide very interesting 
applications. Big data analytics is a domain combining both old methods and new 
technology, that the data expert hasn’t necessarily mastered. The use of the cloud for 
big data analytics has shown great results in both analytical speed but also cost and 
more importantly provides great elasticity. 

On the other hand these papers have shown that big data analytics is viewed as a 
single service and not as a family of services responsible for the individual steps in 
the data management and analysis. Also data experts being general expert in their 
area, providing tools to ease the use of the new technology is important. By proposing 
a service oriented architecture for big data analysis, we hope to propose easy to de-
velops tools for transport. 

3 Big data on the cloud 

In cloud computing everything is viewed as a service (XaaS). As a consequence cloud 
software (SaaS) is built as an aggregate of services exploiting services available on 



the cloud infrastructure (IaaS). In this spirit, we build a big data architecture where 
individual services manage the treatment level of big data. This also means that the 
companies wanting a big data infrastructure will be able to simply build it from an 
aggregation of services proposed by specialized companies.  

Following the 5 step in big data proposed by H. V. Jagadish and co[4], we will de-
sign 5 types services (Fig. 1) for both historical data and real time data. These data 
services are: data acquisition services, data cleaning and extraction service, data inte-
gration and aggregation, data analytical services, and decision support services. The 
next paragraph will go into more detail for each service.  

 

 
Fig. 1. Big Data architecture  

3.1 Data acquisition service 

The first step of a big data infrastructure is well collecting the big data. This is basi-
cally hardware and infrastructure services that transfer, to NoSQL data stores adapted 
to the format of the data, the data acquired by the vehicles, users, and sensors de-
ployed in cities (e.g. roads, streets, public spaces). This is done by companies and 
entities such as town or companies managing certain public spaces, who have data 
collecting facilities. These companies propose and sell their data on the cloud in our 
case the university Openstack infrastructure [28]. Using NOSQL storage like Mon-
goDB [29], these companies will have a highly scalable and sharable data store. Also 
the sharding capability of these data stores offers high horizontal scalability but also 
faster analysis through MapReduce and data availability. 



3.2 Information extraction and cleaning service 

The next step is cleaning and data extraction. This consists of both extracting the in-
formation from unstructured data and cleaning the data. This could be done by the 
company producing the data or an independent company depending on the level of 
structuration of the data. Highly structured data would likely be cleaned by the com-
pany producing the data as they understand best its production and thus know how 
best to clean it up. For highly unstructured data like sound or video data, highly spe-
cialized expert would be needed to extract the information. 

This would be used to pot outliers in the data. Using MapReduce, the company ac-
quiring the data or the company contracted to do it would perform statistical analysis 
to identify for example outliers in the data. This is important as, for example, a mal-
function in a sensor loop could either ignore passing traffic or register non-existing 
traffic. Cleaning these events is important since inaccurate data produced by a dodgy 
sensor can break a model. 

3.3 Integration and aggregation services 

The objective of big data analytics is to use the large volume of data to extract new 
knowledge by searching, for example, for patterns in the data. This often has a conse-
quence of data coming from a wide variety of sources. This means the data has to be 
aggregated into a usable format for the analytics tools to use. This service proposes 
services for real-time data aggregation and historical data aggregation. 

The real-time data aggregation service gets the data from the individual data stores 
real-time data services and proposes a formatted file with the data from all the data 
acquiring service simply by fusing together the data provided by the real-time data 
acquisition services. Thus we aggregate data from the city, state of recharging sta-
tions, having location of people based on the time stamp or the GPS location. 

The historical data aggregation will have to find a way to do similar action but with 
the data stores. The problem is that having data on several separate data stores is not a 
usable format. Importing all the data into a new huge data store would be redundant 
on already existing resources making this service potentially excessively expensive 
and as for temporary stores would be long to build when having to import terabytes of 
data as well as being expensive on network cost as well as time consuming. To solve 
this problem, this service will propose a query interface for simple querying and pro-
cessing service to process the data mass by converting a form simple programing 
language into UNQL queries [30] to collect and pre-process the data before being 
integrated into a model. 

3.4 Big data analytical and decision support services 

The whole point of big data is to identify and extract information from the mass of 
data. Predictive tools can be developed to anticipate the future. The role of this ser-
vice is to provide a computer model of the historical data. It also provides the algo-
rithm applied to the individual pieces of data. Thus using the model provided by the 



analytical service and the algorithm applied to the real-time data we can approach 
similar situations and act accordingly.  

The decision support service composes several services. On the strategic level and 
using the model and the algorithm proposed by the big data analytical services, the 
decision support service provides an interface exposing the data situation in real-time 
but also predictions on events. For example, regularly observing an increase in the 
population in one place and traffic jams 30 minutes later we can deduct cause and 
effect and intervene in future situations so the taxis avoid and evacuate that area. 

This service also generates data on the decision taken by the strategists to build 
more elaborate model including the consequence of this decision to then provide bet-
ter decision support. On the vehicle level, services will provide advice to the vehicle 
for optimal economic driving based on the driving conditions. It also provides a data-
base were the information on the dangers of the road is stored. 

4 Managing transport big data in smart cities 

Consider the scenario where a taxi company needs to embed decision support in elec-
tric vehicles, to help their global optimal management. The company uses electric 
vehicles that implement a decision cycle to reach their destination while ensuring 
optimal recharging, through mobile recharging units. The decision making cycle aims 
at ensuring vehicles availability both temporally and spatially; and service continuity 
by avoiding congestion areas, accidents and other exceptional events. The taxis and 
mobile devices of users are equipped with video camera and location trackers that can 
emit the location of the taxis and people. For this purpose, we need data on the posi-
tion of the vehicles and their energies levels, have a mechanism to communicate un-
expected events and have usage and location of the mobile recharging station. 

Fig. 2 presents the general architecture of the transport data store as a service that 
we propose. It adopts a polyglot persistence [31] approach that combines several 
NoSQL systems for providing a storage support. Profiting from the cluster-oriented 
architecture of these systems our store uses a multi-cloud cluster based storage layer.  

Our service extends an UnQL [30] layer with data processing operators including 
joins and filters for storing and retrieving data in an homogeneous way. 

Furthermore, it exploits the sharding strategies of the NoSQL [32] systems for dis-
tributing and duplicating data, and ensuring availability. Shards are organized accord-
ing to ranges of values of given attributes, or to hash functions and tags related to 
geographic zones. This induces request balancing and ensures better performance 
when data must be inserted and retrieved. 

The service exploits also the persistence supports of clients (disk and cache) in-
stalled in mobile devices in order to distribute data processing and ensure data availa-
bility. For example, in our transport scenario, the service uses storage provided by 
devices used by taxis and users to process and manage data necessary for ITS services 
described in the previous section. In this way it avoids data transfer that can be penal-
izing in terms of response time and economic cost for accessing 3G or 4G networks. 



 

Fig. 2. Big data services 
 

Our data store service provides a global access to clusters providing NoSQL and 
relational support, and enables applications designers to configure their resources 
provision and non-functional properties according to given requirements and cloud 
subscriptions. An application defines the data structures that must persist in the UML 
eclipse plugin and then the tool Model2Roo (https://code.google.com/p/model2roo/) 
generates the necessary bindings to interact with different NoSQL stores. The applica-
tion designer according to a profiling phase executed using the QDB benchmark 
(https://github.com/qdb-io) chooses the NoSQL stores.  

 

4.1 Designing transport data collections 

The data collections “Evènement routier temps reel”, “Etat du trafic temps reel”,  
“Borne Criter”, “Tronçon Web Criter”, “Trafic historique”, “plan Lyon”, “Amé-
nagement cyclable”, “Caméra Web Criter” and “Station Velo'v”, provided by the 
project Grand Lyon [33], are sought and stored by our service in order to be able to 
correlate collected data with data describing the city and its infrastructures (parks, 
roads, commercial zones, river). This data is highly heterogeneous in format, infor-
mation and update rates. There are images in JPG, JSON, XML, and PDF formats. 
The data is also updated at varying rates going from yearly updates to real-time data 
passing by daily and minutely updates. GPS and location data in devices and vehicles 
are seen by our service as continuous data that can be correlated to other collected 
data useful for performing some decision making requests, such as which is the clos-
est taxi (considering distance and time) to a client?, according to traffic and taxi-
energy level, which are the possible destinations it can accept? Data are sharded by 
our service to perform this type of requests that require computing resources. Our 
service uses a MongoDB cluster to store these data.  



Data stemming from social networks particularly Twitter and Waze of taxi users 
are collected and stored in NeO4J. This collection provides a real-time view of the 
traffic, road and zones status and events. Data are sharded thanks to our storage ser-
vice locally on mobile devices and on NeO4J instances deployed in the cloud.  

 
Fig. 3. UML sequence diagram of the decision making process. 

 

4.2 Making global transport decisions 

We conducted an experimental validation of our transport data store as a service for 
the scenario we described in Section 3. The experiment implements a polyglot multi-
database that contains data collected from the French city Lyon. These data are re-
trieved by applications and infrastructure integrated by the project Grand Lyon. We 
then implement some important operations of the decision making cycle of the sce-
nario (Fig. 3). The decision making cycle consists in: 

Collecting data streams from taxis and users that are mobile data providers evolv-
ing in Lyon and feeding the data store service. 

 We focus particularly in three operations that use the transport data storage as a 
service approach, which are dissemination of events, optimization of energy recharg-
ing and scaling taxi provision of exceptional situations. We describe this use cases 
hereafter. 

Disseminating events 
The applications deployed in taxis and users can be used for disseminating excep-

tional situation events, for example, unexpected dangers (Fig. 4Erreur ! Source du 
renvoi introuvable.). In our scenario a pedestrian is about to cross the road. “Vehicle 
A” is arriving in the same place but has no line of sight. “Vehicle B” in the area 



“sees” the pedestrian. The data sent from “Vehicle B” is then sent to data collection 
services and stored a NoSQL database. As the vehicle comes in the area, the vehicle 
computer will make HTTP query to a cloud which will access the data in the NoSQL 
database.  

Depending on the nature of the danger the data store will make decisions on how 
long to keep that information and during which period it will re-execute the dissemi-
nation to taxis getting close to the zone. 

 

 
Fig. 4. Disseminating exceptional events 

Optimizing battery recharging 
Part of the objective of taxi companies is use only electric vehicles. Unfortunately 

the lack of data makes it complicated to make good strategic solutions on the loca-
tions of the recharging stations that are also mobile (Fig. 5). 

Using UnQL queries from the data integration service, the historical data stored in 
the NoSQL databases is periodically analyzed to extract information to build classifi-
cation models or regression models for the real time data. Using this model and real-
time data the system will make predictions on the location of taxi users and the traffic. 
As decision makers take decisions, this information is feed into the model to help the 
decision maker optimize the number of operational taxi, the location of these taxis 
and the location of the recharging stations by exposing the consequence previous 
similar decisions had. 

A 

B 



 

Fig. 5. Optimizing battery recharging 
 

The next section will present the state of development of the data collection service 
and the data storage services. 

5 Implementation and testing 

In this section we present the data acquisition service and the information extrac-
tion and cleaning service. We also looked for the ideal sharding strategy for the Mon-
goDB. 

5.1 Data acquisition service 

We have implemented and tested the data acquisition service. This services uses 
NodeJS module to acquire the city data from the Grand Lyon [33] but also from Twit-
ter and from Bing search engine using REST requests. Still using REST requests the-
se services will post the data onto a Mongodb database container to store as historical 
data. The service provides functions to access data via REST either with the key to 
the data store when wanting to query or analyses the historical data or the latest file 
acquired when using the real-time data service. The data is stored under XML, JSON 
or the original image file. 

5.2 Information extraction and cleaning service 

So far 43 649 Kb of data has been stored into individual mongoDB database per data 
acquisition service built on 1 config server, 1 router, and 3 replicating shards to insure 
data persistence.  



A comparison between a hashing distribution and a ranged distribution has been 
performed. It reveals significant differences with faster inserting and requesting data 
ranged over hashed for the two size of data set (Fig. 6). 

 

 

Fig. 6. Strategy comparison 

We observer generally the data distribution between the shards is better for hashed 
IDs over ranged IDs (Fig. 6 C and D). This induces better performances (Fig. 6 A and 
B) for the hashed data since it allows a better distributed computing, where each indi-
vidual shard has less data to analyses.  The ranged show improved results when the 
data set becomes large, largely because, provided the query is related to the ordered 
variable, one does not have to analyses all the data longer. 

Thus using ranged ids based on the coordinates of the data will be at least able to 
optimize location based queries. 

6 Conclusion and future work 

This paper proposes a transport data store as a service that implements a distributed 
storage approach. Our approach uses NoSQL systems deployed in a multi-cloud set-
ting and makes sharding decisions for ensuring data availability.  

The transport data store service is validated in a scalable and adaptable ITS for 
electric vehicles using big data analytics on the cloud. This provides a global view of 

A) B) 

C) D) 



current status of town transport, helps making accurate strategic decisions, and insures 
maximum security to the vehicles and their occupants. 

For the time being our storage service concentrates in improving design issues with 
respect to NoSQL support. We are currently measuring performance with respect to 
different sizes of data collections. We have noticed that NoSQL provides reasonable 
response times once an indexing phase has been completed. We are willing to study 
the use of indexing criteria and provide strategies for dealing with continuous data. 
We will also be developing the other services for our big data architecture. These 
issues concern our future work. 
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