
HAL Id: hal-01372376
https://hal.science/hal-01372376

Preprint submitted on 27 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INCOMPATIBILITY-GOVERNED
ELASTO-PLASTICITY FOR CONTINUA WITH

DISLOCATIONS
Samuel Amstutz, Nicolas van Goethem

To cite this version:
Samuel Amstutz, Nicolas van Goethem. INCOMPATIBILITY-GOVERNED ELASTO-PLASTICITY
FOR CONTINUA WITH DISLOCATIONS. 2016. �hal-01372376�

https://hal.science/hal-01372376
https://hal.archives-ouvertes.fr


INCOMPATIBILITY-GOVERNED ELASTO-PLASTICITY FOR CONTINUA

WITH DISLOCATIONS

SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

Abstract. In this paper, a novel model for elasto-plastic continua is presented and developed
from the ground up. It is based on the interdependence between plasticity, dislocation motion

and strain incompatibility. A generalized form of the equilibrium equations is provided, with

as additional variables the strain incompatibility and an internal thermodynamic variable called
compatibility modulus, that drives the plastic behaviour of the continuum. The traditional

equations of elasticity are recovered as this modulus tends to infinity, while perfect plasticity
corresponds to the vanishing limit. The overall nonlinear scheme is determined by the solution

of these equations together with the computation of the topological derivative of the dissipation,

in order to comply with the second principle of Thermodynamics.

1. Introduction

In classical infinitesimal elasto-plasticity (see standard textbooks, e.g., [19]) the total strain ε is
assumed to satisfy the following two conditions:

• There exists an additive decomposition ε = εe + εp where the elastic strain satisfies εe =
A−1σ with A the elasticity tensor and σ the stress, and where the strain εp is called plastic.
Furthermore, the plastic strain is often chosen trace-free.

• The total strain ε is compatible, that is, there exists a displacement field u such that
ε = ∇Su.

On these bases, the equilibrium relation −div σ = f with appropriate boundary conditions for u
together with “flow rules” for εp (themselves based on the assumption that plasticity takes place
at the boundary of a convex set – the so-called elasticity domain – and on postulated dissipation
potentials) are jointly solved to find the solution, say (u, εp). It is not discussed here the fact
that this approach has provided enough evidences that such solutions correspond to the observed
behaviours of elasto-plasic materials. In this paper we would like to propose another approach,
based on completely different paradigms and mathematical methods. We summarize our point as
follows.

• Objectivity is a crucial condition. It is intended field objectivity, that is, the intrinsic
character of field measurements for distinct observers but also the independence of this
field from any kind of arbitrary prescription: for instance u,∇u are not objective in the
classical sense, while ∇Su still depends on a reference configuration. However, the strain
rate d is an intrinsic, objective, unambiguous quantity. It is also intended objectivity of
tensor decompositions: is the aformentioned elasto-plastic partition well-defined? Is it a
physical decomposition (based on experimental evidence) or a mathematical result (based
on proofs of existence)?

• Field decomposition must result from a mathematical statement, with clear conditions for
existence and uniqueness.

• Elasto-plastic materials are modelled with one governing system of equations (in place of
Equilbrium+Flow rules), of which classical infinitesimal elasticity is a particular case.
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• Plastic behaviour is due to the motion of dislocations, which themselves create strain
incompatibility (i.e., the fact that εp is not a symmetric gradient), by the famous Kröner’s
relation inc ε = Curl κ. Therefore plasticity is governed by strain incompatibility, which
must be considered as a variable of the model equations.

• The second Principle of thermodynamics must hold, and possibly be at the heart of the
model since plasticity is in essence a dissipative phenomenon.

Our model can be briefly described as follows. First, we derive the governing equations by the
classical method of virtual powers, together with the Beltrami decomposition of symmetric tensors.
We obtain a coupled system of equations which generalizes the classical system of Elasticity by
involving the strain incompatibility through the fourth order differential operator inc inc . A
crucial scalar appearing in these equations is the newly-defined compatibility modulus `, whose
link with classical Mindlin-like theories of higher order Elasticity is discussed. Moreover the role
of ` as an internal variable for plasticity is established. In a second step, we define the associated
dissipation of the system. In the last step we compute, in a simplified setting, the topological
derivative of the dissipation functional1. The resulting quasi-static elasto-plastic model is based on
the second Principle which allows us to nucleate plastic regions in the otherwise perfectly elastic
crystal. This nucleation is based on the creation / motion of dislocations which increase the strain
incompatibility while decreasing the modulus `. The incremental formulation in which plastic
effects take place in constantly updated regions results in an overall elasto-plastic evolution model
which is highly nonlinear (the governing equations are linear in each increment, but the nucleation
procedure by topological sensitivity is not).

2. Preliminary results

2.1. Notations and conventions. Let Ω be a bounded domain of Rd, d = 2, 3, with smooth
boundary ∂Ω. By smooth we mean C∞, but this assumption could be considerably weakened. Let
M3 denote the space of square 3-matrices, and S3 of symmetric 3-matrices. The superscripts t and
S are used to denote the transpose and the symmetric part, respectively, of a matrix. Divergence,
curl, incompatibility and cross product with 2nd rank tensors are defined componentwise as follows
with the summation convention on repeated indices:

( div E)i := ∂jEij ,

( Curl T )ij := (∇× T )ij = εjkm∂kTim,

( inc E)ij := ( Curl ( Curl E)t)ij = εikmεjln∂k∂lEmn,

(N × T )ij := −(T ×N)ij = εjkmNkTim.

Here, E and T are 2nd rank tensors, N is a vector, and ε is the Levi-Civita 3rd rank tensor. In
two space dimensions, N = N1e1 +N2e2, hence the curl of T rewrites as

( Curl T )i1 = ∂2Ti3, ( Curl T )i2 = −∂1Ti3, ( Curl T )i3 = ∂1Ti2 − ∂2Ei1. (2.1)

One also has

(T ×N)i1 = −N2Ti3, (T ×N)i2 = N1Ti3, (T ×N)i3 = N2Ti1 −N1Ei2. (2.2)

Note that by (2.2), ( Curl E)t ×N = 0 means that ( Curl E)te3 = 0.

2.2. Function spaces used and preliminary results. Define

H(Ω) := {E ∈ H2(Ω,S3), div E = 0},
H0(Ω) := {E ∈ H(Ω) : E = (∂NE ×N)t ×N = 0 on ∂Ω}. (2.3)

These spaces are naturally endowed with the Hilbertian structure of H2(Ω,S3). Note that (∂NE×
N)t × N = 0 exactly mean that the tangential components of ∂NE vanish. Furthermore, it is

1The detailed computations are published online in a specific document.
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proved in [3] (see also [25]) that the following holds on ∂Ω:

E = (∂NE ×N)t ×N = 0⇒ Curlt E ×N = 0⇒ inc EN = 0. (2.4)

Tensor Curlt E is called the Frank tensor (see [30–32]).

2.3. Basic properties. The next lemma is related to the Friedrich inequalities, and for planar
domains, a proof can be found in [16]. It basically follows from the simple-connectedness of Ω,
the smoothness of its boundary, and from regularity results of Dirichlet and Neumann Laplacian
problems. Note that a general Lipschitz boundary is not sufficient, as counterexample show (the
classical C1,1 is admissible, though). In 3D we refer to [15,34] for the proof of such inequalities.

Lemma 1 (Friedrich inequality). Let E ∈ Hcurl(Ω;M3) be such that div E = 0 in Ω and E×N = 0
on ∂Ω. Then E ∈ H1(Ω,M3) and it holds

‖∇E‖L2(Ω) ≤ C‖Curl E‖L2(Ω). (2.5)

The following results can be proven without major difficulty from Lemma 1. Details can be
found in [3].

Lemma 2. For all E ∈ H0(Ω) it holds

‖E‖H2(Ω) ≤ C
(
‖E‖L2(Ω) + ‖Curl E‖L2(Ω) + ‖ inc E‖L2(Ω)

)
.

Theorem 1 (Poincaré). Let ∂Ω0 ⊂ ∂Ω be non flat with H1(∂Ω0) > 0. There exists a constant
C > 0 such that for each u ∈ H1(Ω;R3),

‖u‖L2(Ω) ≤ C
(
‖∇u‖L2(Ω) +

∫
∂Ω0

|u×N |dS
)
. (2.6)

Theorem 2 (Coercivity). Let Ω be a bounded and connected domain with C1-boundary and let
a non-flat subset ∂Ω0 ⊂ ∂Ω with H1(∂Ω0) > 0. There exists a constant C > 0 s.t. for each
E ∈ H0(Ω),

‖E‖H2(Ω) ≤ C‖ inc E‖L2(Ω). (2.7)

2.4. Some important theorems. The following result is given for the sake of generality in Lp(Ω)
with 1 < p <∞ but should here be considered for p = 2.

Theorem 3 (Beltrami decomposition [20]). Assume that Ω is simply-connected and let ∂Ω0 ⊂ ∂Ω
with H1(∂Ω0) > 0. Let p ∈ (1,+∞) be a real number and let d ∈ Lp(Ω,S3). Then, for any
v0 ∈ W 1/p,p(∂Ω0), there exists a unique v ∈ W 1,p(Ω,R3) with v = v0 on ∂Ω0 and a unique
F ∈ Lp(Ω,S3) with Curl F ∈ Lp(Ω,R3×3), inc F ∈ Lp(Ω,S3), div F = 0 and FN = 0 on ∂Ω
such that

d = ∇Sv + inc F. (2.8)

We call ∇Sv the compatible part and inc F the (solenoidal) incompatible part of the Beltrami
decomposition.

Theorem 4 (Divergence-free lifting [3]). Let E ∈ H3/2(∂Ω,S3) with
∫
∂Ω

ENdS(x) = 0, and

G ∈ H1/2(∂Ω,S3). There exists E ∈ H(Ω) such that{
E = E on ∂Ω,
(∂NE)T = GT on ∂Ω,

in the sense of traces.

Lemma 3 (Green formula for the incompatibility [3]). Suppose that T ∈ C2(Ω,S3) and η ∈
H2(Ω,S3). Then∫

Ω

T · inc ηdx =

∫
Ω

inc T · ηdx+

∫
∂Ω

T1(T ) · η dS(x) +

∫
∂Ω

T0(T ) · ∂Nη dS(x) (2.9)
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with the trace operators defined as

T0(T ) := (T ×N)
t ×N, (2.10)

T1(T ) :=
(

Curl (T ×N)t
)S

+ ((∂N + k)T ×N)
t ×N +

(
Curlt T ×N

)S
, (2.11)

where k is twice the mean curvature on ∂Ω.

Remark 1. Alternative expressions for T1(T ) are given in [3]. In particular,

T1(T ) = −
∑
R

kR(T × τR)t × τR + ((−∂N + k)T ×N)
t × N − 2

(∑
R

(∂RT ×N)t × τR
)S

,

(2.12)

where (τA, τB) form an orthonormal basis of the tangent plane to ∂Ω oriented along the principal
directions of curvature and ∂R stands for the derivative along τR. In two space dimensions, one
has

T1(T ) = −k(T × τ)t × τ + ((−∂N + k)T ×N)
t ×N − 2

(
(∂τT ×N)t × τ

)S
(2.13)

= k(T × τ)t × τ − ((∂N + k)T ×N)
t ×N − 2∂τ

(
(T ×N)t × τ

)S
, (2.14)

where ∂τ stands for the derivative along the tangent vector τ .

Remark 2. It is not hard to see that every E ∈ H0(Ω) satisfies div ( Curl E)t = 0 in Ω and
∂NE = 0 on ∂Ω. Moreover, ∫

Ω

inc E · Fdx =

∫
Ω

E · inc Fdx,

for every E,F ∈ H0(Ω).

2.5. Some identities in the local basis. Let us consider a local orthonormal basis (τA, τB , N)
on ∂Ω (for details on such bases and their extension in Ω, cf. [3]). For a general symmetric tensor
T , one has in this basis:

T =

TAA TAB TAN
TBA TBB TBN
TNA TNB TNN

 , T ×N =

TAB −TAA 0
TBB −TBA 0
TNB −TNA 0

 ,

(T ×N)t ×N =

 TBB −TAB 0
−TAB TAA 0

0 0 0

 . (2.15)

In the same token,

(T × τA)t × τA =

0 0 0
0 TNN −TBN
0 −TNB TBB

 , (T × τB)t × τB =

 TNN 0 −TAN
0 0 0

−TNA 0 TAA

 , (2.16)

and,

(T × τA)t × τB =

 0 0 0
−TNN 0 TAN
TNB 0 −TAB

 , (T × τB)t × τA =

0 −TNN TBN
0 0 0
0 TNA −TBA

 . (2.17)

Similarly,

(T ×N)t × τA =

0 TNB −TBB
0 −TNA TBA
0 0 0

 , (T ×N)t × τB =

−TNB 0 TAB
TNA 0 −TAA

0 0 0

 . (2.18)
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3. Construction of the model equations for a continuum with dislocations

3.1. À-la-d’Alembert method of virtual powers. In this work, the method of virtual power
will be considered to produce balance equations for continua with microstructure. This procedure
is originally attributed to the French mechanician J. Le Rond d’Alembert [18], as based on the
first thoughts on this concept by Aristotle [5] (see also the Cossera brothers works [6]). A certain
revival of the method was experienced in the 70ies thanks to three other French mechanicians P.
Germain [11–13], P. Suquet [28] and G. Maugin [21], following the theory of distributions by L.
Schwartz [26] and its consequences for mathematical modelling. Since then, it has been rather
seldom used in theoretical works, being prefered by Hamiltonian variational principles. Yet, this
principle is still considered for the construction of elasto-plastic models (see e.g., [8, 23]), in the
Russian school with a slightly different formalism by Sedov [27] and more recently by Zubov [35]
in the context of dislocations, and also by the Italian school of Mechanics [8, 9, 24].

In general, this method is used together with the principle of objectivity, in order to select
admissible virtual velocity fields. The great advantage of this approach is that it implies no
restriction to thermodynamical reversible processes. It is also not specified a-priori whether the
matter is solid or liquid, nor if the solid is elastic or plastic. By virtue of this procedure, which
will be briefly recalled, a model is constructed for our purposes in a rational manner, as soon as a
set V = V0 × · · · × VN is chosen to represent certain virtual rate fields, as for instance a velocity
field, or an elementary displacement taking place during a time interval δt. Let us emphasize that
these virtual rate fields must not be a displacement or a velocity, but in general it is the rate
of some well-defined deformation field (not necessarily objective, or frame-invariant, see below).
This space of virtual fields is selected together with a chosen number of linear and continuous
functionals defined on the Hilbert spaces Vi. In the following we consider a family of virtual fields
v = (v0, ..., vN ) ∈ V0 × ...× VN .

3.1.1. Virtual external power. These linear functionals represent on the one hand the virtual power
of external volume and contact forces. The virtual power of these external forces writes as (with
summation convention on i),

P(e)(v,Ω) =< Φi, vi >,

where < ·, · > stands for the duality pairing in Vi. In the traditional presentation of the method,
the given (data) fields Φi represent either the generalized bulk or contact forces, respectively. The
former have their origin in distant systems interacting with the system under analysis, whereas
the latter are generalized loads exerted on the boundary. One should bear in mind that being
generalized means that these need not be Newtonian forces, and also need not have the dimension
of a force. Furthermore, note that we are at liberty to set Φi vanishing for certain 0 ≤ i ≤ N , if
there is no physical evidence for the associated volume and contact forces Φi. It is crucial to have
in mind that this choice together with the selection of virtual rate fields will determine the model
ingredient and associated governing equations.

3.1.2. Virtual intrinsic power. On the other hand, another family of linear and continuous maps
are defined, defining the virtual internal power, that is the power exerted by matter on itself. It is
written as

P(i)(v,Ω) =< Λi, vi > .

The functional structure, i.e., the chosen scalar product, will determine whether vk alone, or also
some of its derivatives will be taken into account in the model equations.

3.1.3. General conservation law. D’Alembert principle in the absence of inertia is then stated as

P(i)(v,Ω) = P(e)(v,Ω), (3.1)

for all v ∈ V satisfying some kinematic assumptions. The latter ones amount to choosing a
subspace of V , thus they could have been directly incorporated in V . However, it is sometimes
useful to define the internal power on a larger space, since it is associated to the matter itself
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and not to a particular configuration. Upon incorporating in V fields accounting to heat transfer,
D’Alembert principle is equivalent to the First Principle of thermodynamics.

Note that it is redundant to state D’Alembert principle in any subset Π ⊂ Ω, since the virtual
fields might be taken as arbitrary, that is, might be taken vanishing in the complementary set of
any such Π. Note also that in some cases there is no need to define the internal and external powers
independently, since prescribing the external first and considering invariance, among other prin-
ciples, is sufficient to construct the model equations (see [8]). Nevertheless the general procedure
described above (see [21] for detail) is interesting because it allows one to construct new models,
and not only to recover known ones. This is mainly due to the selection of the kinematic variables
in V , which if chosen as nonstandard will automatically provide nonstandard laws. Furthermore,
this procedure is not only elegant, it also bears a mathematical structure, that of duality, which
is of interest for modelling purposes. In fact, since the procedure is based on functional duality,
the larger V , the finer will be the knowledge of the generalized forces, that is, of the mechanisms
acting on the continuum and its microstructure.

3.1.4. Objectivity. The virtual internal power determines the internal forces, that is, the forces
exerted by the matter on itself. The general velocities that work against these forces are said
to be objective. In the classical theory of continuum mechanics [21], it is postulated that rigid
virtual deformations of the body do not generate internal power. A convenient formulation of this
statement is to select spaces {Vi, i ∈ Iobj} of objective fields, that is, fields that vanish whenever a
rigid deformation is considered, and to set Λi = 0 for all i /∈ Iobj. As an example, it is well-known
that the virtual field “velocity” is not objective, and nor is its gradient, whereas its symmetric part
is objective.

However, our concern is that it is not always possible to define a velocity field in an intrinsic
manner. Classically, the velocity is the time derivative of the displacement field, and hence any ref-
erence configuration has disappeared from its definition. Our standpoint is that the displacement
cannot be considered as a first model variable, even for eventually defining a symmetric velocity
gradient, which would be objective in a classical sense2. Indeed, in the presence of crystal defects
like dislocations the traditional approaches of continuum mechanics based on material transforma-
tions do not apply [17], and the notion of intrinsic velocity is not clearly defined at any scale. For
instance, at the microscopic (atomic) scale, bonds can move while atoms remain fixed. For us the
velocity field is the name given to one element of the Beltrami decomposition [20] of a symmetric
tensors d, i.e., d = ∇Sv + inc F , which is a mere mathematical decomposition of d.

3.2. Model objective tensors: strain and strain rate. In our model, we consider the de-
formation rate d as the principal objective field. In classical continuum mechanics, in a Galilean
frame, and for an absolute Newtonian chronology, the value of d is intrinsic, i.e., it is univoquely
defined and determined for any two observers in relative motion (but still considering the same
origin of time). Specifically, it is a symmetric tensor whose components at point x can be defined in
the following manner. Identify three fibers at x, denoted by a1, a2, a3, which at time t are oriented
along the axes of a Cartesian coordinate system and of unit lengths. The deformation rate at x is
defined as (see, e.g., [10])

dij(t) =
1

2

(
d

dt
(ai · aj)

)
t

. (3.2)

It is easily checked that this definition corresponds to the classical interpretation of the strain rate
in linearized or finite elasticity: the diagonal components of d represent unit rates of extension
in the coordinate directions, whereas the off-diagonal terms of the rate of deformation tensor
represent shear rates, i.e., the rate of change of the right angle between line elements aligned with

2For us, the displacement is even “less objective” because integrating a rigid velocity v(P ) = v(O) + ω × ~OP ,
where O is a reference point and P any other point while ω is the instantaneous angular velocity, would require to
fix a reference point in a reference configuration. Of course the displacement gradient and even its symmetric part
are not objective, because something which is not intrinsic, viz., the arbitrary choice of the reference configuration,

is required for its definition.
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the coordinate directions. In the presence of defects, the above definition can still be used at the
microscopic scale, and permits to define its mesoscopic (defects are kinematic singularities) and
macroscopic (defects are distributed) counterparts by local averaging (outside the defects in the
first case, everywhere in the second case).

Now, the Beltrami decompositon yields the vector v and the symmetric and solenoidal tensor
F such that

d(t) = ∇Sv(t) + inc F (t). (3.3)

For a compatible deformation one has inc d = inc F = 0 hence v is determined up to rigid
motions [20]. Thus, one recovers the classical picture: for any compatible deformation rate, there
exists a unique (up to rigid-body motions) velocity field such that d = ∇Sv, and this symmetric
gradient is objective in the classical sense. For smooth fields and fixing boundary conditions, this
amounts to the Mitchell-Cesaro path integral formulae [20]. However, in the incompatible case,
as for instance in the presence of dislocations, the incompatible strain rate inc F is nonvanishing
due to the volumic source inc d, and hence, the velocity field appears in conjunction with the
symmetric and solenoidal tensor F , which we call the incompatibility tensor field.

It is now crucial to remark that neither ∇Sv nor inc F are objective, simply because they
follow from a decomposition which is nonunique. Uniqueness would indeed require to fix boundary
conditions for v and F in the Beltrami decomposition, which is by definition dependent on external
constraints.

Having fixed an initial time t0 = 0, the time integral of the objective tensor d, called the strain
or deformation tensor, is also objective, and reads

ε(t) =

∫ t

0

d(s)ds = ∇Su+ inc E, (3.4)

where by Beltrami decomposition one has v = u̇ and F = Ė.

3.3. Generalized rate fields for continua with dislocations.

3.3.1. The virtual intrinsic power. Following the approach recalled above, the first step in the
description of internal efforts is the definition of spaces of objective fields. Our point of view is

that the prototype of such fields is the strain rate d, which we henceforth denote by d̂ to emphasize
that it is a virtual (or test) field. We choose V 0 := L2(Ω,S3) as single space of virtual objective
fields. Therefore, by the Riesz representation theorem, the internal power generated by the virtual

strain rate d̂ takes the form

P(i)(d̂,Ω) =

∫
Ωi

σ · d̂ dx,

with σ ∈ L2(Ω,S3). In classical models a constitutive law of form σ = Aε is chosen, however it
does not take into account the material distorsion which we consider as crucial in the modeling of
continua with dislocations.

Here, we assume that there exists a partition of Ω as Ω = Ω1 t ... t ΩN in mutually disjoint
subsets Ωi, such that, in each Ωi, the material is homogeneous and linear in the sense that the

internal power generated by the virtual strain d̂ ∈ C∞0 (Ωi,S3) is the classical Mindlin model [22]

P(i)(d̂,Ωi) =

∫
Ωi

(Aiε · d̂+ Bi∇ε · ∇d̂)dx,

where Ai and Bi are constant second and third order tensors, respectively. In the literature [17,22],
σi := Aiε and τi := Bi∇ε are referred to as the stress and the hyperstress tensors in Ωi, respectively.

Recall that all subsequent gradients of d̂ are also objective tensors. By the Green formula one has

P(i)(d̂,Ωi) =

∫
Ωi

(σi − div τi) · d̂ dx.
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Supposing that σi − div τi ∈ L2(Ω,R3×3), the above expression extends by continuity to any

d̂ ∈ L2(Ωi,S3). Hence we have for an arbitrary strain d̂ ∈ L2(Ω,S3)

P(i)(d̂,Ω) =

N∑
i=1

P(i)(d̂,Ωi) =

N∑
i=1

∫
Ωi

(σi − div τi) · d̂ dx.

3.3.2. The virtual external power. By Beltrami decomposition, d̂ can be decomposed in a com-
patible part and an incompatible part, and the general approach (see [21]) allows to use these
non-objective test fields to describe external actions. However, we believe that exerting surface or
volume efforts that work against these fields independently is not very natural since the two fields
are combined at every point. Therefore, we suppose that the external power is a linear functional

of d̂ , that is,

P(e)(d̂,Ω) =

∫
Ω

K · d̂ dx,

for some given tensor field K ∈ L2(Ω,S3). We emphasize that K is given by mere functional duality
at this stage.

Observe that, considering the decomposition d̂ = ∇S v̂+ inc F̂ and assuming sufficient regularity,
integrating by parts using Lemma 3 yields

P(e)(d̂,Ω) =

∫
Ω

(
−div K · v̂ + inc K · F̂

)
dx +

∫
∂Ω

(
KN · v̂ + T0(K) · ∂N F̂ + T1(K) · F̂

)
dx.

Hence f := −div K may be interpreted as a volume force (gravity for instance) and g := KN as
a surface load. The loads G := inc K, g0 := T0(K), g1 := T1(K) are generalized external forces

that work against the incompatible part of d̂. Although it is not straightforward to give a precise
physical meaning to these quantities, one should remark that it is not possible to prescribe these
loads independently. For instance, g and g1 share common components of K. In fact, the system{

−div K = f, inc K = G in Ω
KN = g on ∂Ω

is well-posed. This is easily seen with the decomposition K = ∇Sφ+ inc H. The system for φ is a
Neumann elasticity system with unit elasticity tensor. The system for H ∈ H0 was studied in [3]
(note that H satisfies inc HN = 0 on ∂Ω). Thus one can prescribe f , G and g, but then g0 and g1

must be consistent with this choice. More detail will be provided in Section 5.3.

3.3.3. Equilibrium equations. At this stage the virtual power principle in weak form reads

N∑
i=1

∫
Ωi

(σi − div τi) · d̂ dx =

∫
Ω

K · d̂ dx, (3.5)

for all kinematically admissible d̂.

4. Constitutive laws

4.1. General form. Let us concentrate on a set Ωi and drop the index i. Tensor A is recognized
as Hooke’s tensor of linear elasticity. Assuming material isotropy, it admits the classical expression
A = 2µI4 + λI2. Similarly, under the same assumption, it is shown in [22] that B derives from the
quadratic form

1

2
B∇ε · ∇ε = c1(∂jεij)(∂kεik) + c2(∂kεii)(∂jεjk) + c3(∂kεii)(∂kεjj)

+ c4(∂kεij)(∂kεij) + c5(∂kεij)(∂iεjk)
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where c1, · · · , c5 are real numbers. Componentwise, this reads

σij = λδijεkk + 2µεij (4.1)

τijk = c1(δki∂lεlj + δkj∂lεli) +
c2
2

(δki∂jεll + δkj∂iεll + 2δij∂lεlk) + 2c3δij∂kεll

+ 2c4∂kεij + c5(∂iεjk + ∂jεik). (4.2)

4.2. Consistency with classical linear elasticity. Let us again restrict ourselves to the do-
main Ωi. In order to be consistent with standard models, i.e. with models for continua without
dislocations, one imposes that the hyperstress τ does not produce any virtual intrinsic power as
soon as the strain d is compatible. This means

inc ε = 0⇒
∫

Ω

τ · ∇d̂ dx = 0 ∀d̂ ∈ C∞0 (Ω).

Integrating by parts yields inc ε = 0⇒ −div τ = 0 in Ω. One obtains from (4.2)

( div τ)ij = (c1 + c5)(∂ikεjk + ∂jkεik) + c2(∂ijεll + δij∂klεkl) + 2c3δij∂kkεll + 2c4∂kkεij . (4.3)

For ε = ∇Su, one finds

div τ = (c1 + c2 + c5)∇2 div u+ (c1 + 2c4 + c5)∇S∆u+ (c2 + 2c3)∆ div u I2.

This vanishes for every u ∈ C∞0 (Ω) if and only if c1 + c2 + c5 = 0, c1 + 2c4 + c5 = 0, c2 + 2c3 = 0.
The above system is equivalent to the existence of a scalar ` such that c1 + c5 = −`, c2 = `, c3 =
− `

2 , c4 = `
2 . Plugging this into (4.3) yields

( div τ)ij = −`(∂ikεjk + ∂jkεik) + `(∂ijεll + δij∂klεkl)− `δij∂kkεll + `∂kkεij .

This expression is identical to that found by Lazar and Maugin in [17] (with different arguments),
and rewrites as

−div τ = ` inc ε. (4.4)

Remark that ` has the dimension of a force. Moreover ` can take values in [0,+∞[. It will be called
the compatibility modulus: it is a force that opposes to incompatibility. If ` increases then the
resistance to compatibility increases, that is, incompatibility decreases, and in the limit ` = +∞
classical compatible elasticity is recovered, since inc ε = 0. On the contrary decreasing values of `
means that incompatibility increases more freely, and in the limit, ` = 0 means perfect plasticity,
since there is no more limit for incompatibility. This interpretation will become clear once the
model equations will be established.

We emphasize that so far ` is taken constant. Indeed, taking ` constant in space and time means
that we consider a high-order model of elasticity to account for incompatible deformations (which
Mindlin has modeled as taking place with specific displacements at a lower scale, but we prefer to
simply consider the Beltrami decomposition). We will show in the sequel that our elasto-plasticity
model is based on the possibility that ` varies in space and time. As a matter of fact, the chosen
constitutive law for ` will determine our plasticity model. Indeed, plasticity is modelled, since
varying ` implies by the governing equations that the strain incompatibility varies accordingly, the
latter being related to the motion of dislocations, i.e. their mobility.

5. The generalized elasticity system

5.1. Weak formulation. By the above constitutive laws, (3.5) rewrites as

N∑
i=1

∫
Ωi

(Aiε+ `i inc ε) · d̂ dx =

∫
Ω

K · d̂ dx ∀d̂,

for all kinematically admissible d̂. Defining the functions

A =

N∑
i=1

AiχΩi , ` =

N∑
i=1

`iχΩi ,
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we arrive at ∫
Ω

(Aε+ ` inc ε) · d̂ dx =

∫
Ω

K · d̂ dx ∀d̂, (5.1)

for all kinematically admissible d̂. Then, Beltrami’s decomposition of d̂ yields the coupled system∫
Ω

(Aε+ ` inc ε) · ∇S v̂ dx =

∫
Ω

K · ∇S v̂ dx ∀v̂, (5.2)

∫
Ω

(Aε+ ` inc ε) · inc F̂ dx =

∫
Ω

K · inc F̂ dx ∀F̂ . (5.3)

Write the Beltrami decomposition of ε as ε = ∇Su+ ε0, with ε0 = inc E and where E is called the
internal variable of incompatibility. A typical kinematical framework could be the following. Split
the boundary ∂Ω as the disjoint union of a Dirichlet boundary ∂ΩD and a Neumann boundary
∂ΩN . On ∂ΩD fix u = 0 and E = (∂NE × N)t × N = 0. Recall that this latter condition
implies ε0N = inc EN = 0. This means that the incompatible strain can only be tangential to
the Dirichlet boundary. Said otherwise, incompatible (plastic) sliding tangent to the boundary
can occur. This is in contrast to the compatible (elastic) strain which has no purely tangential
component on the Dirichlet boundary. Let us emphasize that plastic slip is permitted on the
Dirichlet part of the boundary even if the deformation is in L2 and not in a measure space3. Of
course, the same kinematic restrictions apply to the test fields v̂ and F̂ . With the notations of
section 3.3.2 we arrive at∫

Ω

(Aε+ ` inc ε) · ∇S v̂ dx =

∫
Ω

f · v̂ dx+

∫
∂Ω

g · v̂ dx ∀v̂, (5.4)

∫
Ω

(Aε+ ` inc ε) · inc F̂ dx =

∫
Ω

G · F̂ dx+

∫
∂Ω

(
g0 · ∂N F̂ + g1 · F̂

)
dx ∀F̂ . (5.5)

5.2. Derivation of the strong forms. The classical procedure consists in selecting various par-
ticular cases of admissible virtual fields v̂ and F̂ . By admissible it is intended, from a physical as
well as a mathematical standpoint. In particular appropriate boundary lifting results as well as
Gauss-Green-type of formulae must first been established (see [3]). A case study will now be done.

Taking v̂ arbitrary in Ω̄, (5.4) classically yields :{
−div (Aε+ ` inc ε) = f a.e. in Ω,
(Aε+ ` inc ε)N = g a.e. on ∂ΩN .

(5.6)

By boundary lifting (i.e., Theorem 4) one can select F̂ , ∂N F̂ arbitrary on ∂Ω up to the condition

that
∫
∂Ω
F̂NdS(x) = 0. Then, (5.5) yields the additional model equation inc (Aε+ ` inc ε) = G a.e. in Ω,

T0(Aε+ ` inc ε) = g0 a.e. on ∂ΩN ,
T1(Aε+ ` inc ε) = g1 a.e. on ∂ΩN .

(5.7)

We emphasize that in general Eqs. (5.6) and (5.7) are coupled. In this paper we do not study
existence of solutions for such a system. Furthermore, we observe that if ` is constant in space
then (5.6) simplifies to the classical elasticity system with the extra boundary force −` inc εN .

5.3. Coupling between external forces. We now investigate the precise relation between the
boundary source terms g = KN , g0 = T0(K), g1 = T1(K).

First we observe that KN and T0(K) are obviously decoupled, since this latter only involves the
tangent components of K. As for KN and T1(K), one should consider expression (2.12). Let us

3as found in other formulations if the displacement is taken of bounded deformation, see [7, 28,29].
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write g in the local basis (τA, τB , N) as g = (gA, gB , gN ). Then the first curvature-dependent term
of (2.12) writes by (2.16) as

−
∑
R

κR(K× τR)t × τR = −κA
0 0 0

0 gN −gB
0 −gB KBB

− κB
 gN 0 −gA

0 0 0
−gA 0 KAA

 . (5.8)

The second curvature-dependent term of (2.12) is κT0(K) while two other terms are −T0(∂NK),
and, by (2.18),

−2
∑
R

(∂RK×N)t × τR = −2

0 ∂AgB −∂AKBB
0 −∂AgA ∂AKBA
0 0 0

− 2

−∂BgB 0 ∂BKAB
∂BgA 0 −∂BKAA

0 0 0

 . (5.9)

From these relations we observe that for a flat boundary, the only coupling is due to the tan-
gential variations of g in (5.9). That is, spatial fluctuations of g (and in the extreme case, discon-
tinuities), can be considered as sources on incompatibility.

For a curved boundary, all terms of g and of the tangential variations of its tangential components
will act as source terms for the incompatibility. It is interesting to notice that the magnitudes of
these terms increase with the curvature. All other source terms, i.e., the tangential components of
K and their tangential derivatives, are not explicitely coupled with the boundary load g.

As an example, assume that gN is the only nonvanishing component of g. Then, the incompat-
ibility source terms vanish for a flat boundary, and increase with the curvature. The limit case of
a corner is a particular source of incompatibility.

5.4. Interpretation of the compatibility modulus in terms of dislocation mobility and
macroscopic plasticity. When ` = 0, the incompatible part of ε is not controlled. On the
contrary, when ` → ∞, (5.3) formally shows that inc ε → 0. This also holds locally. Now, by
Kröner’s formula, inc ε = Curl κ where κ is the dislocation contortion (or its density) defined by
κ = Λ− I2

2 trΛ, with Λ the dislocation density (with the conservation property div Λ = 0).
Take a reference value `∞ large enough so that the incompatible part of the strain is negligible.

If ` is decreased in some region ω b Ω, then inc ε is likely to increase in ω, meaning that κ varies
in space so as to increase its curl. This means that motion of dislocations has taken place at a
microscopic level, i.e., that plastic effects are observed at a macroscopic level.

5.5. Selected examples. Let us recall that in Cartesian coordinates and components, the incom-
patibilty of ε reads in extenso as follows

Txx = ∂2
yεzz + ∂2

zεyy − 2∂yzεyz
Tyy = ∂2

xεzz + ∂2
zεxx − 2∂xzεxz

Tzz = ∂2
xεyy + ∂2

yεxx − 2∂xyεxy
Txy = ∂z (∂yεxz + ∂xεyz − ∂zεxy)− ∂xyεzz
Txz = ∂y (∂xεyz + ∂zεxy − ∂yεxz)− ∂xzεyy
Tyz = ∂x (∂zεxy + ∂yεxz − ∂xεyz)− ∂yzεxx.

(5.10)

In this section we will consider 2D elasticity, meaning that the strain ε only depends on the
coordinates (x, y) and is independent of the vertical coordinate z. Moreover the stress are strain
tensors are represented by 3× 3 matrices. The geometry is that of cylinder with a circular section
in the (x, y)-plane. We consider an homogeneous material, i.e., ` is constant. In this case (5.10)
rewrites as 

Txx = ∂2
yεzz

Tyy = ∂2
xεzz + ∂2

zεxx − 2∂xzεxz
Tzz = ∂2

xεyy − 2∂xyεxy
Txy = −∂xyεzz
Txz = ∂y (∂xεyz − ∂yεxz)
Tyz = ∂x (∂yεxz − ∂xεyz) .

(5.11)
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Furthermore, note that in 2D, T := inc ε vanishes iff componentwise εikmεjln∂k∂lεmn = 0, that
is, iff there exists real numbers K, aα and b such that [32] εαγεβδ∂α∂βεγδ = 0

εαβ∂αεβz = K
εzz = aαxα + b.

(5.12)

5.5.1. Planar strain and edge dislocations. Consider a two-dimensional problem where the strain
is of form

ε =

εxx εxy 0
εxy εyy 0
0 0 0

 .

By Hooke’s law it follows

σ =

σxx σxy 0
σxy σyy 0
0 0 σzz


with

σxx = (λ+ 2µ)εxx + λεyy, σyy = (λ+ 2µ)εyy + λεxx,
σxy = λεxy, σzz = λ(εxx + εyy).

(5.13)

We infer

T = inc ε =

0 0 0
0 0 0
0 0 Tzz

 , with Tzz = ∂xxεyy − 2∂xyεxy + ∂yyεxx.

We have

inc (σ + `T ) =

 ∂yy(σzz + `Tzz) −∂xy(σzz + `Tzz) 0
−∂xy(σzz + `Tzz) ∂xx(σzz + `Tzz) 0

0 0 ∂xxσyy − 2∂xyσxy + ∂yyσxx

 ,

thus inc (σ + `T ) = 0 is equivalent to

σzz + `Tzz affine, and inc σplan := ∂xxσyy − 2∂xyσxy + ∂yyσxx = 0. (5.14)

Using (5.13) we get

σzz =
1

2(λ+ µ)
(σxx + σyy).

From (5.14), we deduce Tzz. Furthermore, ( div σ+ ` inc ε)z = 0 hence fz must vanish to maintain
planar strains, whatever the value of `.

If `→ +∞ then Tzz → 0 and the standard solution is retrieved. Note that by (5.13) inc σplan =
λ∆ trε+2µ( inc ε)zz = λ tr inc ε+2µ inc εzz = (λ+2µ)Tzz = 0. If `→ 0 then Tzz is not controlled.

Following [32] and classical textbooks [14] the edge dislocation in 2D corresponds to a planar
strain. At the mesoscopic scale, according to [32], the strain associated to a straight line along the
z-axis, with Burgers vector B = Byey reads in Cartesian components and polar coordinates as

εedge =
−By
2πr

 cos θ sin θ 0
sin θ − cos θ 0

0 0 0

 .
5.5.2. Pure vertical compression/dilation. Consider a two-dimensional problem where the strain
and the Cauchy stress read

ε =

0 0 0
0 0 0
0 0 εzz

 , σ =

λεzz 0 0
0 λεzz 0
0 0 (λ+ 2µ)εzz

 .
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The incompatibility is purely planar, i.e.,

T = inc ε =

 ∂yyεzz −∂xyεzz 0
−∂xyεzz ∂xxεzz 0

0 0 0

 .

For N = (0, 0, 1)t we have

(T ×N)t ×N =

∂xxεzz ∂xyεzz 0
∂xyεzz ∂yyεzz 0

0 0 0

 , (5.15)

hence the conditions T0(T ) = T1(T ) = 0 are equivalent to εzz and σ affine, and thus T = 0.

5.5.3. Transverse strain (3D shear) and screw dislocation. Assume now that the strain and the
Cauchy stress read

ε =

 0 0 εxz
0 0 εyz
εxz εyz 0

 , σ = 2µε,

and where the independent variables are the planar x and y only. The incompatibility is purely
transverse, i.e.,

T = inc ε =

 0 0 ∂xyεyz − ∂yyεxz
0 0 ∂xyεxz − ∂xxεyz

∂xyεyz − ∂yyεxz ∂xyεxz − ∂xxεyz 0

 ,

and for N = (0, 0, 1)t, the condition (T ×N)t ×N = 0 is automatically satisfied.
Following [14, 32] the screw dislocation in 2D corresponds to a 3D shear. According to [32],

the strain associated to a straigth line along the z-axis, with Burgers vector B = Bzez reads in
Cartesian components and polar coordinates as

εscrew =
Bz
4πr

 0 0 sin θ
0 0 − cos θ

sin θ − cos θ 0

 .
6. Energy dissipation by incompatibility

For the purpose of evaluating energy dissipation it is crucial to involve time. Knowing that
(5.2) and (5.3) represent a linearized elasticity system (small strain with respect to a natural
configuration), their time-rate counterparts in the general case are∫

Ω

(Aε̇+ ` inc ε̇) · ∇S v̂ dx =

∫
Ω

K̇ · ∇S v̂ dx, (6.1)∫
Ω

(Aε̇+ ` inc ε̇) · inc F̂ dx =

∫
Ω

K̇ · inc F̂ dx, (6.2)

with ε = ∇Su+ ε0, ε0 = inc E. The work of the external load in the time interval [t1, t2] is

W t2
t1 =

∫ t2

t1

dt

∫
Ω

(K · ∇S u̇+ K · inc Ė) dx.

Suppose first that ` is constant in space and tends to infinity so as to enforce inc Ė = 0 in the
interval [t1, t2]. Hence, there is no motion of dislocations, that is, no dissipation. This transforma-
tion is thus said isentropic. We also assume that A is time invariant. Integration by parts in time
entails that

W t2
t1 =

∫ t2

t1

dt

∫
Ω

K · ∇S u̇ dx =

[∫
Ω

K · ∇Su dx
]t2
t1

−
∫ t2

t1

dt

∫
Ω

K̇ · ∇Su dx.
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Using (6.1) we obtain

W t2
t1 =

[∫
Ω

K · ∇Su dx
]t2
t1

−
∫ t2

t1

dt

∫
Ω

(Aε̇+ ` inc ε̇) · ∇Su dx.

Since ε̇ = ∇S u̇ we get

W t2
t1 =

[∫
Ω

K · ∇Su dx
]t2
t1

−
∫ t2

t1

∫
Ω

A∇S u̇ · ∇Su dx =

[∫
Ω

(
K · ∇Su− 1

2
A∇Su · ∇Su

)
dx

]t2
t1

.

Recalling the relation δW = dΨ for a reversible process, we define the free energy as

Ψ :=

∫
Ω

(
K · ∇Su− 1

2
A∇Su · ∇Su

)
dx.

It determines how much work the system can produce. Of course, Ψ is defined up to an additive
constant. Here it is chosen so that Ψ = 0 corresponds to the reference state u = 0.

Let us now come back to a general transformation. The global dissipation rate is defined as the
difference between the power provided to the system by external loads and the rate of free energy,

D := Ẇ − Ψ̇.

The power of the external forces is

Ẇ =

∫
Ω

K · (∇S u̇+ ε̇0).

Still assuming A time invariant, we obtain

D =

∫
Ω

(
K · ε̇0 − K̇ · ∇Su+ A∇S u̇ · ∇Su

)
dx,

which by (6.1) yields

D =

∫
Ω

(
K · ε̇0 − (A(∇S u̇+ ε̇0) + ` inc ε̇0) · ∇Su+ A∇S u̇ · ∇Su

)
dx,

and after simplification

D =

∫
Ω

(
K · ε̇0 − (Aε̇0 + ` inc ε̇0) · ∇Su

)
dx. (6.3)

Comparing with classical formulae for the dissipation (cf. e.g. [19] ), one recognizes ε̇0 as the
counterpart of the rate of plastic strain. The other quantities are specific for incompatibility-based
models.

By definition, the dissipation rate vanishes when `→∞, since ε̇0 → 0. Some standard models of
plasticity postulate that plasticity occurs so as to maximize the dissipation. At least, by the Second
Principle of thermodynamics, it has to be positive. Thus, in order to model a time-dependent
experiment, an evolution law for ` has to be determined in such a way that this principle is
satisfied. In an incremental formulation, ` is constant in each time interval [ti, ti+1], but the values
(they depend on space) need to be fixed. The analysis of the behavior of D with respect to the
spatial distribution of ` is the object of the next sections.

Consider a time increment starting from the reference configuration (or obtained from it by
rigid displacement). Then the incompatibility-induced dissipation reads

D =

∫
Ω

K · ε̇0dx, (6.4)

showing that the incompatible part of K is a direct potential source of dissipation. More precisely,
assuming homogeneous boundary condition for E, one has D =

∫
Ω
G · Ėdx, where G := inc K is

the thermodynamic force associated to the internal variable E (i.e., ε0 = inc E).
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7. Topological sensitivity analysis

7.1. Framework. The coupled system (5.4)-(5.5) (or equivalently, (6.1)-(6.2)) seems highly in-
volved from the mathematical point of view. In fact, in this paper dedicated to the presentation
of the new model, we have not proven the existence of a solution. In the subsequent analysis, we
will restrict ourselves to a simplified model assuming that:

(1) the principal part of (6.1)-(6.2) is predominant,
(2) full Dirichlet conditions are prescribed.

These assumptions lead to the problem: find E ∈ H0 such that∫
Ω

` inc E · inc Fdx =

∫
Ω

G · Fdx ∀F ∈ H0. (7.1)

According to [3] this problem is well-posed as long as ` ∈ L∞(Ω), infΩ ` > 0, G ∈ L2(Ω), div G = 0.
Note that from this section on, in comparison with (6.1)-(6.2), E plays de role of ε̇0 and F that of

F̂ .
In [3] it is also shown that the problem: find E ∈ H0 such that∫

Ω

αM? inc E · inc Fdx =

∫
Ω

G · Fdx ∀F ∈ H0, (7.2)

with M? a fixed symmetric positive definite tensor, is well-posed if α ∈ L∞(Ω), infΩ α > 0. We
will focus on (7.2), choosing

M? := γI4 + βI2 ⊗ I2.
Obviously (7.1) is recovered from (7.2) by taking αM? = `I4.

7.2. Preliminaries. Let ω ⊂ RN with smooth boundary ∂ω and outward unit normal N . For
ωε := x̂+ εω ⊂⊂ Ω we define

αε =

{
α0 in Ω \ ωε,
α1 in ωε,

with α0, α1 two positive constants. We consider a cost functional of form

J(E) =

∫
Ω

H · Edx,

for a given tensor field H ∈ L2(Ω), div H = 0. In particular, choosing H = K, this gives the
dissipation (6.4).

Furthermore, the transmission conditions are as follows. If a solenoidal tensor field T satisfies
inc (αT ) = 0 weakly in a neighborhood of ∂ω then it is shown in [3] that the following transmission
conditions hold on ∂ωε:

[[T0(αT )]] = 0, [[T1(αT )]] = 0, [[TN ]] = 0. (7.3)

By convention, [[T ]] = Text − Tint.

7.3. Formal derivation. The background solution E0 satisfies

a0(E0, F ) = l(F ) :=

∫
Ω

G · F dx ∀F ∈ H0(Ω), (7.4)

with

a0(E0, F ) :=

∫
Ω

α0M? inc E0 · inc F dx. (7.5)

Moreover, the perturbed solution Eε satisfies

aε(Eε, F ) = l(F ) ∀F ∈ H0(Ω), (7.6)

with

aε(Eε, F ) :=

∫
Ω

αεM? inc Eε · inc F dx. (7.7)



16 SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

The cost functional reads

j(ε) := J(Eε) =

∫
Ω

H · Eεdx, (7.8)

where the adjoint state Êε satisfies

aε(E, Êε) = −
∫

Ω

H · Edx ∀E ∈ H0(Ω). (7.9)

These definitions entail

Σ := j(ε)− j(0) =

∫
Ω

H · (Eε − E0) = −aε(Eε − E0, Êε) = −aε(Eε, Êε) + aε(E0, Êε).

Using that aε(Eε, Êε) = l(Êε) = a0(E0, Êε), we get

Σ = −a0(E0, Êε) + aε(E0, Êε) = (aε − a0)(E0, Êε) =

∫
Ω

(αε − α0)M? inc E0 · inc Êεdx. (7.10)

Let us introduce the variation of the adjoint state

Ẽε := Êε − Ê0. (7.11)

By (7.3), one has
inc (αM? inc Ẽε) = 0 in ω ∪ (Ω \ ω̄),

[αεTi(M? inc Ẽε)] = −(α0 − α1)Ti( inc Ê0) on ∂ω, (i = 0, 1),

[(M? inc Ẽε)N] = β[ tr( inc Ẽε)N] on ∂ω.

(7.12)

Moreover (7.10) yields

Σ =

∫
Ω

(αε − α0)M? inc E0 · inc Ê0dx+

∫
Ω

(αε − α0)M? inc E0 · inc Ẽεdx. (7.13)

We now approximate inc E0 and inc Ê0 in ωε by inc E0(x̂) and inc Ê0(x̂), respectively, where x̂
is the center of ωε. This yields

Σ ∼ |ωε|(α1 − α0)M? inc E0(x̂) · inc E0(x̂) + (α1 − α0) inc E0(x̂) ·
∫
ωε

M? inc Ẽεdx.

We further approximate Ẽε(x) by Ẽε(x) ∼ ε2H(xε ), solution to the blown-up transmission problem
inc (M? inc H) = 0 in R2 \ ∂ω,

[αTi(M? inc H)] = −(α0 − α1)Ti
(

inc Ê0(x̂)
)

on ∂ω, (i = 0, 1),

[(M? inc H)N] = β[ tr( inc H)N] on ∂ω.

(7.14)

Recalling the notation Σ := j(ε)− j(0), we write

Σ ∼ |ωε|(α1 − α0)M? inc E0(x̂) · inc E0(x̂) + (α1 − α0)ε2 inc E0(x̂) ·
∫
ω

M? inc Hdx. (7.15)

7.4. Topological sensitivity. In the sequel we will denote

S := inc E0(x̂), Ŝ := inc Ê0(x̂), (7.16)

and the main unknown of (7.14) by

T := M? inc H, (7.17)

where H will be called the scattered field. Our aim is now to compute the energy variation

Λ := (α1 − α0) inc E0(x̂) ·
∫
ω

M? inc Hdx = (α1 − α0)Ŝ ·
∫
ω

T dx.
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Assuming that T = T int is constant in the interior of the inclusion (this will proved valid in the

sequel for a disk inclusion), this rewrites as Λ = (α1 − α0)|ω|Ŝ · T int. By the problem linearity in

Ŝ, there exists a 4th-rank tensor Pωα0,α1
such that T int = Pωα0,α1

Ŝ. Hence (7.15) results in

j(ε)− j(0) = ε2δj +R(ε), (7.18)

with

δj := |ω|(α1 − α0)S ·
(
M? + Pωα0,α1

)
Ŝ (7.19)

and R(ε) the remainder. The 4th-rank tensor M? + Pωα0,α1
is called the polarization tensor. Fol-

lowing the lines of [2] it is proved that R(ε) = o(ε2), whereby δj is identified with the topological
derivative of j.

Let the center of the inclusion x̂ be the origin of the chosen coordinate system oriented in such
a way that Ŝ writes as Ŝ = Ŝplan + Ŝuni + Ŝtrans, where in Cartesian coordinates,

Ŝplan =

 ŝ1 0 0
0 ŝ2 0
0 0 0

 , Ŝuni =

 0 0 0
0 0 0
0 0 ŝ3

 , Ŝtrans =

 0 0 ŝ4

0 0 ŝ5

ŝ4 ŝ5 0

 . (7.20)

In the same basis we decompose S as S = Splan + Suni + Strans with

Splan =

 s1 s12 0
s12 s2 0
0 0 0

 , Suni =

 0 0 0
0 0 0
0 0 s3

 , Strans =

 0 0 s4

0 0 s5

s4 s5 0

 . (7.21)

Lengthy calculations, detailed in [4], lead for ω the unit disk,

S · Pωα0,α1
Ŝ = Splan · Pplan

α0,α1
Ŝplan + Suni · Puni

α0,α1
Ŝuni + Strans · Ptrans

α0,α1
Ŝtrans,

where

Pplan
α0,α1

= BI4 +
C

2
I2 ⊗ I2, (7.22)

B =
γ(α0 − α1)

γα1 + (3 + 4β)α0
, C =

2α0(α0 − α1)(γ2 + 5γβ + 4β2)

(γα0 + (γ + 2β)α1)(γα1 + (3γ + 4β)α0)

Puni
α0,α1

= −α1 − α0

α1
I4, Ptrans

α0,α1
= −2

α1 − α0

α1 + α0
I4. (7.23)

It is immediately observed that Puni
α0,α1

is degenerated in the sense of [2], i.e.,

• it does not depend on the shape of ω,
• it does not remain bounded when α1 → 0.

8. Discussion

8.1. Interpretation of the topological derivative. On choosing M? = I4, the analysis of the
two previous sections deals with the situation where the compatibility modulus ` = α varies from
its background value α0 to its new value α1 inside the inclusion. However, our main goal is to
evaluate the dissipation due to dislocation motion/creation, which is by definition an energetic
comparison between the elasto-plastic transformation and its purely elastic counterpart.

Therefore we analyse here formula (7.18) when α0 →∞, keeping the tensor M? for the sake of
generality. Recall the direct and adjoint state equations∫

Ω

α0M? inc E0 · inc F =

∫
Ω

G · F ∀F ∈ H0,∫
Ω

α0M? inc E · inc Ê0 = −
∫

Ω

H · E ∀E ∈ H0.

Assume α0 is constant and set E?0 = α0E0, Ê?0 = α0Ê0. It holds by definition

α0S = T := inc E?0 (x̂), α0Ŝ = T̂ := inc Ê?0 (x̂),
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while E?0 , Ê?0 are obviously solutions of∫
Ω

M? inc E?0 · inc F =

∫
Ω

G · F ∀F ∈ H0,

∫
Ω

M? inc E · inc Ê?0 = −
∫

Ω

H · E ∀E ∈ H0.

Note that the rescaled fields E?0 and Ê?0 are independent of α0, hence T and T̂ are also independent
of α0. Rewrite (7.19) as

δj := |ω|
(
α1

α0
− 1

)
T ·
(M? + Pωα0,α1

α0

)
T̂. (8.1)

From (7.22)-(7.23) we obtain

lim
α0→∞

Pplan
α0,α1

α0
= 0, lim

α0→∞

Puni
α0,α1

α0
=

I4
α1
, lim

α0→∞

Ptrans
α0,α1

α0
= 0.

We arrive at

lim
α0→∞

δj = −|ω|
α1

Tuni · T̂uni. (8.2)

Therefore, it appears that our model is able to represent the effect of plastic nucleation when the
strain incompatibility has a nonvanishing uniaxial component. This situation occurs in the presence
of edge dislocations. Observe that when α1 → 0 (perfectly plastic inclusion) the topological
derivative δj is likely to diverge, revealing an unbounded dissipation rate.

Consider now a more complete case where the compatible strain is assumed to be fixed while
A is not neglected and varies in the inclusion (as well-known in plasticity). In the topological
gradient we have the additional term

δjA = 2|ω|(A1 − A0)E · T̂.

In the typical situation of screw dislocations E and T̂ have transverse components, hence this term
does not vanish.

By (8.2), we remark that in this model, the total dissipation δj does not depend on the shape
of the inclusion, but only on its volume. In particular, this means that a plastic crack cannot
dissipate energy.

8.2. A quasi-static elasto-plastic evolution scheme. The results of this paper allow us to
consider a novel elasto-plastic scheme based on an incremental formulation. Each increment might
be computed as follows.
(i) Consider first a reference configuration in which ` = `0 has a background large value.
(ii) Compute the topological derivative δj of the total dissipation.
(iii) Identify the points where δj ≥ η, where η > 0 is a material-dependent constant4 (in a complete
model, left for future work, η would depend on A, `,∇Su and ε0).
(iv) At these points, where plasticity occurs, choose a new (lower) value for the compatibility
modulus `.

This scheme is repeated while the external force K (whatever the exact meaning at this stage
of model development) is increased. The values successively chosen for the compatibility modulus
should rely on a constitutive law. For instance, strain hardening occurs when the decrease of ` in
a given region is slower and slower, while the load increases at a fixed speed. Perfect plasticity
occurs when ` goes to 0 in finite time. Keeping ` = `0 permits to recover the (almost) purely
elastic case, as in unloading.

4Quasi-static growth of damage and crack had already been envisaged with the topological derivative in [1, 33].
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8.3. Final remark on equation decoupling. Let us finally comment on the coupling between
the compatible and incompatible parts of the strain. Recall the full equation∫

Ω

(Aε̇+ ` inc ε̇). inc F̂ dx =

∫
Ω

K̇. inc F̂ dx. (8.3)

In the case of planar strain (as in the typical case of edge dislocations), inc ε̇ is uniaxial. If λ = 0,

then Aε̇ and ` inc ε̇ have uncoupled components. In particular, taking F̂ planar leads to∫
Ω

` inc ε̇. inc F̂ dx =

∫
Ω

K̇. inc F̂ dx,

which is the equation we considered in the simplified model, applying to the incompatible part of
ε̇. Note also that choosing ∇S v̂ planar in∫

Ω

(Aε̇+ ` inc ε̇) · ∇S v̂ dx =

∫
Ω

K̇.∇S v̂ dx (8.4)

yields ∫
Ω

Aε̇.∇S v̂ dx =

∫
Ω

K̇.∇S v̂ dx.

If µ is constant, it is the standard linear elasticity system applied to the compatible part of ε̇. On
the contrary, if ε̇ has transverse components, then ε̇ and inc ε̇ share common components. Then
in (8.3) coupling occurs between the compatible and incompatible parts of ε̇ as soon as µ is not
constant. Eventually the two equations are coupled. This will be further studied in future work.

8.4. Concluding remarks. In this paper we have presented and developed from the ground up
a novel model for elasto-plastic continua. It is based on the known fact that plasticity is related
to dislocation motion, which itself is a source of strain incompatibility. In traditional models, this
interdependence is not clear, since there is a superposition of the equilibrium equations (for the
elastic strain) and the flow rules (for the plastic strain), as deriving from other arguments. In our
model, strain incompatibility is incorporated already in the equilibrium equations, hence showing a
more general system than classically adopted. Plastic laws are introduced as soon as a constutitive
law for the newly-introduced compatibility modulus is provided. Of course, numerical simulations
are now required in order to assess our model. This task is left for future works.
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