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Abstract—This paper addresses the problem of dense disparity made to solve these problems by varying the size and shape
estimation from a pair of color stereo images. Based on a coex  of the matching window according to the local variation of
set theoretic formulation, the stereo matching problem is ast as disparity characteristics [3], [4], [5]. Energy-based husts

a convex programming problem in which a color-based objectie ide d di itv fields b timizi lobal
function is minimized under specific convex constraints, Thse Provide dense disparty nelds by optimizing a global energy

constraints arise from prior knowledge and rely on various function, which is typically the sum of a data term and a
properties of the disparity field to be estimated. The resuing smoothness term [6], [7], [8], [9], [10]. They are called lo#d
multi-constrain_ed optimizatio_n problem is _solved via an eficient approaches and are generally more accurate than area-based
parallel bIock-|tera_t|ve algorithm. Four dn_‘fere_nt c_c_JIor spaces approaches, especially in the challenging image regions.
have t_)een teste_d in order to evaluate thelr_ suitability for gereo In recent years, global optimization approaches have at-
matching. Experiments on standard stereo images show thahe v s ‘ o !
matching results have been efficiently improved when usingator ~ tracted much attention in the stereo vision community due
information instead of grey values. to their excellent experimental results [1]. Many glob&reb
algorithms have, therefore, been developed dealing with am
biguities in stereo such as occlusions, depth disconi@s,)it
lack of texture and photometric variations. These methods
exploit various constraints on disparity such as smoothines
Stereo matching is a crucially important problem in comvisibility, view consistency, etc., while using efficienha
puter vision with a wide range of applications, includinglthu powerful optimization algorithms. Although many promigin
view video coding, multi-viewpoint generation, safe natign results have been obtained, an even accuracy may be achieved
and 3D television. The goal of stereo matching is to compubg using the color information, which is typically availelih
the disparity map between a pair of stereo images taken frohe stereo images.
distinct viewpoints. The disparity is defined as the differe Color provides much more distinguishable information than
in location between corresponding pixels, i.e. pixels itesy intensity values. Therefore, using color images in stereo
from the projection of the same 3D point onto the two imag®matching yields more accurate estimates of disparity thiap g
planes. value images. A number of different approaches have been
A broad range of approaches have been developed for sqgiveposed in the literature for color stereo matching. Elgkns
ing the stereo matching problem. They are basically claskifiet al. [11] proposed a new region based method for matching
into three categories : feature-based, area-based andyenecolor images based on the fact that regions contain much
based approaches. A good survey for the different stergcher information than individual pixels. To guaranteeraaj
matching strategies is addressed in [1]. Feature-basdtbaget similarity between corresponding regions, a color-basest ¢
[2] provide sparse disparity maps by matching extractadmsial function that takes into account the local properties ofarg
features from both images, such as edges, corners or segmdraundaries is used. Koschan et al. [12] used a combination
They have a low computational complexity and are well suiteaf a hierarchical block matching technique with active colo
for real time processing tasks. In addition, they allow tee rillumination to improve the quality of the matching results
covery of large displacements and establish accurateritispaespecially in homogenous regions. In [13], MUhimann et al.
estimates. However, methods computing only sparse matchase developed a real time and efficient method that caksilat
cannot be considered in many applications of stereo, suchaagorrelation based dense disparity map from color stereo
view synthesis and 3D reconstruction. On the other hand; aramages. Alvarez and Sanchez [14] proposed a generalization
based methods produce dense disparity maps by correlatidriheir work presented in [15], where they applied a PDE-
over local windows. They perform well in highly texturedbased method for disparity estimation to color images. They
regions but often produce noisy disparities in texturetgess modify the cost function so that it includes all three color
and fail around depth discontinuities. Many attempts haenb components. Other color stereo techniques have been mwpos

I. INTRODUCTION



in [16], [17], [18] and all have shown that the results havaround an initial estimate as follows:

always been improved when using the color information. Most, (k) _ o (k) _

of the methods mentioned above commonly use the RGB coloz'” (@—u,y) = [P @ =, y) — (u—u)VI (r—1y) , (2)
space. However, prior color evaluation studies [19], [22}] whereVI¥)(z—u,y) is the horizontal gradient of the warped

have shown that the precision of color stereo matching r'@ht image channel®. Note that for notation concision, we

improved only when a suitable color system is chosen.  haye not made anymore explicit thatand are functions of
In this paper, we propose a global variational method f% y) in the above expression.

computing a dense and accurate disparity map from a paifyjth the approximation (2), the cost functichunder the

of color images. This method constitutes an extension of theénimization in (1) becomes quadratic im. Thus, setting

technique we proposed in [10] to color stereo images. The_ (, ) the spatial position in either image, the objective
stereo matching problem is solved through the minimizatig()ction to be minimized can be rewritten as:

of a global objective function which is the sum of intensity 3

differences over the three color channels in a predefineat col J(u) = Z Z[L(k)(s) u(s) — r® ()2 3)
space. Convex constraints introduced in [10] modellingrpri
knowledge on the disparity field remain available, except ﬂ\]/vhere
Nagel-Enkelmann constraint which involves the left stereo

image. A generalization of this constraint in the case of L (s)=VI®(x—a(s),y)

color images is proposed, inspired from [14]. Within a set k k _ _ k k
theoretic framework, the stereo matching problem, forteala r! )(s) - I"(‘ )(x —uls),y) +ls) L )(s) B Il( )(S)'
as a constrained optimization problem, is then solved Vi(a Set theoretic formulation

a parallel block-iterative decomposition method. Matghin Minimizing the objective function (3) aims at recoveringth
results with different color spaces are finally compared@eo pest estimate of the disparity imagdrom the observed fields
to determine the best performing color system. {L®}, and {r®},. This inverse problem is ill-posed due to
The rest of the paper is organized as follows. In SectiQRe fact that the components 6f.(%)}, may, simultaneously,
I, we introduce the color stereo model and describe tR@nish. Thus, to convert this problem to a well-posed one,
set theoretic formulation of the disparity estimation geob. it is useful to incorporate additional constraints moahejli
Section Ill is devoted to presenting the objective functio® prior knowledge and available information on the solution.
minimize and the constraints we incorporate to the problemp. the field of computer vision, such constraints were most
In Section 1V, we review the parallel block-iterative algbm commonly formulated as additional penalty terms in the ob-
that will be employed to solve this problem. Experimentgbctive function. In this work, the problem is addressedrfra
results on real stereo data sets are illustrated in Section gét theoretic formulation, where each constraint is represi
followed by a conclusion in Section VI. by a convex set in the solution space and the intersection of
these sets, the feasibility set, constitutes the familyasfsible
solutions. The aim then is to find an acceptable solution

k=1seD

Il. PROBLEM FORMULATION

A. Color stereo model minimizing the given objective function. A formulation dfis
The stereo matching problem is to estimate a 2D disparityoblem in a Hilbert image spadg is therefore:

field by searching for every pixel in the left image the m

corresponding pixel in the right image. When stereo images Findu € S = ﬂ S; such that/(u) = inf J(S), (4)

are rectified [22], the vertical component of the disparigtor i=1

vanishes, so that only a scalar value has to be estimaigfhere the objective : H — (—o00, +-00] is a convex function
Let I; and I, be the left and right color images of a stere@nd the constraint setsS; )1 <i<m are closed convex sets of

pair, respectively. A color image may be represented &g Constraint sets can generally be modelled as level sets:
I = (IW, 13 1), where I™ k € {1,2,3}, represents

the k" color channel in the selected color system. Finding Vi € {1,....m},  Si={weH | filw) <&}, (5
a corresponding pixel in the right imagg for each pixel where, for alli € {1,....m}, f; : H — R is a continuous

in the left image/; amounts to search the disparitythal convex function and(s;);<i<,, are real-valued parameters
minimizes the following cost function, based on the sum Qf,ch thats — N, S; #0.

color differences: =
5 The advantage of the convex program (4) is that a wide

Fooy (k) k . 2 range of constraints modelling prior information can be ex-
) = Z Z @ y) ~ IO —u(@y).l . O plicitly incorporated to the protglem as closed convex sets
of the form (5). A further advantage of this formulation
whereD C N? is the image support. This expression is noris to benefit from the availability of powerful optimization
convex with respect to the displacement fieldThus, in order algorithms. For the current work, we employ the constrained
to avoid a non-convex minimization, we consider a Taylor exjuadratic minimization method recently developed in [2&] a
pansion of the non-linear tern{s[ﬁk) (x—u,y), k€ {1,2, 3}} particularly well adapted to our needs.

k=1 (z,y)€D



I1l. COLOR STEREO MATCHING stereo methods [7], [10]. For a differentiable analog image

In this section, we introduce the objective function as well defined on a domaife, the total variation is given by:
the considered convex constraints to solve the stereo imgtch B d 8
problem from color stereo images, within the framework (u) = o [Vu(s)|2 ds , (®)

described above. whereVu is the gradient of; and| - |2 denotes the Euclidean

A. Global objective function norm in R%. Practically, t{u) represents a measure of the

The objective function to be minimized is the quadratitengths of the level lines in the image:. In a previous work {10
measure (3) derived from our linearized color stereo mod#f have shown that the total variation(#y of the original
(see Section II). To cope with large deviations from the daf#Sparity image: does not exceed some known boundrhis
model, occlusion points which are pixels only visible fromeo €OnSstraint, which is associated with the set
yiew of the ste_reo images_ hgvg beep dgtected and G!iscarded So={ueH|tv(u) <1}, 9)
in the expression of the similarity criterion. For a review o
various approaches for finding occlusions, we refer to [244Ppears to be particularly relevant in stereo matchingtas i
In this work, occlusion points were detected by enforcingmnoothes homogenous regions in the disparity image while
the uniqueness and ordering constraints [25]. Furthermopgéeserving edges. In addition, the upper bounctan be
according to the conditions of convergence of the algorith@$timated with good accuracy from prior experiments and the
we use (see Section 1V), the objective functidnmust be considered minimization method is shown to be robust with
strictly convex. However, since the components{d@f*)}, respect to the choice of this bound [28], [10].
may vanish in (3),J is not secured to be strictly convex. 3) Nagel-Enkelmann constrainflo benefit from the abil-

We therefore introduce an additional strictly convex tersn dty of the employed optimization algorithm to incorporate
follows: multiple constraints, we use another regularization cairgt

3 based on the Nagel-Enkelmann operator [29]. The oriented-
J(u) = LE) (s) u(s)—r") ()12 +a u(s)—ii(s)]2 . sSmoothness ability of this operator has been primarily used

(®) ;%;O[ (&) u(e) I+ S;)[ &)=l optical flow algorithms [29], [30] and has also been used for

(6) stereo in the variational framework of [15]. A formulatiof o

where ©® denotes the occlusion field, is an initial estimate the associated regularization term as a convex constraint s
and o is a positive constant that weights the second terh@as been proposed in our previous work [10]. The main idea
relatively to the first. The initial estimate is obtained, first, of this regularization constraint is that discontinuitiesthe
from a correlation based method and, then, iteratively eefindisparity image are preserved accordingly to the edgeseof th
by choosing the result from a previous estimate as the linitiaft image I;. An extension of this constraint, in the case of
value of the next step. This helps improving the quality & thcolor images, can be defined as follows:

solution while reducing the sensitivity of the final resaltthe T -
initial estimate. Sz={ueH| /Q (Vu(s)) D(VIL)(s) Vu(s)ds < 3} , (10)
B. Convex constraints whered is a positive constant. The Nagel-Enkelmann operator
1) Disparity range constraint: The most common con- D(V1;) is given by [14]:
straint on disparity is the knowledge of its range of possibl - - T
. . . N 1 an o6
values. Indeed, disparity values are nonnegative and bftea D(VI) = dy_ dy_ el
known minimal and maximal amplitudes, denoted respegtivel |Vfl|§ + 272 _% _%Q ’

bY umin > 0 andunay. The associated set is ) . o ) )
where I denotes the identity matrixy is the anisotropic

S1={u €M | umin < u < Unax} - (7)  diffusion constant and

2) Total variation regularization constraintThe smooth- v7,(s) = Vll(ks)(s), wherek, = arg max |Vll(k)(s)|2 .
ness constraint, initially introduced by Tikhonov [26] sHzeen ke{1,2,3}

one of the most popular regularity assumptions. However, tffhe constraintS; has an isotropic behavior within uniform
Tikhonov regularization, by considering a quadratic fimtt areas|V1;| < +), but at color edges ¥ 7;| > ) it introduces
tends to oversmooth discontinuities. In disparity estioat an anisotropic smoothing to preserve the discontinuities.

we are interested in a regularization process that avoids

smoothing around object boundaries. This can be achieved IV. OPTIMIZATION ALGORITHM

with the help of a suitable regularization constraint. listh The objective of this section is to develop a numerical solu-
work, we use a Total Variation based regularization coirgtra tion to the problem of color stereo matching which has been
Initially introduced by Rudin, Osher and Fatemi [27], thiformulated as a convex optimization problem. A parallecklo
regularity measure has emerged as an effective tool to eecoiterative algorithm will be employed to efficiently miningz
smooth images in variational image recovery [28], whicthe quadratic objective function (6) over the feasibilityt s
naturally motivates its extension to the field of variatibnas =N, S;.



A. Subgradient projections e d, such that

Here, we briefly recall the basic facts on subgradient pro- (®(s) + )"z (s), if s€D\ O
jections which are necessary for our problem. More details dn(s) = { e ’

can be found in [23]. The solution space is a real Hilbert ™ za(s), otherwise.
spaceH, endowed with the standard scalar prodidt.) and o Ay = hin/(dn, 2n).

the associated Euclidean nofm |[|. Let S; be the nonempty Setd, = Andp, T = —(nydn), fin = (bpscn), vn =
closed and convex subset &f given by (5), wheref; is a (s z0) and pr, = inim _777_72L. ’

continuous and convex function. For everg H, f; possesses 0 Set

at least one subgradient af i.e., a vectorg; € H such that Up, + dy, if pn =0, ™, > 0;

Vze Ha <Z —u | gi> + fz(u) < fz(z) . (11) Un+1 = up + (1 + Z_:)dna if Pn > 01 TinVn > Pns

The set of all subgradients of; at u is the subdifferential Un + 22 (Tubn + Hndn), i pp >0, Tnim < po.
of f; atu and is denoted by f;(u). If f; is differentiable at [ |ncrementn and go to stepil.
u, thendf;(u) = {Vf;(w)}. Fix v € H and a subgradient
g; € 0fi(u), the subgradient projectioR®,u of u onto S; is Theorem 2: Suppose that there exists a positive integer
given by: M such that

n+M-—1

filw) =6 - —{1,... 3
Pu—{ " T Y fffi(u)>5i, 12) VneN, kL:Jn Iy ={1,...,m}, (13)

U, if fi(u) <0;. .
then every sequenceu,), generated by Algorithm 1 con-

The proposed algorithm activates the constraints by meaf@ges to the unique solution of (4).

of subgradient projections rather than exact projectidie ) o

former are much easier to compute than the latter, as thef,e_marks 3: Algorithm 1 allows to easily incorporate
require only the availability of a subgradient (the gradier@dditional convex constraints if these are available. iitp

in the differentiable case). However, when the projection [0 US€ approximate (subgradient) projections onto the con-
simple to compute, one can use it as a subgradient projectigfi@int sets makes it possible to handle a wide range of

In our case, exact projections onf is straightforwardly _complex convex constraints. In addition, it has been shown

obtained, whereas a subgradient projection afifocan be N [23] that, due to its block iterative structure, this aigam
easily calculated. For the constraifii, the expression of a offers a lot of flexibility in terms of parallel implementati.

subgradient projection is given in [28]. In particular, severall processors can be us_ed in parallel to
_ compute the subgradient projections on the different caimgt
B. Proposed algorithm sets(S;)1<i<m, leading to improved results while reducing the

We now proceed to the description of the proposed blockmputational time.

iterative algorithm to estimate the disparity V. EXPERIMENTAL RESULTS

Algorithm 1:
O Fix ¢ € (0,1/m[ and setn = 0. Set In this section, we present results of the proposed method
using standard data sets taken from the Middlebury Database
B(s) = Zzzl (L(k>(s))2, Figure 1_ show§ the four stereo_ pairs considered in th_is work
U(s) = Zi—l L(k)(s) r(k)(s)7 along with their ground truth images. To parameterize our
- method, the parameter in equation (6) and the anisotropic
and compute, as diffusion constant; were set to 10 and 1, respectively. Bounds
T(s)+a ﬂ(s)’ if scD\O, on the constrgint setsS;)1<i<3 Were computed directl)_/ from
ug(s) =4 Pt . ground truth fields (see Table 1) and three cycles of itenatio
a(s), otherwise. were performed to refine the initial disparity fields as dibext
O Take a nonempty index séf, C {1,...,m}. in Section IlI-A. The algorithm has been tested with the four
O For everyi € I, seta;,, = P, —u, Where P, ,, is a color modelsRGB, LUV, LAB, I;I;I3 and the grey level
subgradient projection af,, onto .S; as in (12). image representation. As ground truth fields are availadre f
O Choose weights {& n}icr, In (g,1] such that the considered stereo pairs, we evaluate the differenttsesu
Ziefn &n = 1. Set z, = Ziejn & nain, and quantitatively by computing two error measures: the mean
bin = D ser, Cimllainll®. absolute error (ME) between computed and ground truth
O If k, =0, exit iteration. Otherwise, set fields and the percentage of bad matching pix&lsr) with
o b, = Uy — Un, absolute error larger than one pixel. Following [1], we only
e ¢, such that consider non-occluded pixels when computing the disparity

(®(s) + @) bu(s), if s€ D\ O, different color spaces are shown in Table li(a), where we

bn(s), otherwise. also indicate the rank of the color spaces according to their

errors. The overall results provided by our method for the
cn(s) = {



Fig. 1. Left images (Top) of the considered stereo pairs amtesponding ground truth images (Down). From left to rigfenus, Teddy, Dolls, Baby.

MAE and Err errors. As we can see, the precision of theonstraints. It can incorporate a wide range of additional
matching has generally been improved when using the cotmnstraints and is highly parallelisable due to its bloekative
information, except for the Venus stereo pair where colastructure. Four different color spaces have been used and
seems to slightly worsen the results. For the other stereompared for the evaluation of matching results from color
pairs, the mean absolute error was significantly reducechwhs&ereo images. The results indicate that stereo matching ca
using the LUV, RGB and;I;I5 color spaces. However, nobe significantly improved by using a suitable color space. We
significant changes in the results have been noticed wheg usiound that the LUV color space offers the best performances
the LAB color space instead of the grey value informatiorior the considered test image pairs.

Table 1l also includes, for comparison purposes, the result

from the global optimization algorithm (GC) of Kolmogorov TABLE |
. . PARAMETER SETTINGS

and Zabih [9] based on graph-cuts. The same observation _ _
about the obvious utility of color information in solvingeth Stereo pak a i disparty range

\ y g Venus | 9 x 105 | 7 x 107 [0, 20]
stereo matching problem could be made when comparing the Teddy | 4x 107 | 1.2 X 10° 15.55
results of the grey value based matching of this method and Dolls 5 x 107 | 1.5 x 10° 20,75
the color based matching. We can also notice from Table I Baby | 4x10" [ 5x10° [1545]
that the proposed method, compared to the (CG) algorithm,
leads always to the best results. TABLE Il

In Figures 2 and 3. we ShOW the disparity mapS Computed COMPARATIVE RESULTS USING COLOR SPACES AND GREY LEVEL
! REPRESENTATION

by the proposed and the (GC) methods for the three stereo

pairs : Teddy, Dolls and Baby. These image pairs are mar&olor Venus Teddy Dolls Baby
challenging than the Venus stereo pair, since they have cqnspace || MAE  Err || MAE  Err || MAE  Err || MAE  Err
plex scene structures, wide disparity ranges and largeidedl | RGB || 0252 53 || 0493 125 || 0353 71 || 0513 7o
regions. When only using grey values, the disparity maps arf%[f;;?) 8'32‘3‘ ii 8'332 };é 832 18023 8'33; ‘2
represented in Figures 2-3(b). The rgsults of using the RGBAE 033, 11 || 056, 17- || 045, 155 || 0.73, 14,
and LUV color spaces are shown in Figures 2-3(c) and 2-3(d)grey || 0.22; 21 |[ 0575 134 || 0.485 114 || 0.915 205
respectively. As expected, many matching errors are reduce (a) Results from our method.
by using tr_\e color information. Especially, we no_tlce tHa t —Color Venis Teddy Dol Baby
most precise results have been generally obtained by usingace | MAE  Err || MAE  Err || MAE  Err || MAE  Err
the LUV space, which seems to be a suitable color space fQXGB || 0.335 12- || 0.605 204 || 0.8235 19, || 0.58; 232

stereo matching. LUV 0.45, 174 || 0.61; 11; || 0.752 192 || 0.653 21
I1IoI3 0.535 225 0.632 142 0.661 184 0.602 243
VI. CONCLUSION LAB 0.32, 125 || 0.825 255 || 0.894 245 || 0.944 264

Grey 0.29¢ 81 0.794 153 0.925 204 1.065 264
(b) Results from the (GC) method.
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