N
N

N

HAL

open science

Automotive Software Architecture Views and Why we
need a new one — Safety view

Miroslaw Staron

» To cite this version:

Miroslaw Staron. Automotive Software Architecture Views and Why we need a new one — Safety view.
Workshop CARS 2016 - Critical Automotive applications: Robustness & Safety, Sep 2016, Goteborg,

Sweden. hal-01372336

HAL Id: hal-01372336
https://hal.science/hal-01372336
Submitted on 27 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01372336
https://hal.archives-ouvertes.fr

Automotive Software Architecture Views and Why
we need a new one — Safety view

Miroslaw Staron*
*University of Gothenburg, Sweden
miroslaw.staron @gu.se

Abstract—The growth of the size and complexity of automotive
software has been driven by the increased number of software-
dependent innovations in modern cars. The growth of the size
and complexity drives the usage of multiple abstraction levels in
automotive software designs. One of these levels is the architecture
level where the high level design of software is documented using
multiple views such as logical, function, deployment.

In this paper we review these architectural views and argu-
ment that they require one more view — safety view — which
is compliant with the ISO/IEC 26262 and links the design of
software systems (both the functional and system views) with
the safety goals. We advocate the need for this view that would
help the designers to understand and trace the design of software
safety throughout the software lifecycle.

I. INTRODUCTION

As the amount of software in modern cars grows we observe
the need to use more advanced software engineering methods
and tools to handle the complexity, size and criticality of the
software [1], [2]. We increase the level of automation and
increase the speed of delivery of software components. We
also constantly evolve software systems and their designs in
order to be able to keep up with the speed of the changes in
requirements in automotive software projects.

However, we also need to handle the complexity is an
efficient way, meaning that we need to adjust the engineering
methods depending on the criticality of the software, according
to the prescriptions of the ISO/IEC 26262 standard [3] —
both during the design and verification/validation of software
systems. These analyses are currently poorly supported in
the general software engineering tooling and methodologies.
Therefore in this paper we set off to address the following
research question:

How to provide explicit support for safety-related design
elements in the architecture work?

By the safety-related design we mean the support for safety
related questions which are important during the design of the
system, such as:

e How to identify which software elements should be
validated using which methods based on their ASIL
levels?

e How to find out which elements are linked to a specific
safety case?

e How to identify which elements should be re-validated
if the safety goals/cases change?

Even though these questions seem rather straightforward
we need an architectural view which will allow us to see the
ASIL levels assigned to the system elements, their verification
requirements, relevant safety-related metrics (e.g. control path
complexity), etc. We also need to be able to see which
software elements have none of the safety elements assigned
to them, such as which software components have no ASIL
level assigned or which ASIL D software components have a
control path complexity way above verifiable limits.

II. RELATED WORK

One of the most prominent works in the area of visual safety
argumentation has been done by Kelly and Weaver [4] who
presented a notation for modelling safety goals. The main goal
of the notation is to link the safety goals to the safety evidence
using the safety argumentation. Similar approach has also been
done in the later work of Hawkins et al. [5]. In our proposal
we use the same symbols for the safety arguments and goals,
and complete with the other modeling elements of interest.

Xiaoping et al. [6] describes the safety editor based on
the ISO/IEC 26262 standard and shows that this view requires
linking to the architectural elements of the system construction,
something that we also support and present a proposal in this

paper.

Hause and Thom [7] present a method for extending
SysML to show safety concerns integrated into SysML models.
Our proposal is based on very similar principles, although
adding a separete view, which is not present in SysML.

Another part of the safety view is the visualization of
metrics in order to reason about the sufficiency of the safety
argumentation. Termeer et al. [8] presented a tool which
augmented UML diagrams with metric information, a view
which we intend to integrate with the safety view of the
architecture — or at least the ideas presented in their work.

III. ARCHITECTURAL VIEWS

Architecting is a continuous process, which starts at the first re-
quirement and ends with the last defect-fix in the car. Although
one could see the process of architecting as a prescriptive
design, the process continuous as the design evolves. Certain
aspects of design decisions influence the archtiecture and are
impossible to be known a priori — increased processing power
required to fulfill late function requirements or safety criticality
of the designed system. If not managed correctly the architec-
ture has a tendency to evolve into a descriptive documentation
that needs to be kept consistent with the software itself [9],
[10], [11].

In order to put the process of architecting in a context and
describe the current architectural views in automotive software
archtiectures let us first discuss the V-model as shown in Figure
1

(omamn) (o)

System »
architecture System design

Component [Component design j[]

architecture
Detailed 1mol -
design mplementation

V-model with the focus on architectural views and evolution.

Functional
architecture

Fig. 1.

The first level is the functional development level where we
encounter two types of the architectural views — the functional
view and the logical system view. The functional view, often
abbreviated to the functional architecture is the view where the
focus is on the functions of the vehicle and their dependency
on one another [12]. An example of such a view is shown in
Figure 2.

Emergency]
breaking *e,
Warning
B lamps .
| e
ABS { Engine cut-off

Domain active safety

Domain powertrain

Depends on

ABS Function

Fig. 2. Example of a functional architecture — or a functional view.

Another view is the system view on the archtiecture,
usually portrayed as a view of the entire electrical system at
the top level with accompanying lower level diagrams (e.g.
class diagrams in UML). Such an overview level is presented
in Figure 3.

The focus of the view is on the topology of the system.
This view is often accompanied by the logical component
architecture as presented in Figure 4.

For the logical view the architects often use a variety
of diagrams (e.g. communication diagrams, class diagrams,
component diagrams) to show various levels of abstraction of
the software of the car — usually in its context. For the detailed
design these architectural models are complemented with low
level executable models such as Matlab/Simulink defining the
behaviour of the software [13].

(aBs | [apas |

— | L

Main
ECU

[HMI } [Display J

| |

Fig. 3. Example of a system architecture — or a system view.

«Block»
= Vehicle electrical syst.
properties

operations

constraints

«Block» <<CAN>> «Block»
£ Activesafe. 1 Powertrain
properties properties

operations operations.

constraints constraints.

«Block» «Block» «Block» «Block» «Block» «Block»
A8 [ADAS ZlengineController | [ntroll) Starter £ Altemator
properties properties properties properties

properties properties

operations operations operations operations operations operations

constraints S constraints constraints

constraints constraints

| <<CAN>> /F

Fig. 4. Example of a logical view — a UML class diagram notation.

IV. SAFETY VIEW

The previously presented view are dedicated for the design
disciplines in software engineering, but in the automotive
software engineering the safety aspects are usually treated as
a separate concern and therefore we postulate that they need
a specific architectural view. Having such a view is important
as it allows to easily trace the safety argumentation, goals and
elements to the system design elements. And since the number
of system elements in modern cars is constantly growing,
having such a linkage allows to assure that we do not miss
an important design step or validation step/method required
for achieving a specific safety level.

In this view we need to include the concepts which are
important for safety engineering:

e Safety goals — safety goals as specified in ISO/IEC
26262

e Safety arguments — argumentation for the fulfillment
of the safety cases (documents), usually in form of the
safety cases

e Safety verification requirements — verification require-

ments as prescribed by the ASIL levels in ISO/IEC
26262

e Safety verification methods — verification methods
applied to the system elements

e System elements — elements of the system (taken
directly from the other views) which are linked
to safety goals, arguments and verification require-
ments/methods.

A notation for modelling only the safety part has already
been proposed and designed by Kelly et al. [4] and we
postulate that it needs to be combined with the software
engineering notations in order to provide a more holistic view
on the development of safety critical software systems.

A. Modelling of the view

Let us first present the meta-model of the notation, i.e. the
abstract syntax of the modelling language. Once we presented
the meta-model we present the concrete syntax and then we
present an example of using this notation.

The abstract syntax (metamodel) is presented in Figure 5
where we use three colors to designate elements from three
domains. For the safety notation of Kelly et al. [4] we use the
white color, for the component design (UML block diagram
notation) we use the orange color and for the added elements
of the safety view we use the blue color. For the sake of
simplicity of the argumentation we do not focus on the entire
notation of Kelly et al. nor the UML notation. By this meta-
model we intend to show that the linkage of between these
two diagrams can be straightforward and the only additions
are the two elements — the abstract SafetyViewElement which
is the top hierarchy class for all elements in the new safety
view; and the SafetyAssociation which associates the safety
elements with the component design elements.

As we can observe in the meta-model, the missing associ-
ation is bi-directional (both source and target) which allows to
search for the elements from one another. This ability is very
important when producing reports regarding safety elements
and for the traceability between safety argumentation and
design components.

We decided to place the association on the relatively high
level of the hierarchy as it allows for flexibility on linking
different elements from these two domains. We perceive this
flexibility as an important aspects of the design. We also need
more experimental results from modelling of safety cases in
order to validate this design decision.

The example of the notation is presented in Figure 6 where
we show how to add the link (in form of a dotted line) between
the safety solution and the construction element. The goal
presented in this example is very simple, but illustrates the
principle.

V. CONCLUSIONS

In this paper we presented a position where we advocate
adding one additional architectural view — Safety view —
which combines the elements of safety argumentation and the
elements of the construction (design) of the software systems
which are affected by these safety elements.

The research results presented in this paper contain the
meta-model of the new view which shows how the combination
of these two domains (safety and software construction/design)
can be combined by a simplistic extension of the UML/SySML
meta-model. This extension can be done both as a fully-fledged
extension or as a stereotype extension [14], [15]. The stage of
this research is rather preliminary but it shows the potential
impact on the design of software for software critical systems.

Our future directions include the development of the UML
profiles for Papyrus UML tool where we can include the
stereotypes for modelling safety cases and linking them to the
software design elements as proposed in this paper.

ACKNOWLEDGMENT

The research presented here is done under the VISEE project which is
funded by Vinnova and Volvo Cars jointly under the FFI program (VISEE,
Project No: 2011-04438)

REFERENCES
[1] M. Staron, “Software complexity = metrics in general
and in the context of iso 26262 software verification

requirements.” in Scandinavian Conference on Systems Safety.
http://gup.ub.gu.se/records/fulltext/233026/233026.pdf, 2016.

[2] S. Fiirst, “Challenges in the design of automotive software,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe.
European Design and Automation Association, 2010, pp. 256-258.

[3] I ISO, “26262-road vehicles-functional safety,” International Standard
ISO/FDIS, vol. 26262, 2011.

[4] T. Kelly and R. Weaver, “The goal structuring notation—a safety argu-
ment notation,” in Proceedings of the dependable systems and networks
2004 workshop on assurance cases. Citeseer, 2004.

[5] R. Hawkins, T. Kelly, J. Knight, and P. Graydon, “A new approach
to creating clear safety arguments,” in Advances in Systems Safety.
Springer, 2011, pp. 3-23.

[6] Y. Luo, Z. Li, and M. Van Den Brand, “Development of a safety case
editor with assessment features,” in Proceedings of the 2nd Workshop
on Automotive Software/Systems Engineering, pp. 1-4.

[71 M. C. Hause and F. Thom, “An integrated safety strategy to model
driven development with sysml,” in System Safety, 2007 2nd Institution
of Engineering and Technology International Conference on. 1ET,
2007, pp. 124-129.

[8] M. Termeer, C. F. Lange, A. Telea, and M. R. Chaudron, “Visual explo-
ration of combined architectural and metric information,” in Visualizing
Software for Understanding and Analysis, 2005. VISSOFT 2005. 3rd
IEEE International Workshop on. 1EEE, 2005, pp. 1-6.

[9] U. Eliasson, R. Heldal, P. Pelliccione, and J. Lantz, “Architecting in the
automotive domain: Descriptive vs prescriptive architecture,” in Soft-
ware Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference
on. IEEE, 2015, pp. 115-118.

[10] A. Shahrokni, P. Gergely, J. Soderberg, and P. Pelliccione, “Organic
evolution of development organizations-an experience report,” SAE
Technical Paper, Tech. Rep., 2016.

[11] L. Kuzniarz and M. Staron, “Inconsistencies in student designs,” in the
Proceedings of The 2nd Workshop on Consistency Problems in UML-
based Software Development, San Francisco, CA, 2003, pp. 9-18.

[12] A. Vogelsanag and S. Fuhrmann, “Why feature dependencies challenge
the requirements engineering of automotive systems: An empirical
study,” in Requirements Engineering Conference (RE), 2013 21st IEEE
International. 1EEE, 2013, pp. 267-272.

[13] J. Friedman, “Matlab/simulink for automotive systems design,” in Pro-
ceedings of the conference on Design, automation and test in Europe:
Proceedings. European Design and Automation Association, 2006, pp.
87-88.

[14] M. Staron and C. Wohlin, “An industrial case study on the choice
between language customization mechanisms,” in Product-Focused Soft-
ware Process Improvement. Springer, 2006, pp. 177-191.

= 5 afetyViewElement

1 |2 safetyFlement = safetyAssociation| E Classifier
= SAssociation + source + sourceElement 1 + safetyassociation 1
1
1 + safetyassociation 1 + targetElement
+ target
source
H safetyGoal = safetyStrategy| = safetySelution Helock H Assaciation
1 =+ isAggregate: EBoolean [1]
4 target
1
Fig. 5. The meta-model of the safety view.
G1
Prevent unintended
acceleration
S2 s1
Cut-off engine when Increase breaking
breaking power and warn
«Blocks
& Powertrain Sn2 Snl Block»
properties Warning in th = ActiveSafety
. arning in the properties
e, _ _ _ _ _ _ Powertrain sub- Active Safety b -----— N
system : operations
constraints domain
constraints
. RN
e ~
. e N ~ S ~
s N ~
. 7’ \4 Se N
Bloc | w2’ Blocks S oL @iode
IE Engineco. = ADAS E ABS
properties properties properties
operations operations operations
constraints constraints constraints

Fig. 6. Example of a safety view

[15]

combining two notations.

M. Staron and L. Kuzniarz, “Properties of stereotypes from the perspec-

tive of their role in designs,” in Model Driven Engineering Languages

and Systems.

Springer, 2005, pp. 201-216.

