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Abstract

Simulating human-centered pervasive systems requires accurate assumptions on the behavior
of human groups. Recent models consider this behavior as a combination of both social and
spatial factors. Yet, establishing accurate traces of human groups is difficult: current techniques
capture either positions, or contacts, with a limited accuracy.

In this paper we introduce a new technique to capture such behaviors. The interest of this
approach lies in the unprecedented accuracy at which both positions and orientations of humans,
even gathered in a crowd, are captured. The open-source software pipeline we developed to ex-
ploit captured data allows extraction of several metrics on movement and social contacts, and
permits study of their respective interrelationship. From the mobility to the topological connec-
tivity, this framework offers a layered approach that can be tailored, allowing to compare and
reason about models and traces.

We demonstrate the accuracy and validity of our approach on social events and calibration
runs in which we captured the motions of humans. In particular, we introduce an open-access
trace of 50 individuals and compare it against random waypoint models that have the same global
characteristics. Our fine-grain analyses, that take into account social interactions between users,
show that the random way point model does not provide accurate predictions for socially-induced
motion; to model human kinetics, new group- and interaction-based models should be developed.
From the computer science point of view, these models are required to fully exploit the power
of human-centered mobile computing, crucial for ubiquitous computing, and referred to as Short
Range Communication Systems, Mobile Opportunistic Networking, or Mobile Networking in
Proximity.

Keywords: Human-centered computing, Reliability and robustness, Human mobility modeling,
Ubiquitous computing, Mobile computing.

1. Introduction

During the past two decades, the problem of understanding human mobility has received
a growing attention from the research community. Thanks to the widespread use of mobile
handheld devices, large scale datasets have been produced and successfully exploited to provide
a wealth of results characterizing human mobility patterns. Applications are multiple: from
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street planning to epidemics modeling, every hint about how humans move is a powerful ally for
designing tomorrow’s information society.

Indeed, one of the most crucial parameters of a ubiquitous system that relies on the net-
work formed by users’s devices —often referred to as Mobile Opportunistic Networking, or
Mobile Networking in Proximity (MNP)— is its users contact model. Available mobility traces
are usually coarse grained and do not allow to precisely emulate short range communication
topologies. Contact traces exist, but these are usually established using wireless technologies
themselves. The problem of such approaches is genericity: how to simulate a Bluetooth com-
munication topology using an RFID contact trace, and vice-versa? Due to the wide variety of
wireless technologies and their rapid evolution, it is of prime importance to establish datasets
that are technology independent.

The idea that users’ mobility and social contacts are connected has recently given rise to
the development of mobility models taking these two dynamics in consideration. But in the
absence of traces capturing both interactions and movements, such models remain only partially
validated.

One of the fundamental question that is left unanswered is “what is a good analytical model
for crowd connectivity, required to implement the MNP paradigm?”, and, as a corollary, “how to
validate models?”.

To that end, we present Souk— Social Observation of hUman Kinetics. This platform allows
the precise capture, in real time, of both the position and the orientation of individuals in a dense
region. To achieve this, each individual is equipped with two lightweight wireless tags that are
localized with a 15 cm accuracy using a network of sensors. More precisely, we present Souk as
a means to test the realism of existing and future human mobility models.

Because of Souk’s ability to capture users’ localization, orientation and interactions in dense
crowds, social events (e.g. meetings, cocktails, concerts) constitute perfect use cases for Souk.
More precisely, the level of accuracy attained when capturing localization and orientation data
allows Souk to infer interactions between users in a crowd. The dynamic network of social inter-
actions arising during the social event can thus be computed, exposed in real-time and logged for
off-line analysis. To the best of our knowledge, this is the first time that both social interactions
and movements are assessed at such a fine granularity and at such a scale.

Contributions. In this paper, we introduce Souk, a platform to capture the behavior of a crowd
at an unprecedented scale and resolution. Traces captured using this platform allow access to
both the position and the social contacts of individuals, allowing precise simulation of any Short
Range Communication topology.

We provide a set of tools to compare models and reality using a wide variety of metrics, in
a layered approach. We believe this tool chain could be of prime importance to develop realistic
models and compare them to reality.

We showcase our approach by comparing the random waypoint model against an experimen-
tal deployment of the platform on 50 individuals during a social event. Notice that the drawbacks
of random waypoint models have already been pinpointed before, and the comparison is only
presented to demonstrate how the proposed approach allows to easily compare a given model
against reality.

The paper is organized as follows: the following section discusses related works. Then, we
present in Section 3 the Souk experimental platform. Section 4 describes different experiments
we conducted and associated results. The last section concludes the paper and exposes some
trails for future work. A preliminary version of this article appeared in [17], and described initial
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experiments conducted in 2012 only. The current article aims at providing a comprehensive
and complete view of our framework, on the software and hardware points of view, including
calibration and assessment of accuracy.

2. Typical Mobility and Interaction Analyses

Several mobility data collection campaigns that have been conducted and are published in
the CRAWDAD project1. Table 1 presents a selection of datasets that include some flavor of
mobility in captured data. These campaigns use Off-The-Shelf hardware, such as smartphones,
to capture information, thus their localization source is either a GPS system or based on wireless
interfaces.

Compared to the datasets we capture, the major difference lies in the scale: Souk’s dataset
has a smaller scale (i.e., building-wise vs. town-wise, and short term vs. long-term) but provides
a higher accuracy (i.e., in the order of 10cm vs. 10 − 100m) and includes users orientation, thus
enabling a precise capture of social interactions between users.

Since Souk aims at capturing micro-mobility whereas all other datasets in Table 1 are in-
terested in macro-mobility, these two types of datasets are complementary: on the one hand,
understanding micro-mobility and fine-grained interactions between users requires the accuracy
offered by a localization system similar to the one we used, and allows a better understanding of
connectivity patterns within a pedestrian-carried mobile system. On the other hand, long-term
evolution of systems and recurrent behaviors can only be captured on platforms that are large
scale both in terms of time and space [2].

Dataset Users Duration Resolution
Yellow cabs 100 1 month GPS: 1/min
Reality Mining 100 9 months BlueTooth: 12/h
UIUC-UIM 28 3 weeks BlueTooth: 1/min, WiFi: 1/h
Nokia 200 1 year GPS: user-defined frequency
Yonsei/Lifemap 8 2 months GPS, WiFi 12 − 30/h
Souk 50 1.5h Ultra-Wide Band: 10cm at 1Hz

Table 1: Typical available mobility/interaction datasets

Indoor positioning has been a very active area of research in ubiquitous and pervasive com-
puting. Much effort has been spent on developing indoor localization technologies: from the
original Cricket system [25] that used both radio and ultrasonic signals, to more recent systems
using power lines [23], Ultra-Wide Band signals [1], digital cameras and SLAMs [18], CDMA
mobile phone fingerprinting [28], resonant magnetic coupling [24], etc.

The study, and modeling, of the relationship between human mobility and social aspects
of human behavior has recently gained a lot of attention. In particular, much effort is spent
in developing socially inspired mobility or propagation models [14, 20, 6, 5, 22, 26]. In these
works, positioning is not necessarily of primary interest but, rather, access to data concerning
contacts or proximity between the individuals is necessary. Several technologies and methods
have been used to collect or infer social contacts. Bluetooth and WiFi networks were used

1The CRAWDAD project: crawdad.cs.dartmouth.edu
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in various environments : in offices [19, 10], conferences [15], during a roller trip [3], on a
campus [11] or in shopping malls [12]. The main limitation of these experiments lies in the fact
that contacts are inferred when two devices are co-located or in communication range. Accuracy
of this inference can be questioned. In the same manner, dead reckoning can be used to estimate
relative positions between individuals [16] but has the same drawbacks. RFIDs may be used to
record contacts when individuals are engaged in face-to-face interaction [9, 26], without knowing
users positions — notice that tags have to really face each other for a long enough period of time
and thus, some interactions can be missed.

Recent works have focused on analyzing interactions in crowds [8, 7]. Yet, to the best of our
knowledge, this is the first time that such an accurate and precise framework for capturing both
positions and contacts is produced in the context of dense populations.

3. Souk: the Experimental Platform

Souk consists of three parts: an experimental platform to capture the position and orientation
of mobile individuals through wireless tags, a framework to develop mobility models, and a
software system that exploits the output of either the capture process or model-generated traces.
In a nutshell, both mobility models and the experimental platform can feed a database that is
then accessed by the software pipeline. The use of a database between the production and the
exploitation of positions ensures the repeatability of the experiments, and a certain degree of
genericity: any model or positioning system can be used, for real-time exploitation of data or for
later off-line analysis.

3.1. Position capture platform

The experimental platform relies on two types of elements: a sensor network, and a set of
tags. Currently, Souk relies on a Ultra Wide Band (UWB) based localization system developed
by Ubisense [27]. The whole system can be deployed within a day, and the UWB technology
allows Souk to work seamlessly in crowded environments. Since any system providing a similar
localization accuracy would fit, the precise whereabouts concerning the hardware system are
out of the scope of this paper. However we briefly present the system and its impact on the
experiment.

3.1.1. Tags
A tag is localized by the system in a three dimensional space. Each participant is equipped

with two tags, so that along with the position of the participant, we are able to compute the
orientation of his body.

Each tag dimension is approximately 4 × 4 × 1.5 cm and weights 25 g, hence users tend to
forget about them and the impact of wearing the tags on users behaviors is rather limited.

Tags communicate with sensors using UWB wave trains, and although these wave trains can
traverse the human body to a certain extent, we chose to locate the tags on participants’ shoulders
to limit obstacles, as shown on Figure 1.

Moreover, since tag localization accuracy is about 15 cm (symbolized by the red halos on
Figure 1), it is important to put sensors as far apart as possible from each other, in order to attain
a sufficiently reliable orientation.
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3.1.2. Sensors

Figure 1: Each participant
carries two lightweight tags,
clamped on clothes on her/his
shoulders.

Each tag periodically beacons a UWB pulse train. Sensors,
which have fixed positions in the environment, locate the tag using
both the angle of arrival and the time difference of arrival princi-
ples. Therefore, sensors need to be tightly synchronized together,
and precisely positioned and oriented in space. The practical range
of a sensor is a cone of 90◦ and 25 m depth. At least two sensors are
required to provide an accurate position, but, in practice, the more
sensors that compute the localization, the more precise and robust
the position is (in our current setting, we use a set of 6 sensors).

Sensors use a Time Division Multiple Access (TDMA) channel
access method. Indeed, both UWB and traditional WiFi signals are used to provide synchro-
nization in the system. WiFi is used to negotiate the TDMA slots allocated to tags: every tag
communicates using 802.11 signals with a master sensor that provides it with a unique TDMA
slot. As soon as a tag gets allocated a TDMA slot, it starts to beacon pulse trains in its slot in the
UWB range.

The number of TDMA slots per second is a fixed parameter given a set of sensors: let c be
the number of communication slots per second, n the number of attendees in the monitored event
(requiring 2 × n tags), and f the position refresh frequency, in Hertz. All these parameters are
bound by the relation: f ≤ c

2n . In our setup, the highest rate available on the system is c = 128.
As a consequence, to obtain a position refresh rate of 1 Hz, we limit to at most 64 participants.
Notice that breaking this 64 participants barrier is just a matter of resources: duplication of
sensors doubles the systems capacity; more generally, the cost of the system is linear with respect
to the number of equipped participants. As of 2016, the price of the position capturing system
for n users is roughly dn/64e × 20k$.

3.2. Mobility model framework

When devising a mobility model for humans, it is fundamental to question its accuracy. To
that aim, we provide researchers with a large generic toolbox of metrics that can characterize
both models and experiments. Souk allows using this toolbox regardless of the model-generated
or experimental nature of the data, allowing a fair comparison between models and experiments.

In the framework, it is simple to develop a mobility model to use it as an input of the analysis
process. It is thus possible to check generated traces against real, captured ones. More interest-
ingly, it is possible to use model-generated traces as an input of the analysis pipeline, and make
comparisons on higher level metrics, as we show in the next subsection, rather on low-level traces
that cannot be easily compared.

Practically, developing a new mobility model is as simple as extending the provided random
way-point model.

3.3. Analysis pipeline

This part constitutes the heart of Souk. It consists of a set of software bricks that dynami-
cally retrieve data from the database, filter results, infer contacts, and maintain various statistics.
Figure 2 illustrates the information processing pipeline used in Souk. The layered approach used
allows partitioning the analysis in different bricks that are detailed below.

5



Figure 2: Overview of the Souk processing pipeline

3.3.1. Snapshot creation
The localization system produces a flow of tag positions (more precisely, (tagId, x, y,

z, timestamp) tuples) that need to be transformed into participants position/orientation cou-
ples. This is the role of the snapshot creation module, that periodically polls the database for new
data, associates sensor pairs to each participant, and computes participants orientation.

Snapshot is an important abstraction in Souk. Intuitively, is provides a series of “pictures” of
the system as if it were periodically frozen. Such a discretization of system states dramatically
simplifies data processing.

An important feature of this mechanism is to handle possible missed position reports. Indeed,
due to the high contention on the wireless medium, or to possible obstructions, some position
reports might be missed. As a result, one of the two tags locating a participant may have no
position known at a given round. The snapshot creation module implements a synchronization
and filtering policy to handle such cases: periodically, when a snapshot is created, the last known
position is used for every tag, mitigated by a classical aging policy — when a tag has no position
known for ∆ time units, it is considered to be out of the system. From our first experiments, we
found that setting ∆ = 3s provides good filtering properties while still guaranteeing sufficient
temporal and spatial accuracy.

3.3.2. Contact extraction
Every snapshot is then transferred to the contact extraction module. Its role is to decide

whether two given participants (or the devices they carry) a and b are potentially engaged in a
contact. This decision is based on the analysis of participants respective positions and orienta-
tions, and depends on the nature of the contact that one seeks to capture, and therefore on the
finality of the study.

In this paper, we present two different contract extractions, corresponding to two different
use cases for Souk. One extracts the communication topology of devices carried by users and
communicating wirelessly at short range. The other extracts social between users. Although
defining what is a social contact is far from being trivial —several definitions can coexist— Souk
modular architecture allows to implement and test heuristics corresponding to those different
definitions. In the next section, we showcase different techniques: a device-based unit-disc graph
wireless contact extraction, and a two user-based social contact extraction techniques.

3.3.3. Interaction extraction
Once contacts have been extracted, they are exploited by the interaction module to decide

whether a and b are engaged in an interaction. The interaction module keeps an history of the
previous contact graphs, and uses information filtering techniques to transform contact graphs
into an interaction graph.
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This step is very important for two reasons. First, recall that information about tags position-
ing is noisy, and therefore contact graphs might be biased. Therefore this information filtering
step allows to remove spurious interactions caused, for instance, by inaccurate participant orien-
tation. Second, a contact is not necessarily the beginning of an interaction: two people crossing
each other because they travel opposite directions in the same corridor will appear for a short
period of time as being in contact, but this scenario cannot be considered as an interaction.

Finally, each pipeline step can be decorated with observers that perform additional functions.
We used this feature to export topologies to a database and to the ns-2 simulator, to stream
the graph to a graph rendering software in real-time for visualization purposes, and to compute
statistics.

4. Experimentations and Results

4.1. Calibration of the Souk Platform

Extracting social interactions from a set of (position, orientation) couples is not a trivial task.
This is particularly the case when one considers the noisy nature of the dataset, and the social
nature of the observed process: as demonstrated by Hall [13], the interaction distance is highly
impacted by multiple social parameters, such as the interacting subjects gender, their originating
country, or the size of the room.

To parameterize the different contact detection methods, we therefore defined the following
experimental process. A group of 20 volunteers was equipped with tags and colored badges.
These colored badges, clearly visible from anyone, defined 4 different classes of participants.
Participants were asked to alternatively walk around for a given period, and then chat only to
members of their own color class, and then walk again, and so on. For each of the 15 experiments,
a subset of the participants was asked to evolve in a specific area of the experimental space.
Notice that participants were not asked to discuss with all the other members of their color class,
they could for instance form smaller subgroups.

α
D

W
0
1

Σ ≥
C

decision
Figure 3: Illustration of the contact detection parameters

A social interaction between a and b is modeled as a sustained visual contact between par-
ticipants. The “visual contact” is parametrized by an angle α, which is the maximal tolerated
deviation between a’s (resp. b’s) shoulders orientation and the line-of-sight from a to b (resp. b
to a). Due to the high density of users in a crowd, we also require a and b to be close enough,
namely closer than a given threshold D. We require this contact to be observed during at least C
snapshots over the last W snapshots. Figure 3 summarizes this detection process.
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Given the a priori knowledge of which interactions should take place (assuming participants
correctly respected the interaction color classes rules), we were able to run our contact detection
model on the experimental dataset to assess the impact of the model parameters. For each tuple
of α,D,W and C values, we extracted the detected social interactions and classified them using
the following metrics:

• me: movement error: a contact was detected between two participants, while they were
moving.

• ie: interaction error: a contact was detected between participants that belong to two differ-
ent color groups.

• ic: interaction – correct: a contact was detected between participants that belong to the
same color class during a chat phase.
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Figure 4: Left: Impact of C on detection quality, for each experiment. It shows the number of detected contacts per
snapshot, averaged on the whole experiment. Right: Picture of experimental setup

Figure 4 illustrates the results obtained during this process. It represents the evolution of ic,
ie and me metrics for α = 60◦, W = 12 s and D = 1 m.

Each experiment is composed of 10 alternations of two phases: 30 seconds of movement and
15 seconds of interaction in variable sizes enclosures. During the movement phase, participants
are all required to move randomly in the enclosure. During the interaction phase, participants
are required to engage in a conversation, but only with a member of their group, materialized as
color tags (see Figure 4). In experiments 4,5,9,10,14,15, a total of 16 participants are randomly
assigned to 4 groups, in the other experiments, 12 participants are randomly assigned to 3 groups.
Experiments 1 − 5, 6 − 10 and 11 − 15 were conducted in respectively 4m2, 16m2 and 100m2

square enclosures.
Experiment 4 constantly yields to many more detected contacts as it was the experiment with

highest number of participants in the smallest space, therefore leading to much more contacts.
Interestingly, the number of correctly detected contacts is constantly higher than both ie and me.
While me is often higher than ie, especially with smaller contact threshold C, it can also be
considered as a more benign error, as detecting immobility can be done efficiently. Although the
details of such an immobility detection are beyond the scope of this study, we managed to detect
immobility with 97% accuracy on this dataset without relying on other sources of data.
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Figure 5: Interaction parameters

Given the good confidence we have in the correctly detected links, we can now explore the
spatial characteristics of the social interactions (again, these results may apply solely in France,
for educated young volunteers — these results are likely to vary in other contexts).

Figure 5a represents the interaction distance distribution, for W = 12 s, C = 4 s, and α = 60◦.
For instance, it shows that 185 contacts happened between 50 cm and 58 cm. The vast majority
of the interactions happened between 50 cm and 1 m.

Figure 5b represents the distribution of the interaction angle for correctly detected contacts,
using W = 12 s, C = 4 s, and D = 1 m. Interestingly enough, one can notice 3 distinct spikes
in the distribution, which correspond to interacting dyads (face-to-face, null angle), triads (−π/6
or π/6 angle) and tetrads (−π/4, 0 or π/4 angle): angles in parenthesis correspond to the angle
between a node looking at the barycenter, or center of mass, and the direction of another node in
regular polyhedra of 2, 3 and 4 nodes respectively.

Finally, in order to attain both a good detection probability and a relatively low false-positive
rate, we set the following parameters: W = 12 s, C = 4 s, α = 60◦ and D = 1 m.

4.2. Experimental setup

We present here two measurement studies, M1 and M2, that were conducted on July, 4th

and July, 5th 2012 during two receptions following the inauguration of a new building. The
attendance of both receptions was a mix of scientists, journalists, and representatives of local
institutions. More than 0.6 million position reports were collected during these events2.

In the first experiment, M1, we deployed 116 tags, equipping 58 out of around 100 par-
ticipants (the number of participants was continuously evolving during the experiment, 100
participants is an estimation of the maximum number of attendees at the beginning of the ex-
perimentation). In the second experiment, M2, we deployed 126 sensors, equipping 63 out of
approximately 70 participants.

2Both datasets can be downloaded freely from http://projects.laas.fr/souk. They are distributed with a
creative commons licence for further reuse.
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In both M1 and M2 we collected approximately 90 minutes of data. We provided any vol-
unteer with a pair of tags and briefly explained them the scientific aim of this experiment. In
M2, only one participant refused to take part to the experiment for privacy concerns, and the dif-
ference between M1 and M2 tag counts can be explained by the number of available functional
tags. For privacy reasons, we did not keep track of who picked which tags.

In the following, we focus on experiment M2, because it provides the best coverage in terms
of equipped attendees.

The room used for experiments is approximately a 10m × 10m square zone that is repre-
sented in Figure 6a. The room has 4 exits, and the South-East corner is occupied by a staircase
that was unreachable during the reception. Attendees were able to get food and drinks from two
large buffets (marked “Buffet” on the figure). Since these experiments also had the objective of
demonstrating some of the research activity led in the lab, a live representation of the collected
data was continuously exposed on a large screen (marked “Visualization”). The coordinate sys-
tem is indicated with the arrows on the figure (z axis omitted).

Exit

Exit

Visualisation

E
x
i
t

E
x
i
t

Buffet 1

Buffet
2

x

y

(0,0)

(a) Reception room map

●
●

●●●●●●

●●

●

●

●●
●

●●

●
● ●

●●
●●

●
●
●

●

●
●

●
●

●
●●●

●●●●

●

●

●

●

●●●
●

●
●●●

●
●

●
●

0

2500

5000

7500

10000

0 2500 5000 7500 10000
X

Y

0
100
200
300
400
500
600

Noise (mm)

(b) Standard deviation of tags position error

Figure 6: Capture environment: physical map and noise map

4.3. System accuracy and results sanitizing

Before analyzing captured data, we first present some results related to the accuracy of col-
lected data, and explain simple sanitizing operations performed on the database.

First of all, we monitored the position of several immobile tags scattered in the room. The
distribution of the collected positions for each tag provides an interesting way to evaluate Souk’s
accuracy. The measurement error follows a normal distribution. Figure 6b represents the stan-
dard deviation of the tags position depending on their position in the room. One can observe
that i) positioning is more precise in the center of the room , and ii) global accuracy is within
specification (the median standard error is 16.3 cm, and 3rd quartile is at 26.1 cm).
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Figure 7: Expected cumulative distribution function of inter-tag distance

To get a better idea of tags’ location accuracy, we can observe how left and right tags are
relatively located. Figure 7 represents the Expected Cumulative Distribution Function (ECDF) of
tags distance. As a back-of-the-envelope approximation, Leonard’s Vitruvian Man sets the ideal
shoulder width to a quarter of body height. In our country, males average height is ≈ 177 cm,
and therefore we should observe an average distance of 44 cm. The observed average distance,
however, is around 70cm and the median is 59 cm. This deviation can be explained by the
measurement process: since both tags report individually, and since position reports might get
lost, there can be a temporal shift of up to 3 s between left and right tags position reports. Thus,
when subjects move, their shoulder width is measured bigger than it actually is.

Assuming all attendees have shoulders at the same height, and since tags report individually,
tags height can be used to assess the precision of the system. The vast majority of position reports
exhibit a very small tag pair height inconsistency- 40 mm for 92% of the pairs. The remaining
8% pairs are discarded as outliers. After these filtering steps, we retain 49 traces that meet our
criteria of length and accuracy. The remainder of this paper only considers two-dimensional data.

4.4. Movement patterns: exploiting snapshots

In this section, we showcase possible exploitation of Souk’s snapshots. As stated before, a
snapshot is an instant picture of attendees positions. Transforming the continuous flow of posi-
tions delivered by the hardware platform into a series of time-discrete snapshots is an operation
that simplifies a lot the following processing operations, both computationally and conceptually,
at the price of some accuracy loss. However, since Souk captures the raw output of the hardware
platform, the impact of different snapshot creation policies can be tested and compared offline.
In the following, a snapshot is produced every 3s.

4.4.1. Movement patterns
The first question one might ask is “do we all move identically ?”. Figure 8a partly answers

this question by representing the attendees sorted by traveled distance. The median walked
distance is about 150m, with 1st and 3rd quartiles being respectively 115m and 200m.
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Figure 8: Movement patterns

Another interesting question concerns how people spread out in the experimental room. Fig-
ure 8b answers this question by representing the spatial density of position reports. The uneven
nature of the distribution is the first striking difference with the outcome of a random waypoint
mobility model, that would exhibit a more uniform positions density —of course, this is is only
an illustration, since the presence of points of interest would require a more refined discussion
on density of users, see e.g. [4].
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Figure 9: Number of pauses by attendee

The temporal aspect of the movement behavior can be explored using snapshots and some
12



basic signal processing. For instance, one can compare the position of attendees using a sliding
window, considering that an attendee is immobile if she/he spends 7 out of the last 10 snapshots
within a 40cm radius range. We call this a “pause”. It turns out that people’s pausing behavior
shows a high degree of variability, as illustrated by Figure 9. It represents the number of such
detected pauses by attendee. The median number of pauses is 17. If one had to parameter a
random way point model to represent such behavior, the average behavior would be “walk for
9.3 snapshots” and “pause for 45.6 snapshots”. Yet, all the extracted indicators related to the
pausing behavior demonstrate that this average is not representative of any attendee.

4.4.2. Destinations
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Figure 10: A sample trajectory. Color depicts time, black being the time origin and light blue the end of the experiment.

A simple exploitation of the snapshot flow is to obtain individual trajectories, like the one dis-
played on Figure 10. This figure represents the trajectory of one of the authors during M2, with
snapshots taken every 3 seconds. These trajectories can then be exploited in many application-
dependent ways. As an example, it is possible to measure the time spent by each attendee in
precisely defined zones, in order to quantify attendees’ habits and points of interests.

Figure 11 represents the time spent by each attendee on each buffet (“Buffet” zones on Figure
6a, using the same color scheme). Line 17 can be read as: “on the total buffet time spent by this
participant, 63% was in Buffet 1, and 37% in Buffet 2”. Surprisingly we can clearly observe non
uniform preferences between participants: whereas the affluence of both buffets is rather even,
individual results suggest that each attendee has a preferred buffet, even though both buffets were
providing the exact same set of food and beverages. Among the extreme profiles that spent most
of their time at Buffet 1 or Buffet 2, two are waiters that were participating in the experiment.

Overall, all these observations underline non-uniform processes. None of the observed distri-
butions are likely to be observed using a random way-point model, arguably at the exception of
the walked distance. These results suggest that (i) crowds spread not uniformly, but around some
points of interests (POIs), (ii) the attractivity of POIs varies from one individual to the other and
(iii) behavior in between POIs has a huge variability. Although devising a mobility model is not
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Figure 11: Time spent by each attendee on Buffet 1 and Buffet 2

the aim of this paper, it raises the question whether patterns of mobility of different users are
independent.

4.5. Contacts

By analyzing snapshots produced by Souk, we can use a device-based model to explore the
topology of a system consisting of devices carried by users, and we can use a user-based model
to dig some information about the interpersonal relations that took place during the experiments.
As we show hereafter, the latter is important to model the former.

We developed three simple models of what a contact is. Defining social contacts is far be-
yond the scope of this paper, but we provide these examples in order to illustrate the potential
uses of the platform. Incorporating a new contact model to Souk is a matter of minutes, the only
limitation being that such a contact model has to be solely based on position and orientation of
individuals.

4.5.1. Device-based
The simplest model considers that a and b are attendees’ devices and detects whether these

are within wireless contact range r. In this case, the simplest approach is to decide upon the
distance between them, using a unit disc wireless communication model (i.e. we count one link
iff d(a, b) < r).

Figure 12 represents the number of wireless links obtained using this simple model. Apart
from a connectivity drop around snapshot 540 noticeable at all ranges, the link count is relatively
stable over time.

4.5.2. User-based, cone
Alternatively, one can consider that a and b are the attendees themselves and that their aware-

ness is limited by a cone in which social interactions can happen. Therefore, each attendee i has
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Figure 12: Number of wireless contacts, for various wireless ranges

a “social cone” of 2 × α in front of him, with a range of 2m. Everybody in i’s cone is potentially
interacting with i. If j is in i’s cone, and i is in j’s cone, i.e., they face each other and their
distance is lower than 2m, we consider them as interacting with each other.

4.5.3. User-based, Voronoı̈
The third model we exploit relies on Voronoı̈ diagrams. Conceptually, it is based on the

hypothesis that interacting people form circles, or polygons, and that all people composing this
circle and facing it are interacting. In this context, the Voronoı̈ cell of each attendee represents
the area that is closer to this attendee than to any other. We consider that people facing each
other while sharing contiguous cells are interacting. Practically, we first compute the Voronoı̈
cell of each user i (i.e., the polygon containing all the points that are closer to i than to any other
attendee). Then we consider that i and j are interacting if (1) they have neighboring cells and
(2) they face each other, again with an angle of maximum 2 × α. This approach, despite being
algorithmically more complex, has a lower computational complexity than the cone model (n
against n2, where n is the number of attendees). Moreover, it does not require a “social” distance
parameter. Such a parameter is hard to calibrate, as it is affected by both cultural factors and
environmental factors such as local people density, as studied by Hall [13].

Figure 13a illustrates the impact of the contact detection model by representing the number
of detected social links over time for both user-based detection techniques. Two main parameters
impact the number of detected links: the detection strategy (cone, or Voronoı̈) and the maximal
deviation angle α. Voronoı̈ and cone detection techniques roughly detect the same amount of
links for a fixed α, although Voronoı̈ always detects less links than the cone method. This is
probably an impact of the “line-of-sight” effect of Voronoı̈: consider 3 attendees i, j, k aligned,
i and k can be in contact using the cone method (provided d(i, k) < 2m) whereas the Voronoı̈
method will never detect an interaction between them. Interestingly, the Voronoı̈ method leads
to a more stable link count over time. The grayed zones surrounding each curve represent the
standard deviation of the smoothing applied. Analyzing these suggest that increasing α decreases
the stability of the results, and that Voronoı̈ method always provides more stable results.
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Figure 13: Evolution of contacts and CC (RWP: Random Way Point, UB: User-Based)

4.6. Interactions
Figures 13b, 14a and 14b exploit the extracted interactions from a graph perspective by ex-

ploring the “knitting” of the structure. Figures 13b and 14a both compare traces obtained from
experiment M2 (User-based/UB, dark colors) and from a random waypoint model (RWP, light
colors) tailored to copy the observed behavior (identical attendee speed, pause duration and pause
probability).

Figure 13b represents the evolution of the largest connected component size in the contact
graph derived from traces using various radio ranges. Computing the size of the largest con-
nected component provides an upper bound of the number of devices able to exchange messages
using a multihop communication scheme at a given moment in time. One can notice a striking
difference between results obtained using synthetic and real traces: the connected component
size of synthetic traces is constant over time, and always overestimate the number of connected
attendees. This figure also illustrates the dramatic impact of range: above 3m all attendees are
connected. A 1m-range never allows to connect more than 12 devices, while a 2m-range allows
to reach nearly everyone.

Figure 14a presents another striking difference between M2 and the output of a random way-
point model. Again, we compare both UB and RWP traces. From these traces, we counted the
number of wireless contacts made by each pair of devices assuming a range of 2 m. In other
words, we compute the weights of a wireless contact graph for both traces. Figure 14a presents
the distribution of these weights. It is interpreted as follows: in the UB trace, around 28 devices
pairs were in contact between 150 and 160 times. The striking difference is that RWP trace pro-
vides a (not surprisingly) normal distribution centered around 50, whereas the real trace exhibits
a heavy tailed distribution: some devices pair connect very often while some others nearly never
connect.

Figure 14b partly explains this striking difference: it represent layouts of the obtained final
social interaction graph —as extracted by Souk in M2—, when considering only most frequent
links (more than 50 snapshots, approximately 2.5 minutes). Each link is weighted proportionally
to the amount of time its endpoints spent together. Colors represent communities found using a
classical community detection algorithm [21]. It is interesting to observe the variety of contact
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Figure 14: Digging into social interactions

patterns: whereas some attendees only have few but very strong connections, such as node 39 for
example, others like node 7 have many links of lesser importance. The modularity (see [21] for
a reference) of this graph is 0.51, which is relatively high.

The conclusion we draw from these two observations is that random waypoint models have no
chance of correctly emulating human micro-mobility because they ignore the primordial social
dimension of our behavior. As we move to meet our friends (and avoid our foes) we drastically
bias the connection pattern of the devices we carry. Even if the limits of random waypoint models
are already known, we obtain these results by analyzing the social structure of the underlying
interaction network, to showcase the possible use of the Souk platform.

5. Conclusion

This paper presents a framework to capture and analyze mobility data, with the long-term
goal of refining mobility models or deriving new ones. Instead of using raw mobility data or
abstract mobility models to test the impact of mobility on human-carried devices, we seek to
study and characterize crowd mobility using the presented framework. We argue this strategy
will enable assessment of the level of realism and generality of models and traces, allowing us to
better understand and simulate human-centered Short Range Communication-based systems.

As a first step towards this goal, we present the results obtained during the first experimental
deployments of the platform. To the best of our knowledge the dynamics of such a dense crowd
had never been assessed that precisely before. Analysis reveals that crowd behavior is all but
random, demonstrating the need of a better model toolbox to design and test mobility-resilient
software systems.
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On the practical side, the Souk platform, which is fully open source, has been designed as
a scalable solution towards analysis of large crowds: although the results presented here are
illustrated on an experiment involving 50 persons, both the hardware cost and the complexity
of software analysis (using Voronoı̈-based approach) are linear with respect to the number of
tracked individuals.

This preliminary study opens many research directions. One of the first is to design mobility
models that reflect more closely crowd connectivity dynamics. Another direction is to study this
evolving connectivity following a graph-theoretic perspective: like most observed static interac-
tion networks that exhibit scale-free properties, we conjecture that the dynamics of interactions
in human-carried mobile networks should have common properties tied to the geographical and
social distribution of users. Finally, whereas this paper focused on micro-mobility, mostly as a
means to observe social interactions, our platform is technology agnostic and allows studying
mobility at any scale. We believe that a major challenge lies in a careful study of this scaling
behavior, to find the relationships that exist between micro-mobility and macro-mobility.
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