Samuel Amstutz 
  
Nicolas Van Goethem 
email: vangoeth@fc.ul.pt
  
POLARIZATION TENSOR FOR THE INCOMPATIBILITY OPERATOR IN 2D

Keywords: 2010 Mathematics Subject Classification. 35J48, 35J58, 49S05, 49K20, 74C05, 74G99, 74A05, 74A15, 80A17 Elasticity, plasticity, strain incompatibility, dislocations, virtual work, objectivity, topolological derivative, dissipation

In this note, we compute the polarization tensor for the incompatibility operator in two dimensions. It is a companion note to the paper: "Incompatibility-governed elasto-plasticity for continua with dislocations".

1. Topological sensitivity analysis 1.1. Notations and conventions. Let Ω be a bounded domain of R d , d = 2, 3, with smooth boundary ∂Ω. By smooth we mean C ∞ , but this assumption could be considerably weakened. Let M 3 denote the space of square 3-matrices, and S 3 of symmetric 3-matrices. The superscripts t and S are used to denote the transpose and the symmetric part, respectively, of a matrix. Divergence, curl, incompatibility and cross product with 2nd rank tensors are defined componentwise as follows with the summation convention on repeated indices:

( div E) i := ∂ j E ij , ( Curl T ) ij := (∇ × T ) ij = jkm ∂ k T im , ( inc E) ij := ( Curl ( Curl E) t ) ij = ikm jln ∂ k ∂ l E mn , (N × T ) ij := -(T × N ) ij = jkm N k T im .
Here, E and T are 2nd rank tensors, N is a vector, and is the Levi-Civita 3rd rank tensor. In two space dimensions, N = N 1 e 1 + N 2 e 2 , hence the curl of T rewrites as

( Curl T ) i1 = ∂ 2 T i3 , ( Curl T ) i2 = -∂ 1 T i3 , ( Curl T ) i3 = ∂ 1 T i2 -∂ 2 E i1 .
(1.1)

One also has

(T × N ) i1 = -N 2 T i3 , (T × N ) i2 = N 1 T i3 , (T × N ) i3 = N 2 T i1 -N 1 E i2 . (1.2) 
Note that by (1.2), ( Curl E) t × N = 0 means that ( Curl E) t e 3 = 0.

1.2. Framework. Let us consider the following problem in weak form: find E ∈ H 0 such that

Ω inc E. inc F = Ω G.F ∀F ∈ H 0 . (1.3) 
According to [START_REF] Amstutz | Analysis of the incompatibility operator and application in intrinsic elasticity with dislocations[END_REF] this problem is well-posed as long as ∈ L ∞ (Ω), inf Ω > 0, G ∈ L 2 (Ω), div G = 0.

In [START_REF] Amstutz | Analysis of the incompatibility operator and application in intrinsic elasticity with dislocations[END_REF] it is also shown that the problem: find E ∈ H 0 such that

Ω αM inc E. inc F = Ω G.F ∀F ∈ H 0 , (1.4) 
with M a fixed symmetric positive definite tensor, is also well-posed if α ∈ L ∞ (Ω), inf Ω α > 0.

We will focus on (1.4), choosing 1.3. Notation. Let ω ⊂ R N with smooth boundary ∂ω and outward unit normal N . Suppose that

α = α 0 in R N \ ω, α 1 in ω, with α 0 , α 1 two positive constants.
For the rescaled domain ω := x + εω ⊂⊂ Ω we define

α = α 0 in Ω \ ω , α 1 in ω .
We consider a cost functional of form

J(E) = Ω H • Edx,
for a given tensor field H ∈ L 2 (Ω), div H = 0.

1.4. Transmission conditions. If a solenoidal tensor field T satisfies inc (αT ) = 0 weakly in a neighborhood of ∂ω then it is shown in [START_REF] Amstutz | Analysis of the incompatibility operator and application in intrinsic elasticity with dislocations[END_REF] that the following transmission conditions hold on ∂ω:

[[T 0 (αT )]] = 0 on ∂ω, (1.5) [[T 1 (αT )]] = 0 on ∂ω, (1.6) [[T N ]] = 0 on ∂ω. (1.7) By convention, [[T ]] = T ext -T int . 1.5. Formal derivation. The background solution E 0 satisfies a 0 (E 0 , F ) = l(F ) := (G, F ) L 2 (Ω) ∀F ∈ H 0 (Ω), (1.8) 
with

a 0 (E 0 , F ) := (α 0 M inc E 0 , inc F ) L 2 (Ω) . (1.9) 
Moreover, the perturbed solution E satisfies

a (E , F ) = l(F ) ∀F ∈ H 0 (Ω), (1.10) with a (E , F ) := (α M inc E , inc F ) L 2 (Ω) . (1.11) Let us define j( ) := J(E ) = Ω H • E dx, (1.12) 
and the adjoint state Ê such that

a (E, Ê ) = - Ω H • Edx ∀E ∈ H 0 (Ω). (1.13) We have j( ) -j(0) = Ω H • (E -E 0 ) = -a (E -E 0 , Ê ) = -a (E , Ê ) + a (E 0 , Ê ). Using that a (E , Ê ) = l( Ê ) = a 0 (E 0 , Ê ), we get j( ) -j(0) = -a 0 (E 0 , Ê ) + a (E 0 , Ê ) (1.14) = (a -a 0 )(E 0 , Ê ) (1.15) = Ω (α -α 0 )M inc E 0 • inc Ê dx. (1.16)
Let us introduce Ẽ := Ê -Ê0 .

(1.17)

By (1.5)-(1.7), it holds    inc (αM inc Ẽ ) = 0 in ω ∪ (Ω \ ω), [α T i (M inc Ẽ )] = -(α 0 -α 1 )T i ( inc Ê0 ) on ∂ω, (i = 0, 1), [(M inc Ẽ )N ] = β[ tr( inc Ẽ )N ] on ∂ω.
(1.18)

By (1.16), one has

j( ) -j(0) = Ω (α -α 0 )M inc E 0 • inc Ê0 dx + Ω (α -α 0 )M inc E 0 • inc Ẽ dx. (1.19)
We now approximate inc E 0 and inc Ê0 in ω by inc E 0 (x) and inc Ê0 (x), respectively, where x is the center of ω . It yields

j( ) -j(0) ∼ |ω |(α 1 -α 0 )M inc E 0 (x) • inc E 0 (x) + (α 1 -α 0 ) inc E 0 (x) • ω M inc Ẽ dx.
We further approximate Ẽ (x) by

Ẽ (x) ∼ 2 H( x ), (1.20) solution to the blown-up transmission problem      inc (M inc H) = 0 in R 2 \ ∂ω, [αT i (M inc H)] = -(α 0 -α 1 )T i inc Ê0 (x)
on ∂ω, (i = 0, 1),

[(M inc H)N ] = β[ tr( inc H)N ] on ∂ω. (1.21) 
Hence, we write

j( ) -j(0) ∼ |ω |(α 1 -α 0 )M inc E 0 (x) • inc E 0 (x) + (α 1 -α 0 ) 2 inc E 0 (x) • ω M inc Hdx. (1.22)
1.6. Topological sensitivity. In the sequel we will denote

S := inc E 0 (x), Ŝ := inc Ê0 (x), (1.23) 
and the main unknown of (1.21) by

T := M inc H, (1.24) 
where H will be called the scattered field.

Our aim is now to compute the energy variation

(α 1 -α 0 ) inc E 0 (x) • ω M inc Hdx = (α 1 -α 0 ) Ŝ • ω T int dx.
Assuming that T int is constant in the interior of the inclusion (this will proved valid in the sequel for a disk inclusion), this rewrites as

(α 1 -α 0 )|ω| Ŝ • T int .
By the problem linearity in Ŝ, there exists a 4th-rank tensor P ω α0,α1 such that

T int = P ω α0,α1 Ŝ. Hence (1.22) results in j( ) -j(0) = 2 δj + R( ), (1.25) with δj := |ω|(α 1 -α 0 )S • M + P ω α0,α1 Ŝ.
(1.26) The 4th-rank tensor M + P ω α0,α1 is called the polarization tensor. Following the lines of [START_REF] Amstutz | Topological sensitivity analysis for elliptic differential operators of order 2m[END_REF] it is proved that R( ) = o( 2), whereby δj is identified with the topological derivative of j.

Let the center of the inclusion x be the origin of the chosen coordinate system oriented in such a way that Ŝ would write as Ŝ = Ŝplan + Ŝuni + Ŝtrans , where in Cartesian coordinates,

Ŝplan =   ŝ1 0 0 0 ŝ2 0 0 0 0   , Ŝuni =   0 0 0 0 0 0 0 0 ŝ3   , Ŝtrans =   0 0 ŝ4 0 0 ŝ5 ŝ4 ŝ5 0   .
(1.27)

In the same basis we decompose S as S = S plan + S uni + S trans with

S plan =   s 1 s 12 0 s 12 s 2 0 0 0 0   , S uni =   0 0 0 0 0 0 0 0 s 3   , S trans =   0 0 s 4 0 0 s 5 s 4 s 5 0   .
(1.28)

It will be proven in the next sections that for ω the unit disk one has

S • P ω α0,α1 Ŝ = S plan • P plan α0,α1 Ŝplan + S uni • P uni α0,α1
Ŝuni + S trans • P trans α0,α1

Ŝtrans , where

P plan α0,α1 = BI 4 + C 2 I 2 ⊗ I 2 , (1.29) with B = γ(α 0 -α 1 ) γα 1 + (3 + 4β)α 0 , C = 2α 0 (α 0 -α 1 )(γ 2 + 5γβ + 4β 2 ) (γα 0 + (γ + 2β)α 1 )(γα 1 + (3γ + 4β)α 0 ) .
Moreover,

P uni α0,α1 = - α 1 -α 0 α 1 I 4 , P trans α0,α1 = -2 α 1 -α 0 α 1 + α 0 I 4 . (1.30) 
It is observed that P uni α0,α1 is degenerated in the sense of [START_REF] Amstutz | Topological sensitivity analysis for elliptic differential operators of order 2m[END_REF], i.e., • it does not depend on the shape of ω, • it does not remain bounded when α 1 → 0.

Computations in polar coordinates

Here we are in 2D and ω = B(0, 1).

Thus N = e r , τ = e θ , κ = 1, ξ = 0, γ R = 0, ∂ N = ∂ r , ∂ R = ∂ τ = ∂ θ .
2.1. Planar incompatibility: scalar isotropic case. We assume that Ŝ = Ŝplan and, in a first step, that β = 0. In cylindrical coordinates S writes

Ŝ =   Ŝrr := ŝ1 cos 2 θ + ŝ2 sin 2 θ Ŝrθ := (ŝ 2 -ŝ1 ) sin θ cos θ 0 (ŝ 2 -ŝ1 ) sin θ cos θ S θθ := ŝ1 sin 2 θ + ŝ2 cos 2 θ 0 0 0 0   CYL . By denoting ϕ 1 := ŝ1+ŝ2 2 and ϕ 2 := ŝ1-ŝ2 2 , i.e., ŝ1 = ϕ 1 + ϕ 2 , ŝ2 = ϕ 1 -ϕ 2 , it holds    Ŝrr = ϕ 1 + ϕ 2 cos 2θ, Ŝrθ = -ϕ 2 sin 2θ, Ŝθθ = ϕ 1 -ϕ 2 cos 2θ.
Then T is of form T = T rr e r ⊗ e r + T rθ (e r ⊗ e θ + e θ ⊗ e r ) + T θθ e θ ⊗ e θ .

(2.1)

With N = e r it holds T × N = -T rθ e r ⊗ e z -T θθ e θ ⊗ e z , (T × N ) t = -T rθ e z ⊗ e r -T θθ e z ⊗ e θ .
Therefore,

T 0 (T ) = (T × N ) t × N = T θθ e z ⊗ e z . (2.2) Using τ = e θ , κ = 1, ξ = 0, γ R = 0, ∂ N = ∂ r , ∂ R = ∂ τ = ∂ θ we obtain T × τ = T rr e r ⊗ e z + T rθ e θ ⊗ e z , (T × τ ) t × τ = T rr e z ⊗ e z , (T × N ) t × τ = -T rθ e z ⊗ e z .
Hence

T 1 (T ) = T rr -(∂ r + 1)T θθ + 2∂ θ T rθ e z ⊗ e z .
Moreover, everywhere in

R 2 , inc T = ∂ rr T θθ + 1 r 2 ∂ θθ T rr + 2 r ∂ r T θθ - 2 r ∂ rθ T rθ - 2 r 2 ∂ θ T rθ - 1 r ∂ r T rr ,
and

( div T ) r = ∂ r T rr + 1 r ∂ θ T rθ + T rr -T θθ r , ( div T ) θ = ∂ r T rθ + 1 r ∂ θ T θθ + 2 r T rθ . The transmission conditions in (1.21) read [αT θθ ] = -(α 0 -α 1 ) Ŝθθ , (2.3) [α(2∂ θ T rθ -∂ r T θθ + T rr -T θθ )] = -(α 0 -α 1 ) 2∂ θ Ŝrθ -∂ r Ŝθθ + Ŝrr -Ŝθθ , (2.4) [T rr ] = [T rθ ] = 0. (2.5)
This is obviously equivalent to

[αT θθ ] = -(α 0 -α 1 ) Ŝθθ , (2.6) 
[α(2∂ θ T rθ -∂ r T θθ + T rr )] = -(α 0 -α 1 ) 2∂ θ Ŝrθ -∂ r Ŝθθ + Ŝrr , (2.7) 
[T rr ] = [T rθ ] = 0. (2.8)
To sum up, one has to solve

0 = inc T = ∂ rr T θθ + 1 r 2 ∂ θθ T rr + 2 r ∂ r T θθ - 2 r ∂ rθ T rθ - 2 r 2 ∂ θ T rθ - 1 r ∂ r T rr (2.9) 0 = ( div T ) r = ∂ r T rr + 1 r ∂ θ T rθ + T rr -T θθ r (2.10) 0 = ( div T ) θ = ∂ r T rθ + 1 r ∂ θ T θθ + 2 r T rθ (2.11)
in ω ∪ (Ω \ ω) and (2.6)-(2.8) across ∂ω. Then, it is shown in [START_REF] Amstutz | Analysis of the incompatibility operator and application in intrinsic elasticity with dislocations[END_REF] that such T writes as (1.24) with H solution of (1.21). Following Eshelby's results for elasticity we search for a solution that is constant in the inclusion (i.e., T int is constant), in Cartesian coordinates, and is thus represented by a constant diagonal tensor.

We obtain the following basis of solutions.

Case A: ϕ 2 = 0, ϕ 1 = 1

T ext A = - α 1 -α 0 α 1 + α 0 1 r 2   1 0 0 0 -1 0 0 0 0   CYL , T int A = - α 1 -α 0 α 1 + α 0   1 0 0 0 1 0 0 0 0   CYL Case B: ϕ 1 = 0, ϕ 2 = 1 T ext B =    (T ext B ) rr = ( 4B r 2 -3B r 4 ) cos 2θ (T ext B ) rθ = ( 2B r 2 -3B r 4 ) sin 2θ (T ext B ) θθ = 3B r 4 cos 2θ , T int B =    (T int B ) rr = B cos 2θ (T int B ) rθ = -B sin 2θ (T int B ) θθ = -B cos 2θ
,

with B := - α 1 -α 0 α 1 + 3α 0 .
Thus the solution to the planar inclusion case reads

T = ϕ 1 T A + ϕ 2 T B .
2.2. Planar incompatibility: tensor isotropic case. In this section we seek

H ∈ H 0 (Ω) such that T = M inc H = γ inc H + β( tr inc H)I 2 .
(2.12)

The difference w.r.t. previous section is that T must not be divergence free. Nonetheless it must be compatible in ω ∪ Ω \ ω and satisfy the transmission conditions (2.6) and ( 2 Thus, identification with (2.12) and (2.1) yields

T rr = (γ + β) 1 r ∂ r H zz + 1 r 2 ∂ 2 θ H zz + β∂ 2 r H zz , (2.14) 
T rθ = γ r ∂ θ 1 r H zz -∂ r H zz = -∂ θ ∂ r γ r H zz , (2.15) 
T θθ = (γ + β)∂ 2 r H zz + β 1 r ∂ r H zz + 1 r 2 ∂ 2 θ H zz .
(2.16) 2.2.1. Case A: ϕ 2 = 0, ϕ 1 = 1. Let us consider the following guess

T ext A = 1 r 2   i k 0 k j 0 0 0 0   CYL , T int A =   A + B cos 2θ -B sin 2θ 0 -B sin 2θ A -B cos 2θ 0 0 0 0   CYL ,
with some constants i, j, k, A, B. Vanishing incompatibility condition yields that i = -j and the two transmission conditions (2.6) and (2.7) yield B = 0 and jα 0 -Aα 1 = -(α 0 -α 1 ). Thus, 

T ext A = 1 r 2   -j k 0 k j 0 0 0 0   CYL , T int A =   A 0 0 0 A 0 0 0 0   CYL , with j = α 1 A + α 1 -α 0 α 0 . ( 2 
(θ) = (ψ int ) (1) + ϕ int (θ). This entails k = 0, ψ int (1) -ψ ext (1) = (ψ int ) (1) -(ψ ext ) (1) = ϕ ext (θ) -ϕ int (θ). Now, by (2.14) one has γ + β γr ((ψ ext ) (r) + ϕ ext (θ) + (ϕ ext ) (θ)) + β γ (ψ ext ) (r) = -j r 2 , γ + β γr ((ψ int ) (r) + ϕ int (θ) + (ϕ int ) (θ)) + β γ (ψ int ) (r) = A.
Let us take ϕ ext (θ) = ϕ int (θ) = 0. It follows the particular solutions

(H zz ) ext (r) = -j γ (log r -p), (H zz ) int (r) = A 2(γ + 2β) r 2 ,
for some constant p. Condition (ψ ext ) (1) = (ψ int ) (1) yields j = -γA γ+2β , that combined with (2.17) yields

A = -(γ + 2β) α 1 -α 0 γα 0 + (γ + 2β)α 1 , j = γ α 1 -α 0 γα 0 + (γ + 2β)α 1 . (2.19)
It is verified that for γ = 1 and β = 0 one recovers the scalar isotropic case. Moreover, condition

ψ ext (1) = ψ int (1) yields p = -1 2 . Summarizing, one has (H zz A ) ext (r) = - α 1 -α 0 γα 0 + (γ + 2β)α 1 (log r + 1 2 ), (H zz A ) int (r) = - α 1 -α 0 γα 0 + (γ + 2β)α 1 r 2 2 , (2.20) 
which also satisfies (2.16).

Case B:

ϕ 1 = 0, ϕ 2 = 1.
The general form sought is

T ext B =    (T ext B ) rr = ( a r 2 + b r 4 ) cos 2θ (T ext B ) rθ = ( c r 2 + d r 4 ) sin 2θ (T ext B ) θθ = ( e r 2 + f r 4 ) cos 2θ , T int B =    (T int B ) rr = A + B cos 2θ (T int B ) rθ = -B sin 2θ (T int B ) θθ = A -B cos 2θ
.

Vanishing incompatibility condition yields that e -a + 2c = 0 and f = -d, and hence

T ext B =    (T ext B ) rr = ( a r 2 + b r 4 ) cos 2θ (T ext B ) rθ = ( c r 2 + d r 4 ) sin 2θ (T ext B ) θθ = ( a-2c r 2 -d r 4 ) cos 2θ , T int B =    (T int B ) rr = A + B cos 2θ (T int B ) rθ = -B sin 2θ (T int B ) θθ = A -B cos 2θ
.

By identification with (2.15), one has

(H zz ) ext (r, θ) = -1 2γ (c + d 3r 2 ) cos 2θ + ψ ext (r) + r γ ϕ ext (θ) (H zz ) int (r, θ) = -Br 2 2γ cos 2θ + ψ int (r) + r γ ϕ int (θ), (2.21) whereby ∆ 
(H zz ) ext = 2c γr 2 cos 2θ + ψ ext r + ψ ext + 1 γr (ϕ ext + ϕ ext ) ∆(H zz ) int = ψ int r + ψ int + 1 γr (ϕ int + ϕ int ) . (2.22) 
Moreover, condition (2.6) yields A = 0 and 

α 0 (e + f ) + α 1 B = α 0 -α 1 while condition (2.7) yields α 0 (3a + b) + α 1 (3B) = 3(α 0 -α 1 ), (2.23) 
(a + b -B) cos 2θ = β 2c γ cos 2θ + [ϕ(θ) + ϕ (θ)] γ + [ψ + ψ ] . (2.25) 
By continuity of H and Curl t H × e r at the interface, one obtains [H zz ] = 0, i.e.,

-(3c + d -3B) cos 2θ + 6[ϕ(θ)] + 6γ[ψ ] = 0, (2.26) 
[∂ θ H zz ] = 0, i.e., ( 3c 
+ d -3B) cos 2θ + 3[ϕ (θ)] = 0, (2.27) 
[∂ r H zz ] = 0, i.e., (d + 3B) cos 2θ + 3[ϕ(θ)] + 3γ[ψ ] = 0. (2.28) 
Let us now plug (2.21) into (2.16). For the interior solution, it yields

(γ + β)ψ int + β ψ int r + β γr ϕ int + ϕ int = 0 implying that ϕ int (θ) = l int cos θ + k int sin θ + q int , (2.29) 
(γ + β)ψ int + β ψ int r + βq int γr = 0. (2.30)
For the exterior solution, it yields

1 r 2 2βc γ -a + 2c cos 2θ + (γ + β)ψ ext + β ψ ext r + β γr ϕ ext + ϕ ext = 0.
This implies 

a = 2c 1 + β γ , ( 2 
B = α 0 -α 1 α 1 + (3 + 4β γ )α 0 . (2.36)
Lastly, it is checked that upon choosing ϕ int = ϕ ext = ψ int = ψ ext = 0, all required conditions including (2.14) are satisfied. We conclude

(H zz B ) ext (r, θ) = α1-α0 2γα1+2(3γ+4β)α0 (2 -1 r 2 ) cos 2θ, (H zz B ) int (r, θ) = α1-α0
2γα1+2(3γ+4β)α0 r 2 cos 2θ.

(2.37) 

T int • S plan = ( A + B 2 ŝ1 + A -B 2 ŝ2 )s 1 + ( A -B 2 ŝ1 + A + B 2 ŝ2 )s 2 = B(ŝ 1 s 1 + ŝ2 s 2 ) + A -B 2 (ŝ 1 + ŝ2 )(s 1 + s 2 ) = B Ŝplan • S plan + A -B 2 
( tr Ŝplan )( trS plan ). (2.40)

Using (T × τ ) t × τ = T zz e r ⊗ e r (T × N ) t × τ = -T zz e θ ⊗ e r , τ = e θ , κ = 1, ξ = 0, γ R = 0, ∂ N = ∂ r , ∂ R = ∂ τ = ∂ θ we obtain T 1 (T ) = -T zz e r ⊗ e r -(∂ r -1)T zz e θ ⊗ e θ + ∂ θ T zz (e θ ⊗ e r + e r ⊗ e θ ).
The transmission conditions thus read

[αT zz ] = (α 1 -α 0 ) Ŝzz , (2.41) 
[α∂ θ T zz ] = (α 1 -α 0 )∂ θ Ŝzz = 0, (2.42) [α∂ r T zz ] = (α 1 -α 0 )∂ r Ŝzz = 0. ( 2 

.43)

Taking into account that the exterior solution must vanish at infinity, the following guess will be considered

(T ext ) zz = 0, (T int ) zz = c. (2.44)
It is easy to check that the solution is, by (2.41), c = α0-α1 α1 ŝ3 . We conclude that

T int = α 0 -α 1 α 1 
Ŝuni .

In particular one observes that the associated Neumann problem is ill posed, by letting α 1 → 0. According to the terminology of [START_REF] Amstutz | Topological sensitivity analysis for elliptic differential operators of order 2m[END_REF] this case will be called degenerated. 

T zz = (M inc H) zz = γ( inc H) zz + β∆ trH = (γ + β)(∂ 2 r H θθ + 1 r 2 ∂ 2 θ H rr ) -(γ -β) 1 r ∂ r H rr + (2γ + β) 1 r ∂ r H θθ -2γ( 1 r ∂ 2 rθ + 1 r 2 ∂ θ )H rθ +β ∂ 2 r (H rr + H zz ) + 1 r ∂ r H zz + 1 r 2 ∂ 2 θ (H θθ + H zz ) . ( 2 
H int = ŝ3 α 0 -α 1 α 1 1 6γ + 4β r 2 - 4γ + 3β 2γ + β e θ ⊗ e θ , (2.46) 

  This yields 3a + b = 3(e + f ). (2.24) Now, condition (2.8) reads as [T e r ] = [β tr inc He r ] = [β∆ trHe r ] = β[∆H zz ]e r , which by (2.22) yields -B = c + d and

2. 3 .

 3 Uniaxial incompatibility. Let Ŝ = Ŝzz e z ⊗ e z , with S zz = s 3 a constant, and T = T zz e z ⊗ e z . Remark that inc T = 0 ⇒ ∂ xx T zz = ∂ yy T zz = ∂ xy T zz = 0, which implies that T = (ax + by + c)e z ⊗ e z , while div T = 0 is identically satisfied. With N = e r it holds (T × N ) t = T zz e θ ⊗ e z . Therefore, T 0 (T ) = (T × N ) t × N = T zz e θ ⊗ e θ .

2.3. 1 .

 1 Solution in terms of H. The aim is now to find H ∈ H 0 such that M inc H = T , where M = γI 4 + βI 2 ⊗ I 2 , with γ = 1 + ν and β = -ν. Recalling that for H solenoidal, tr inc H = ∆ trH, one has

  .45) Let us consider the following guessH int = c 6γ + 4β (r 2 + k)e θ ⊗ e θ , H ext = c 6γ + 4β Ψ(r)e θ ⊗ e θ .Continuity of H and ∂ r H at the interface implies thatΨ(1) = 1 + k, Ψ (1) = 2.Moreover by (2.45), the condition of constant incompatibility, equal to c, is verified in the interior, while vanishing incompatibility in the exterior implies that AΨ (r) + B Ψ (r) r = 0, with A := γ + β and B := 2γ + β. Its solution vanishing at infinity reads Ψ(r) = αr -B A , with α a constant to be fixed. The condition Ψ (1) = 2 implies that α = -2A/B. Moreover, the condition Ψ(1) = 1 + k implies that k = -2A+B B = -4γ+3β 2γ+β . Thus the solution reads

H ext = ŝ3 α 1 -α 0 α 1 1 1 r

 111 γ+β e θ ⊗ e θ . (2.47) 2.4. Transverse incompatibility: scalar isotropic case. Let Ŝ = 2 Ŝxz e x e z + 2 Ŝyz e y e z , with Ŝiz a constant, and T = 2T rz e r e z + 2T θz e θ e z . One has Curl T = 2T rz Curl (e r e z ) + 2T θz Curl (e θ e z ) + 2∇T rz × e r e z + 2∇T θz × e θ e z , that is,Curl T = 1 r T rz + ∂ θ T θz e θ ⊗ e r -∂ r T rz e r ⊗ e θ + 1 r ∂ θ T rz -T θz e r ⊗ e r -∂ r T θz e θ ⊗ e θ -∂ θ T rz -T θz r -∂ r T θz e z ⊗ e z .(2.48) Thus, after calculations and reordering,inc T = Curl Curl t T = 2 r 2 ∂ θ ∂ r (rT θz ) -∂ θ T rz e r e z+2∂ r 1 r -∂ r (rT θz ) + ∂ θ T rz e θ e z . (2.49) Therefore inc T = 0 is equivalent to the system ∂ r (rT θz ) -∂ θ T rz = ϕ(r) -∂ r (rT θz ) + ∂ θ T rz = ψ(θ) , (2.50)

  .7). Tensor T being planar we seek H as uniaxial, viz., H = H zz e

z ⊗ e z , in such a way that Curl H = -∂ r H zz e z ⊗ e θ + 1 r ∂ θ H zz e z ⊗ e r , Curl t H × e r = -∂ r H zz e θ ⊗ e θ + 1 r ∂ θ H zz e r ⊗ e θ and inc H = 1 r ∂ r H zz + 1 r 2 ∂ 2 θ H zz e r ⊗ e r + ∂ 2 r H zz e θ ⊗ e θ + 2 r 2 ∂ θ H zz -2 r ∂ 2 rθ H zz e θ e r .(2.13)

  The continuity of H and ∂ N H yields kθ + ψ ext (1) + ϕ ext (θ) = ψ int (1) + ϕ int (θ) and (ψ ext ) (1) + ϕ ext

				.17)
	Observe that		
			trT ext A = 0, trT int A = 2A.	(2.18)
	By condition (2.15) one obtains
	(H zz ) ext =	1 γ	(kθ + ψ

ext (r) + rϕ ext (θ)), (H zz ) int = 1 γ (ψ int (r) + rϕ int (θ)).

  .31)ϕ ext (θ) = l ext cos θ + k ext sin θ + q ext ,

					(2.32)
	(γ + β)ψ ext + β	ψ ext r	+	βq ext γr	= 0.
	Now, by (2.29) and (2.32), Eqs. (2.25)-(2.27) entail			
	(a + b -B) =	β γ	(2c),	(2.33)
	3c + d -3B = 0,		(2.34)
	d + 3B = 0.		(2.35)
	We infer d = -3B, c = 2B, a + b = B(1 + 4β γ ). Moreover, (2.24) yields b = -3B, while (2.33) and
	(2.35) provide a + b = B(1 + 4β γ ), whereby a = 4B(1 + β γ ). Lastly, (2.23) provides

  2.2.3. General case. The full solution to the planar incompatibility problem for the tensor isotropic case with an inclusion reads

		H = ŝ1	H zz A + H zz B 2	+ ŝ2	H zz A -H zz B 2	e z ⊗ e z ,	(2.38)
	with the interior and exterior solutions given by (2.20) and (2.37).
	Moreover									
	T int = (	ŝ1 + ŝ2 2	A +	ŝ1 -ŝ2 2	B)e x ⊗ e x + (	ŝ1 + ŝ2 2	A -	ŝ1 -ŝ2 2	B)e y ⊗ e y
	= (	A + B 2	ŝ1 +	A -B 2	ŝ2 )e x ⊗ e x + (	A -B 2	ŝ1 +	A + B 2	ŝ2 )e y ⊗ e y ,	(2.39)
	with A, B given by (2.19) and (2.36). One obtains
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itself equivalent to the single equation ∂ r (rT θz ) -∂ θ T rz = kr.

(2.51)

On the other hand it can be verified that div T = 0 iff ∂ r (rT rz ) + ∂ θ T θz = 0.

(2.52)

Moreover

T × e r = T rz e r ⊗ e θ + T θz (e θ ⊗ e θ -e z ⊗ e z )

T × e θ = -T rz (e r ⊗ e r -e z ⊗ e z ) -T θz (e θ ⊗ e r ) (T × e θ ) t × e θ = -2T rz e r e z (T × e r ) t × e r = T 0 (T ) = -2T θz e θ e z (2.53)

The transmission conditions

and it is verified that

2.4.2. Case B: Ŝxz = 0, Ŝyz = 1. One has ŜB = 2 sin θe r e z + 2 cos θe θ e z , and it is verified that It should also be noted that the Neumann case is not degenerated, and is obtained by choosing α 1 = 0. 2.5. Transverse incompatibility: tensor isotropic case. Since trH = 0, the solution in terms of T is the same as in (2.55). One seeks H ∈ H 0 (Ω) such that T = M inc H = γ inc H. Thus, H is also transverse, H = 2H rz e r e z + 2H θz e θ e z , and identification with (2.49) yields

Then the solution is easily found by identification as

γ ( Ŝxz cos θ + Ŝyz sin θ), (H θz ) ext = 0 with C = α 1 -α 0 α 1 + α 0 .

In view of (2.55) this corresponds to T int = -2C( Ŝxz e x e z + Ŝyz e y e z ) = -2C Ŝtrans .