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ABSTRACT
Recent studies have introduced co-location attacks as a pow-
erful way to extract social information from location traces.
However, these attacks all rely by some means on the position
of targeted users. This requires the attacker to be able to locate
either the user or the sensors detecting the user. Implicitly, it
also forbids the use of these attacks on devices whose location
is unknown.

In this paper, we consider attack scenarios where the attacker
has no position information on users and devices sensing users.
Such attack scenarios typically fit Internet of Things use-cases,
where low-end devices are scattered in an environment that is
unknown to the attacker: the sole source of information is a
set of timestamped user/sensor proximity logs.

To exploit proximity logs, we describe LOCA, a location-
oblivious co-location attack. Our approach exploits location-
oblivious logs in two steps: i) we exploit users’ flows between
sensors to construct a virtual map of the sensors, and ii) we
conduct a co-location attack based on that virtual map. Our
tests on both synthetic and real datasets match up to 90% of
the targeted social network with a surprisingly low number
of sensors. These results greatly extend the scope of such co-
location attacks, and hopefully awareness about their threat.
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INTRODUCTION AND PROBLEM STATEMENT
The massive diffusion of GPS-equipped smart phones and
the tremendous growth of the data market raised concerns
about the privacy of users. The balance between the benefits
*This work is supported by CNRS PEPS CLUE-WD

in terms of service, and the drawbacks in terms of exposed
private information is now better understood. To achieve this
understanding, a decisive step was to assess the amount of
private information that was enclosed in mobility traces of
users. We know that the location of individuals can reveal
much about their activities, lifestyle, job satisfaction [8] or
even social contacts. As such, the recognition that mobility
traces represent sensitive information has widened.

In this context, co-location attacks have demonstrated the
danger of implicitly revealing social networks by exploiting
the geographical proximity of located users and translating
them in terms of “social proximity” [5]. The work carried out
in [5] exploits a set of GPS-geo-tagged pictures. It divides
Earth in a roughly 80km sided grid and correlates users’ co-
locations on this grid. Due to the huge time and space span
of the dataset, accidental co-locations are extremely rare, and
users being repeatedly co-located are often socially tied, as
they explain: “two people have almost a 60% chance —nearly
5,000 times the baseline probability— of having a social tie
on Flickr when they have five co-occurrences at a temporal
range of a day in distinct cells”.

Their work highlights the following principle: if users can
be repeatedly located (either directly using a GPS device, or
indirectly by revealing their proximity to a located device),
an attacker can isolate recurring physical proximities between
users, and derive localized social contacts, that are in turn cor-
related to general social interactions. Hence, to be effective,
the attacker needs to have access to precise location informa-
tion of equipment, be they user-carried or fixed.

The connection between location inference and social ties
has later been weakened in [3] where the authors assume an
attacker able to trilaterate mobile phone users. To that end,
they assume the attacker knows the position of 37 Access
Points (APs) in a Wifi mesh over a 130m× 250m campus
region. They also assume the attacker is able to sniff some of
the packets exchanged between the APs. This allows them to
trilaterate mobile users based on APs positions and the sniffed
RSSI values (used as a proxy for AP-user distance). Then, they
exploit the obtained positions using a probabilistic framework
to infer relationships among the targeted users. Finally, they
swiftly exploit the specificities of the academic structure (i.e.
students divided in classes) to improve the attack results using
a community detection algorithm.
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Thanks to the awareness raised by the location-privacy re-
search thread, location is now generally considered as sensitive
information. The corresponding attack surface is shrinking
as users are more aware of the threat and take actions to hide
their location information. Yet, the expected massive deploy-
ment of small connected objects that are not located due to
cost reasons gives attackers access to huge amount of data
collected on users possibly without their consent. Consider
the following two scenarios:

Sniffing Smart Dust
UHF RFID readers can read passive tags at a range of 1m [13]
while cheap micro-controllers with Bluetooth Low Energy
client capabilities and low power consumption cost around
$30 (e.g. RFduino). An attacker can deploy many such sensors
for a relatively low price, and this deployment can be done
quickly as no positioning of the sensor is required. Such
sensors have a very low power consumption and need only to
be fitted with an RTC clock and some storage capacity to log
the encountered MAC addresses.

Network-based Eavesdropper
An attacker spies on the network activity generated by users’
smart phones reacting to the proximity of IoT objects such as
iBeacons from Apple, Eddystone from Google, BLE tags, or
reactive advertising platforms.

Consider for instance iBeacons scattered in the environment
(say, a shop) that interact with users’ smart phones to provide
users with an enriched experience [10]. This is typically done
by “binding” a tag to some digital content on the cloud. There-
fore, these interactions typically involve a network fetch from
the smart phone of the user (e.g., a web page, a price). The
tuple (smart phone IP, tag url, time-stamp) can be monitored
at various levels of the network infrastructure.

These scenarios show that a huge number of day-to-day ac-
tivities of users, including users’ colocations, are or will soon
be available to potential attackers. Although such personal
information on users does not include location data, the main
threat of these scenarios is the impossibility for users to even
notice the data collection, hence to take action against this
collection, and the ubiquitous nature of such data collection
campaigns.

In this paper, we go beyond location-based co-location attacks
by providing a method to interpolate social interactions from
a co-location attack performed on location-oblivious activity
traces gathered in one of the scenarios exemplified above.
Removing the dependence on the knowledge of location to
conduct co-location attacks clearly extends their threat and
scope. Indeed, this implies that cheap IoT objects represent
a potential support of such attacks. Moreover, such an attack
can be conducted without knowing the geographical layout
of the targeted area, or even knowing where the targeted area
is: it can be based on monitoring co-locations, independently
of where they happen, provided that co-occurrences of users
detected by a device represent a real co-location of users.

The principle of this attack is as follows: we assume we are
able to collect the proximity of each user to a fixed set of K
sensors for which we do not know any information apart from

that they have unique identifiers. We use proximity data of
users in two ways: first we exploit the recorded proximities
of all users as a whole, and use them to construct a virtual
map of the sensed space. Then we exploit “trajectories” of
users in this virtual space to conduct a standard co-location
attack. Through simulation on both real and synthetic datasets,
we show that in dense enough environments, such a virtual
cartography is accurate enough to reveal social contacts of
users and preferences.

Contributions
This work shows that co-location attacks can be performed
without any information on the location of users or sniffing
devices. Our approach advances the state of the art on the
following points:

1. We show that it is indeed possible to perform location-
oblivious co-location attacks, putting emphasis on the pos-
sible risks involved by the deployment of cheap and ubiq-
uitous objects, as advocated by the envisioned Internet of
Things.

2. We provide an algorithm that implements our solution. The
actual implementation is based on mysql and R scripts, mak-
ing it generic and easily reusable for further improvements
and adaptations.

3. We identify the key parameters influencing the attack ac-
curacy, namely the number of sensors, their range, and the
deployment pattern.

4. We evaluate our approach on different datasets, showing
our approach is efficient on data captured using different
technologies and on synthetic datasets. In order to fully
evaluate LOCA, we provide a comparison of our approach
with the best, to our knowledge, existing work.

The paper is structured as follows. Section 2 contains def-
initions of the model and describes the algorithm of LOCA.
Section 3 reports experimental results of the inference attack.
Section 4 highlights related work and compares it with our
approach. We propose possible mitigation strategies to reduce
the effect of the LOCA attack in Section 5.

MODEL AND ALGORITHMS

Attacker Model
We assume that an attacker has access to a set of proximity
logs, captured by wireless equipped objects. More precisely,
information available to the attacker has the following proper-
ties:

• Every user sensed by the objects has a unique identifier, e.g.,
a physical address or a cookie,

• Proximity logs contain timestamped detection of users’ iden-
tifiers.

We do not assume a particular model for the attacker to get
such information. As depicted in Figure 1, proximity logs
may come from the objects themselves, if the attacker has
physical access to IoT objects. It may also be eavesdropped
in the network infrastructure, if the attacker controls a set of
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Figure 1: Possible attack surfaces represented by red arrows.

networks links. Additionally, proximity logs may come from
the IoT service provider if the attacker is an insider —or if the
service provider has been compromised.

From these logs, the attacker computes the number of users N,
and the time span of the attack T , transforming proximity logs
into a sequence snapshots for all time instants t ∈ {1, . . . ,T}.
We consider that the attacker has K distinct proximity logs,
coming from immobile sensors deployed in a given area. Each
sensor is unaware of its position and is able to detect any subset
of the N users that pass in its vicinity at each discrete instant t ∈
{1, . . . ,T}. Consequently, the total amount of information that
is available is a set of K logs (histk)k=1..K output by sensors,
each one providing a set of detected users at every time instant
(histk : [1,T ]→ 2[1,N]).

Transformation Algorithms
In order to exploit low-level information histk, LOCA proceeds
in three steps: 1) we compute aggregated proximity logs for
each user, that provide the sequence of encountered sensors for
each user during an experiment, 2) we construct a transition
matrix that evaluates the flow of users between sensors during
the experiment, and 3) we compute an interaction matrix that
quantifies interactions between pairs of users, i.e., we generate
the co-location events for each pair of users in the dataset.

Physical sensors: proximity logs
The following definitions formalize these steps, and the LOCA
algorithm is described in Algorithm 1.

DEFINITION 1 (PROXIMITY LOG). Given a set of histo-
ries histk, the proximity log pi for user i (i ∈ 1 . . .N) is defined
as:

pi : [1,T ]→ [1,K]

t 7→
{

k i f i ∈ histk(t)
0 otherwise.

In this definition, we assume that sensors have non-
overlapping range of detection. Such an assumption greatly
simplifies presentation of later steps of the transformation
algorithm.

Virtual sensors
Yet, in real systems, assuming that sensors shall not overlap
is not realistic and too restrictive. As we will see later, our

real attack algorithm does take into account sensors overlap-
ping by means of virtual sensors. When two sensors overlap
effectively, i.e. when two (or more) sensors detect the same
user simultaneously, we assign this detection to a virtual sen-
sor defined as the intersection of sensors that detected a user
simultaneously. Notice that such a virtual sensors creation
scheme is oblivious to the position of sensors, and is solely
based on simultaneous detection of a user by different physical
sensors.

Transition matrix: users flows
Starting from proximity logs of users, we can compute the
Transition Matrix R that evaluates the transition of users be-
tween different sensors. Its elements rk,k′ measure the flow of
users that move from sensor k to sensor k′.

DEFINITION 2 (TRANSITION MATRIX). For every
(k,k′) ∈ [1,K]2, the element rk,k′ of the Transition Matrix R is
computed as follows:

rk,k′ = 1
σk

∑i∈[1,N] |{(i, t, t ′) s.t. pi(t) = k∧ pi(t ′) = k′

∧pi(t ′′) = 0,∀t ′′ ∈]t, t ′[}|
with σk = ∑i∈[1,N],t∈[1,T ] δk,pi(t),

where δ is the Kronecker delta.

Due to physical constraints, the Transition Matrix is a non
symmetric sparse matrix that contains an indirect estimation
of real sensors distance, corresponding to “virtual distance”.

Users’ similarity score
To quantify interactions between two users and evaluate their
co-location profile, we compute the similarity between their
trajectories. We define the similarity index as

∀(i, j) ∈ [1,N]2,score(i, j) = ∑
t∈[1,T ]

rpi(t),p j(t). (1)

The definition above shows that similarity index is based on the
virtual distance between sensors defined through the Transition
Matrix.

Interaction matrix: co-locations
Finally, in order to study interactions between each pair of
users, we define the Interaction Matrix M, a symmetric matrix
that measures how two given users interact. This matrix is



Algorithm 1 LOCA algorithm to compute interaction matrix from sensors logs

Require: K sensor logs histk . For brevity, the case of overlapping sensors/virtual sensors creation is omitted
Ensure: return the interaction matrix M

1: function COMPUTESIMILARITYMATRIX(histk)
2: int P[1 . . .N,1 . . .T ] = {{0}} . Proximity logs for users, initially null
3: int R[1 . . .K,1 . . .K] = {{0}} . Transition matrix on sensors, initially null
4: int M[1 . . .N,1 . . .N] = {{0}} . Interaction matrix between users, initially null

5: for t = 1 . . .T do . First step: compute proximity logs
6: for k = 1 . . .K do
7: for all i ∈ histk(t) do
8: P[i, t]← k
9: end for

10: end for
11: end for

12: for i = 1 . . .N do . Second step: compute transitions
13: for t = 1 . . .T −1 do
14: if P[i, t] , 0 then . User i is detected at time t:
15: if {t ′ > t,P[i, t ′] , 0} , /0 then . If user i is detected after t,
16: let ti = min{t ′ > t,P[i, t ′] , 0}
17: R[P[i, t],P[i, ti]]← R[P[i, t],P[i, ti]]+1 . then update transition matrix accordingly.
18: end if
19: end if
20: end for
21: end for
22: for k,k′ = 1 . . .K do
23: R[k,k′]← R[k,k′]/∑t∈T |histk(t)| . Normalize transitions
24: end for

25: for i = 1 . . .N do
26: for j = i+1 . . .N do
27: score← 0
28: for t = 1 . . .T do
29: score← score+R[P[i, t]],P[ j, t]] . Third step: compute interactions based on similarity
30: end for
31: M[i, j]← score
32: M[ j, i]← score
33: end for
34: end for
35: return M . Output interaction matrix
36: end function

the result of the co-location inference attack and contains
the whole amount of co-location events detected during the
experiment.

DEFINITION 3 (INTERACTION MATRIX). Element mi, j
of the Interaction Matrix M is defined as:

mi, j = m j,i =

{
score(i, j) if i , j.
0 if i = j. (2)

Algorithm 1 describes the complete code used to compute the
interaction matrix.

To sum up, LOCA exploits proximity logs in two complemen-
tary ways. First, to compute similarity between users, in a
quite classical way. Second, to establish a virtual “map” be-
tween sensors: as we will see in the next Section, this map is

an estimation of sensors distance that is sufficient to conduct
an efficient colocation attack.

EXPERIMENTAL RESULTS
In this section, we present simulation results quantifying the
accuracy and sensitivity of LOCA, as presented in Section 2.2.

Datasets
The LOCA algorithm has been tested on three real-world
datasets and a set of synthetic ones, described hereafter. Each
dataset consist in two parts: a) a set of users location traces
and b) a ground truth representing for the real number of social
interactions of each pair of users. The difficulty of acquiring
datasets that contain both position information and social con-
tacts severely constrained the number of datasets that could be
exploited.



Synthetic
We first test the accuracy of the inference on a broad range of
synthetic datasets generated thanks to the pymobility gen-
erator [1]. Table 1 contains the settings used to generate the
datasets. We configure pymobility to simulate two types
of gatherings, one corresponding to a High Density situation
(hereafter, HD) with 40 individuals in a 100m2 area, and one
representing a Low Density situation (hereafter, LD) with again
40 individuals in a 900m2 area. For both gatherings, we gen-
erate 10 independent mobility traces of 1000 seconds using
Random Walk (rw), Random Waypoint (rwp), Random Di-
rection (rd), Truncated Levy Walk (tlw), Gauss-Markov (gm),
Reference Point Group Mobility model (rpgm), Time-variant
Community (trw). For each of these traces, we also gener-
ate the corresponding contact traces using a distance-based
interaction model as our ground truth, adapted from [12].

Real/SOUK
The SOUK data set contains precise trajectories of 45 users
during a 45 minutes cocktail party [11], captured using ultra-
wide band real-time location technology in a 100m2 (10m×
10m) closed space. The ground truth consists of detected
social interactions using the algorithm provided in [11]. Both
dataset and algorithms can be freely downloaded [15].

Real/MILANO
The MILANO data set is similar to the SOUK dataset. It was
captured using a similar technology and contains trajectories of
64 users during a 45 minutes cocktail party in a 225m2 (15m×
15m) closed space. The ground truth consists of detected
social interactions using the algorithm provided in [11, 15].

Real/Badges
The Badge dataset [7] contains trajectories of 39 employees
equipped with active sociometric badges in an office envi-
ronment during approximately one month. The considered
ground truth consist of the cumulated face-to-face interaction
time as recorded by the RFID badges. Even though in total
39 employees were equipped with badges, not all employees
were present everyday. We only retained days where strictly
more than 20 employees were present.

Metrics and Methods
For each dataset, we virtually “deployed” a set of K co-
location sensors in the experimental space. The set of K
proximity traces extracted from each sensor is then the only
input of the inference algorithm: we exploit the sensor traces
without relying at any point on their location. To measure
the accuracy of the attack, we compare the results obtained
from the attack represented by an interaction matrix M with
the ground truth matrix G obtained from the original datasets.

Space [m] Nodes Step

Name Width Length N vmin Vmax T

HD 10 10 40 0.01 m/s 0.5 m/s 1000
LD 30 30 40 0.01 m/s 0.5 m/s 1000

Table 1: Input parameters.

The ground truth matrix is similar to the interaction matrix M
in the sense that it contains the real interaction behavior for
each pair of users.

To measure the accuracy of the inference, we rely on two
metrics:

1. Global Social Network Inference: We measure the accu-
racy at which the attack identifies the strongest social ties of
the ground truth social network G. To do so, we only target
the Kin pairs of G having the highest number of interactions.

We use Receiver Operating Characteristic (hereafter, ROC
curves) analysis to compare different models by represent-
ing the evolution of the true positive rate (in our case: the
predicted user pair is indeed one of the Kin strongest social
ties) as a function of the false positive rate (in our case: the
predicted user pair is not one of the Kin strongest ties).

The Area Under the Receiver Operating Characteristic curve
(or Area Under Curve, hereafter denoted as AUC) summa-
rizes the obtained inference results. It can be interpreted
as the probability of LOCA to assign a higher score to a
randomly chosen user pair in Kin than to a randomly chosen
user pair not in Kin. This methodology is commonly used
in classification analysis to determine which of the studied
models has the best prediction capabilities.

We typically set Kin = 3N to obtain a connected social
network with an average degree equal to 3. Yet, due to the
different levels of social activity of the nodes, we often
observe a huge bias towards more social nodes.

2. Local Best Friend Inference: For each node i ∈ [1,N], we
measure the size of the intersection between lists of i’s 10
best friends (i.e. strongest social ties) in G and in M: we
measure the recall@10 for each user. This is a tougher test
for LOCA inference since we remove the bias toward more
social individuals to also target weakly socialized users for
which data is mechanically sparser.

To provide a comparison baseline, we also assessed the accu-
racy of the co-location attack presented in [3]. As this work
is, to the best of our knowledge, the closest to our proposal
to date, we implemented their approach to compare it against
our algorithm. In the following, we refer to this approach as
the State of the Art (SoA), obtained using the full trajectories.
The gap between SoA and LOCA inference accuracy therefore
measures the added cost of having no position information.

Sensors Deployment Strategies
Two parameters greatly impact the inference accuracy: the
number of sensors K, and their range. These two parameters
indirectly define the area covered by sensors. Intuitively, and
as experiments will confirm, the higher the coverage achieved
by sensors, the more accurate the attack is.

But another important parameter influencing the attack success
is the density of users: sensors should be placed in dense
areas in order to gather as many records as possible. Yet,
adversary’s control over this parameter is limited as he might
have no control over sensors placement, or might not know a
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Figure 2: (a) Deployment of 15 sensors in SOUK cocktail-room according to the Density strategy.
(b) Representation of the Transition Matrix as a weighted graph laid out using the Fruchterman and Reingold algorithm.

priori where users will densely regroup. We therefore study
the following strategies:

• Grid: sensors are deployed along a regular grid starting
from the center of the area.

• Density: sensors are placed using a priori knowledge of
high-density areas (i.e. where people will gather and where
social interactions are more likely to happen). This deploy-
ment represents the best possible situation and provides
an upper bound of the sensor placement impact. Such in-
formation could have been obtained through observation
of previous similar gatherings or exterior knowledge (e.g.
metro platforms rather that metro corridors), or by targeting
Points of Interest.

• Spiral: sensors are placed starting from the center of the
area, following a counter-clockwise spiral extending up to
the periphery of the area.

• Random: in this strategy, sensors are randomly located in
the experimental area.

Note that the impact of poor sensor placement on LOCA is
twofold: first, badly located sensors will provide very few
co-locations, hindering the score computation, and second
badly located sensors will degrade the relation between the
virtual distances matrix of sensors (the Transition matrix) and
the actual physical distances of sensors.

The last parameter conditioning the covered area is the sensors
detecting radius. A 100cm range could for instance represent
the immediate range of an iBeacon device or a very conser-
vative read range for an UHF RFID passive tag reader [13],
whereas BLE range can be set by the programmer for up to

50cm in practical contexts. The impact of range is detailed in
Section 3.5.

Quality of the Virtual Mapping
At the heart of our approach is the exploitation of users’ sen-
sor to sensor flows to estimate the distance between sensors
through the construction of the Transition Matrix. Implicitly,
we assume that the number of individuals going from one
sensor to another is related to the distance between sensors.

Figure 2 illustrates the correlation between the real positions
of sensors (Figure 2(a) – left) and the virtual positions ob-
tained using the Transition Matrix values, represented using a
Fruchterman-Reingold layout algorithm (Figure 2(b) – right).
One can globally observe a good match: close sensors have
high values in the transition matrix (symbolized by bold lines
on the right representation), and therefore end up with a low
“virtual distance” when computing the LOCA interaction ma-
trix. Figure 2(b) depicts an example of virtual sensors as
created by the LOCA algorithm in the case two sensors overlap
(the same strategy is applied for overlapping of more than two
sensors). The virtual sensors are named after the concatenation
of identifiers of intersecting sensors (e.g., 3−9 corresponds
to the overlapping of sensors 3 and 9).

Results

Synthetic/global
Table 2 summarizes the inference accuracy AUC for the differ-
ent considered synthetic models. High density setups perform
consistently better. This is explained by the relative area cov-
ered with sensors: the HD setup area is 9 times smaller than
the LD area, resulting in a higher coverage with the same num-
ber of sensors. A high coverage provides a wealth of data to
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Figure 3: AUC results of the (a) SOUK and (b) MILANO datasets for different deployment strategies.

Strategy

Model Config Grid Spiral Density Random

gm HD 0.651 0.719 0.790 0.703
gm LD 0.523 0.540 0.553 0.551
rd HD 0.663 0.738 0.840 0.752
rd LD 0.529 0.553 0.555 0.557
rpgm HD 0.834 0.872 0.922 0.870
rpgm LD 0.696 0.700 0.798 0.762
rw HD 0.696 0.766 0.916 0.820
rw LD 0.524 0.545 0.722 0.658
rwp HD 0.685 0.735 0.785 0.698
rwp LD 0.557 0.604 0.580 0.547
tlw HD 0.665 0.723 0.850 0.753
tlw LD 0.520 0.534 0.600 0.561
trw HD 0.837 0.874 0.898 0.860
trw LD 0.650 0.685 0.770 0.748

Table 2: Global network inference using LOCA on synthetic
dataset: AUC of the inference accuracy using 15 sensors of
1m range.

accurately estimate relative distance of sensors and ensures
that most of the interactions are captured.

Not surprisingly, models where social interactions have an
impact on the physical proximity of the users (namely trw and
rpgm) are more accurately inferred than purely random ones,
even in the worst case of a random deployment strategy.

Real/global
Figure 3 presents the AUC results for SOUK and MILANO
datasets global inference using the different strategies and a
varying number of sensors. It reads the following: for K =
15 sensors deployed during the SOUK cocktail, the AUC of
LOCA inference is 66% for the Random strategy, 72% for
the Grid strategy, 76% for the Spiral strategy and 89% for
the Density strategy. Colored areas represent the standard
deviation of the corresponding randomized strategies assessed
over 10 independent runs. Since the SoA attack relies on full

trajectories, it is not impacted by K, and yields 88% and 84%
accuracies on SOUK and MILANO respectively.

On both datasets, the impact of K is clear: more sensors im-
prove the inference accuracy. The only exception to this trend
is the Density strategy on SOUK: it peaks quickly with sur-
prisingly few sensors: 16 sensors (AUC is 93.14%) only cover
about 12% of the 100m2 of the room, yet allow to identify
the quasi-totality of the 150 most important social links. The
slight decrease in the accuracy when more sensors are added is
explained by the virtual sensor creation mechanism: as more
sensors are only added in the densest areas, many sensing
radii tend to overlap, leading to the creation of many “virtual
sensors” that each contain little information. This globally
degrades the quality of the Transition Matrix and therefore the
quality of the inference.

The Spiral strategy follows the Density results: this translates
the fact that most of the social interactions happened in the cen-
ter of the room on both datasets. Covering the SOUK area with
36 sensors (28% of the room covered) yields a 83% accuracy.
To completely cover the SOUK area, 120 sensors are required
for 89.2% accuracy (point not shown on picture), slightly less
than Density strategy optimum. This again illustrates the fact
that too many sensors add much noise to the process that can
impede the detection with spurious proximities. The Random
strategy is only efficient when many sensors are available, but
yet yields accuracies close to the SoA on MILANO.

Figure 5 zooms on the accuracy results by presenting the ROC
curves of the LOCA global network inference for K = 15 on the
SOUK dataset. The Density strategy quickly identifies 50% of
the 150 targeted links with a low false positive rate, similarly to
the SoA approach. Both Grid and Random strategies provide
the same detection performance with 12% false positives. The
random strategy identifies some of the targeted links early on,
but then performs no better than a purely random classifier.

Sensitivity analysis/global Figure 4 illustrates the sensitivity
of LOCA to the targeted social tie strength. The left-hand side
of the picture, SOUK, considers 45 participants, therefore the
number of possible social links is almost 1000. In Figure 4(a),
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Figure 4: Impact of Kin on SOUK (a) and MILANO (b) datasets, considering a deployment of 15 sensors with a 1m range.
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Figure 5: Detailed ROC for the SOUK dataset using 15 sen-
sors: True Positive Rate (TPR) as a function of False Positive
Rate (FRP).

Kin = 250 corresponds to the detection of the 25% strongest
social ties. Similarly, on the right-hand side of the figure, MI-
LANO contains 64 users, resulting in slightly more than 2000
possible links. Hence, in Figure 4(b), Kin = 250 corresponds
to the detection of the first eighth of social ties.

As Kin grows, we measure the ability of LOCA to detect weaker
social ties. As stronger ties are easier to detect than weaker
ones, the global inference accuracy decreases when Kin grows.
The hierarchy of strategies (e.g. density is more efficient than
random) is globally unchanged, whatever Kin.

Figure 6 evaluates the impact of range on detection accuracy.
Due to the different sizes of SOUK and MILANO experimen-
tal spaces, the peak accuracy is achieved at different ranges:
2.6m for SOUK and 1.7m for MILANO. One can observe that
3m range sensors perform poorly on the MILANO dataset.

This fact is partly explained by the combined effect of our
virtual sensors creation scheme and the different density of
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Figure 6: Impact of sensors range on inference accuracy for
15 sensors evenly distributed in space.

users. In the SOUK experiment, the spatial density is higher
than in the MILANO experiment, reducing the coverage of the
assumption that co-locations and interactions are correlated.
From this observation, one may intuitively assume the optimal
range would be smaller for SOUK than for MILANO. Let
us now consider our virtual sensor definition strategy: if (at
least) two sensors overlap and (at least) one co-location hap-
pens in an intersection, then we create a virtual sensor whose
sensing area is the intersection of the overlapping sensors. If
sensors are densely deployed, many ranges will overlap, and
therefore many virtual sensors will be created. If too many
of these virtual sensors are created, each will end up with a
little fraction of the (finite) localisation events, leading to a
relatively poor distance estimation. Hence, the optimal range
for a scattered social event is finally lower than the optimal
range we measured in a dense social event.

Badges/global
Table 3 presents the AUC results for the Badges dataset. In
this dataset, due to the specificities of the office environment,



Day: 4 5 6 7 8 11

Population: 24 28 31 32 29 23

AUC: 0.776 0.740 0.683 0.665 0.620 0.588

Table 3: Badges Dataset results.

we chose to place sensors near points of interests only: coffee
and meeting rooms, printers, and managers’ offices. In total,
30 sensors of 50cm range are virtually deployed, covering
approximately 7.5% of the office space. Results present a
huge variability although each day is taken as an independent
experiment. The low mobility of the users combined with the
low number of social interactions happening per day could
explain the lower accuracy of days 8 and 11.

SOUK and MILANO/local
Figure 7 offers a local perspective on LOCA accuracy. It repre-
sents for each Dataset the probability of having x of each indi-
vidual’s 10 best friends correctly inferred. Surprisingly, SOUK
outperforms MILANO from this local perspective. Note that
this does not contradict the global results as the objectives are
rather different: detecting the strongest social ties among a
whole network is different than detecting each participant’s
strongest social ties. The difference between SOUK and MI-
LANO can be explained by the participants behaviors: in
SOUK, most of the 45 participants stayed for the whole ex-
perimentation, whereas many of the 64 participants of the
MILANO cocktail left quickly, providing LOCA with very few
data to infer their local ties.
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Figure 7: Probability to have exactly x out of 10 best friends
correctly identified by LOCA using 15 sensors of 1m range.

Together, these experimental results show the relatively good
accuracy of LOCA inference considering the sparse informa-
tion sources on which it relies. Moreover, they allow us to
identify the key factors driving the inference accuracy: the
number of sensors and their range, and above all the sensors
deployment strategy. Indeed, having even a slight hint about
the likely locus of future interactions (e.g. the Spiral strategy)
considerably improves the inference accuracy over a Random
sensor placement. Surprisingly enough, LOCA not only allows

us to derive an accurate picture of the social network’s most
salient contacts, but also provides a fairly precise estimation
of each users’ individual contacts, as it correctly infers on av-
erage more than 6.5 out of the 10 strongest ties on the SOUK
dataset for the Density strategy.

RELATED WORKS
The thread of co-location research started recently along with
our ability to explore rich datasets containing both location
and social information. One paradigmatic such dataset is the
Reality Mining dataset and its analysis in [8]. Similarly, [5]
exploited Flickr geo-tagged pictures at the global scale to
infer Flickr declared friendship network, and [4] relied on the
exploitation of both Location Based Systems and cell phone
CDRs. Those works more generally question the interplay
between physical proximity and social proximity, and typically
rely on data having large geographical and temporal scales.
Our work focuses on local observation of users’ behaviors
(as opposed to, say, day and country-wide CDR-based user
tracking) in order to stick to the IoT-based sensor use case.

More recent studies exploit the connection of proximity and
social ties with a privacy angle [3, 14]. These landmark works
evaluate the privacy implications of wireless communications
in office environments. Having equipped for 3 months a set of
80 university users with tracked mobile phones, the authors
use the campus Wifi map to locate users and infer, from an
eavesdropper perspective, the social contacts of the users as
captured by the tracked mobile phone. Their attack assumes
the adversary is able to “trilaterate” mobile phones by us-
ing both Access Point positions and exfiltered RSSI values.
In [14], the authors study the impact of obfuscated location
information on co-location attack accuracy. Our approach is
both more localized in time and space, and assumes that no
location information is available at all.

A closely related study [6] exploits another wireless-related
information dataset to infer social contacts: the list of known
SSIDs often broadcasted by smart phones to speedup the link
establishment to APs. The authors exploit the similarity of
SSID lists to infer social proximity. In this approach, the
vast variety of encountered SSIDs allows them to efficiently
fingerprint users. In contrast, our approach is generic as it
does not depend on the specificities of one wireless protocol,
and exploits only proximities.

MITIGATION STRATEGIES
We here present some suggestions to mitigate the success of
LOCA-like attacks. Those strategies are known: in that respect
LOCA simply extends the scope of co-location attacks against
which strategies have already been elaborated.

A first step is to prevent LOCA from following the same indi-
vidual when he/she moves across different sensors. This can be
achieved for instance by mix-zones [2], by extending the scope
of traditional Location Privacy Protection Mechanisms [16, 9],
or by simply relying on the use of many pseudonyms —this
last solution applies only if the traceability of a user across
different sensors is not an important feature for the provided
services.



Another mitigation is to limit the attack surface of such sys-
tems, by avoiding network operations, especially if they con-
tain identifying information. One strategy is to design “silent
protocols” such that the carried device cannot be inadvertently
detected by an eavesdropping device. Since RFIDs can be
passively read at distance, the users can store them in shielded
wallets that are available on the market.

CONCLUSION
In this paper, we presented LOCA, a simple co-location infer-
ence algorithm that has the particularity of not relying on posi-
tioning information. Instead, it uses sensed data to estimate the
physical distance between sensors. The so-constructed virtual
distances are then used to conduct the co-location inference at-
tack. Experimental results show that LOCA inference remains
accurate even if the monitored space is sparsely covered, and
highlights the importance of the sensor placement strategy in
such contexts.

LOCA shows that location is not required to conduct co-
location attacks. This conclusion strikes the potential privacy
issue of trending IoT devices that could become potential at-
tack surfaces for co-location attacks. Such attacks could be
conducted either by directly monitoring users’ proximity (i.e.,
altering the device’s firmware to report nearby users), or for
instance by monitoring the web page requests generated by
close users’ smart phones as LOCA requires no information
about the sensors themselves.

Going further users’ privacy, LOCA demonstrates a potential
risk for service providers in the Internet of Things ecosystem:
even though service providers may not store positioning in-
formation of deployed communicating objects, performing
LOCA on the logs of users-objects interaction will provide
lots of information on objects physical repartition. As such,
by raising this issue over exploitation of users-objects interac-
tion logs, we advocate the deployment of more decentralized
architectures for sustainable ubiquitous systems deployment.
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