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Abstract. Given altimetry measurements, the identification capability of time varying inflow discharge Qin(t) and13

the Strickler coefficient K (defined as a power-law in h the water depth) of the 1D river Saint-Venant model is investi-14

gated. Various altimetry satellite missions provide water level elevation measurements of wide rivers, in particular the15

future Surface Water and Ocean Topography (SWOT) mission. An original and synthetic reading of all the available16

information (data, wave propagation and the Manning-Strickler’s law residual) are represented on the so-called iden-17

tifiability map. The latter provides in the space-time plane a comprehensive overview of the inverse problem features.18

Inferences based on Variational Data Assimilation (VDA) are investigated at the limit of the data-model inversion19

capability : relatively short river portions, relatively infrequent observations, that is inverse problems presenting a20

low identifiability index . The inflow discharge Qin(t) is infered simultaneously with the varying coefficient K(h). The21

bed level is either given or infered from a lower complexity model. The experiments and analysis are conducted for22

different scenarios (SWOT-like or multi-sensors-like). The scenarios differ by the observation frequency and by the23

identifiability index. Sensitivity analyses with respect to the observation errors and to the first guess values demon-24

strate the robustness of the VDA inferences. Finally this study aiming at fusing relatively sparse altimetric data and25

the 1D Saint-Venant river flow model highlights the spatiotemporal resolution lower limit, also the great potential in26

terms of discharge inference including for a single river reach.27

28

Keywords. River flow, variational data assimilation, altimetry, SWOT, discharge, Saint-Venant, Manning, Strick-29

ler.30

1. Introduction31

While the in situ observation of the continental water cycle, especially river flows, is declining, satellites provide32

increasingly accurate measurements. The future Surface Water and Ocean Topography (SWOT) mission (CNES-33

NASA, planned to be launched in 2021) equipped with a swath mapping radar interferometer will provide river34

surface mapping at a global scale with an unprecedented spatial and temporal resolution - decimetric accuracy on35

water surface height averaged over 1 km² [46]. An other highlight of SWOT will be its global coverage and temporal36

revisits (1 to 4 revisits per 21-days repeat cycle). In complementarity with decades of nadir altimetry on inland37

waters [7], SWOT should offer the opportunity to increase our knowledge of the spatial and temporal distribution of38

hydrological fluxes including stream and rivers see e.g. [3, 4]. Thanks to this increased observation of water surfaces39

worldwide, it will be possible to address a variety of inverse problems in surface hydrology and related fields, see e.g.40

[43]. Given these surface measurements (elevation, water mask extents), the challenging inverse problems consist to41

infer the discharge but also the unobservable cross sections, the roughness coefficients and the lateral contributions.42

These inverse problems are more or less challenging depending on the space-time observations density, the targeted43

space-time resolution, the potential prior information and the measurements errors.44

A relatively recent literature addresses some of these inverse questions including in a pure remote sensing data45

context potentially sparse both in space and time, see e.g. [4] for a recent review. Few low-complexity methods, based46

either on steady-state flow models (like the Manning-Strikler’s law) or hydraulic geometries (empirical power-laws)47

have been developed, see [5, 16, 18, 56]. In [15] the performances obtained on 19 rivers with artificially densified daily48

observables are fluctuating depending on the algorithm tested. In order to better constrain these under-determined49

inverse problems, prior hydraulic information or empirical laws may be required. It is shown in [18] with a steady50

model that given one (1) bed level measurement, an effective bathymetry can be infered quite accurately throughout51

the river reach; see also [21, 22] in a purely academic context. No approach aforementioned does satisfactorily solve52

1
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the equifinality issue related to the bathymetry and friction. Indeed if infering the triplet formed by the bathymetry,53

friction and discharge then an equifinality issue is a-priori encountered, see e.g. the discussion led in [18].54

55

In the river hydraulic community, the most employed data assimilation studies are based on sequential algorithms,56

the Kalman filter and its variants. Let us cite for example [8, 47, 48] who estimate flood hydrographs in the 1D Saint-57

Venant model from dense water surface width measurements; the bathymetry and roughness are given. [45] considers58

a diffusive wave model with the bathymetry and friction coefficients given; it corrects the upstream discharge via59

the assimilation of downstream water depth measurements. The persistence in time of the correction due to the60

assimilation of synthetic SWOT observations on discharge forecasts of ⇠ 500 km of the Ohio river is assessed by [1].61

[40] shows the benefit of assimilating virtual SWOT observations for optimizing Selingue dam release (lake depth) and62

river depth in the upper Niger basin. The impact of the hydraulic propagation time (25 days at low flow) compared to63

synthetic SWOT observation maximum spacing (9 days in this case) on assimilation methods is highlighted through64

downstream discharge estimates. Most of those twin experiments use temporal observation sampling much greater65

than the hydrodynamic phenomena time scales, moreover in large river reaches (potentially in network) of several66

hundreds of km. This ensures multiple measurements of the flow variations. The infered parameters are generally the67

water depth h or a constant Strickler coefficient K but rarely both parameters simultaneously.68

69

Despite the huge improvement of the remotely sensed data (e.g. by satellite altimetry) and the use of data assimila-70

tion methods (variational or sequential), the relative sparsity of the acquired data is challenging for river applications.71

If considering a “small scale” river portion regarding satellite spatio-temporal sampling, typically hundred kilome-72

ters long, the hydraulic information propagates faster than the satellites revisit. The model inversions are generally73

performed at observation times and propagated with a Kalman filter see e.g. [55, 40] and [4] for a review.74

The Variational Data Assimilation (VDA) approach based on the optimal control of the dynamics flow model, see75

[50, 33, 42, 14] and e.g. [6], consists in minimizing a cost function measuring the discrepancy between the model outputs76

and the observations. This approach aims at optimally combining somehow in the least square sense, the model, the77

observations and potential prior statistical information This approach is widely used in meteorology and oceanography78

since it makes possible to “invert” high-dimensional control vectors and models. In some circumstances, it is possible79

to infer unknown “input parameters” such as the boundary conditions (e.g. inflow discharge), model parameters (e.g.80

roughness) and/or forcing terms. Among the first VDA studies related to hydraulic models let us cite [44, 11, 49],81

next [2, 27, 10] which infer the inflow discharge in 2D shallow water river models. Only a few studies tackle the82

identification by VDA of the complete unknown set that is the inflow discharge, the roughness and the bathymetry.83

Infering the discharge and hydraulic parameters from water surface measurements is not straightforward and may84

be even impossible, depending on the flow regime and the adequacy between the observations density and the flow85

dynamics. The inference of the triplet (inflow discharge, effective bathymetry and friction coefficient) is investigated86

in [28, 29] from relatively constraining surface Lagrangian observations. Based on a real river dataset (Pearl river in87

China), the upstream, downstream and few lateral fluxes are identified from water levels measured at in-situ gauging88

stations in [27]; however the bathymetry and roughness are given. The assimilation of spatially distributed water89

level observations in a flood plain (a single image acquired by SAR) and a partial in-situ time series (gauging station)90

are investigated in [31, 30]. In [20, 34] the inference of inflow discharge and lateral fluxes are identified by VDA by91

superposing a 2D local “zoom model” over the 1D Saint-Venant model. These studies are not conducted in a sparse92

altimetry measurement context. More recently [19] have investigated discharge identification of the 1D Saint-Venant93

model by VDA under uncertainties on the bathymetry and the friction coefficient in a purely academic case.94

Finally it is worth to mention that the VDA approach provides instructive local analysis sensitivity maps, making95

possible to better understand the flow and the model, in particular the influence of the bathymetry and local friction96

coefficient values, see e.g. [37].97

98

The present study investigates the capabilities of accurate, repetitive but relatively sparse altimetry dataset (SWOT99

like) to infer time varying river discharges. To do so, firstly the inverse problem is simply represented by the so-called100

identifiability map. This map represents all the available information in the (x, t) plane, that is the observations (the101

observed “space-time windows”), the hydrodynamic waves propagation (1D Saint-Venant model) and the misfit to the102

“local equilibrium” (more precisely the local misfit with the steady state uniform flow represented by the Manning-103

Strikler law). This preliminary analysis makes possible to roughly estimate the time-windows which can be quantified104

by VDA since the inflow discharge values arise from these observed “space-time windows”. This original reading of105

the hydraulic inverse problem is qualitative only but fully instructive. Indeed this makes possible to roughly estimate106

whether the sought information has been observed or not, in particular in terms of frequency (providing orders of107

magnitude). Next the inference of the inflow discharge Qin(t) and the Strickler coefficient K, with K depending on the108

water depth h (that is a power-law depending on the state of the system) is analyses into details. This analysis provides109

an answer to the temporal variability identifiable given a spatio-temporal distribution of water surface observations.110

The numerical results are presented first on a so-called “academic” case with synthetic data, making possible to111

focus on the computational method (based on the classically called twin experiments) without the specific real data112

difficulties (difficulties due to potential difference of scales, measurement errors, un-modeled subscale phenomena113
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etc). This case presents a relatively low identifiability index , that is a quite high frequency hydrograph variations114

compared to the observation frequency. A basic guideline to estimate the a-priori minimal identifiable frequency is115

provided. Next a river portion (74 km long) of the Garonne river (France) [51, 32] is considered with few scenarios of116

observation frequency: from the SWOT like data (21 days period with 1 to 4 passes at mid-latitudes) to a multiple-117

sensor scenario (or SWOT Cal-Val orbit, ⇠ 1 day period). The bathymetry is either provided or estimated from one118

in-situ measurement following [21, 18]. The computational code developed for the present inverse analyses is part of119

the computational software DassFlow [36].120

121

122

123

124

125

126

127

128

The outline of the article is as follows. In Section 2, the 1D Saint-Venant forward model and the inverse method based129

on VDA are presented, along with the academic test case and the Garonne river case. In Section 3 the identifiability130

maps are presented and analyses. Next based on the VDA process, the discharge identification is discussed for various131

observation samplings. In Section 4, numerical experiments are conducted to infer by VDA the pair (Qin(t), K(h));132

the bed level is either given or estimated from one (1) in-situ value and a low complexity model. Sensitivities of the133

infered quantities are analyses with respect to the first guess and the observation errors. In Section 5, the Garonne134

test case is investigated for two scenarios: the real SWOT temporal sampling (⇠21 days revisiting period) and a data135

sampling densified by a factor 100 . A conclusion and perspectives are proposed in Section 6. The two appendices136

present details of the numerical scheme in the present context of altimetry measurements.137

2. forward-inverse models and test cases138

In this part, the forward model (1D Saint-Venant equations) and the inverse model, Variational Data Assimilation139

(VDA), are described. In particular the model geometry (effective river bathymetry), the observation operator and140

the minimized cost function are detailed.141

2.1. Forward model. Open channel flows are commonly described with the 1D Saint Venant equations in (S,Q)142

variables [12, 9]. The model based on the depth-integrated variables is valid under the long-wave assumption (shallow-143

water). The equations read :144

(2.1)

8
><

>:

@S

@t
+

@Q

@x
= 0 (2.1.1)

@Q

@t
+

@

@x

✓
Q

2

S
+ P

◆
= g

Z
h

0
(h� z)

@w̃

@x
dz � gS[

@zb

@x
+ Sf ] (2.1.2)

145

where S is the wet-cross section (m2), Q is the discharge (m3
.s

�1), P = g
R
h

0 (h � z)w̃dz is the pressure term as146

proposed in [54], w̃ is the water surface top width (m), g is the gravity magnitude (m.s
�2), H is the water surface147

elevation (m), H = (zb + h) where zb is the lowest bed level (m) and h is the water depth (m). Sf denotes the basal148

friction slope (dimensionless) and Sf = |Q|Q
K2S2R

4/3
h

(classical Manning-Strikler parameterization) with K the Strickler149

coefficient (m1/3
.s

�1) and Rh the hydraulic radius (m). The discharge Q is related to the average cross sectional150

velocity u (m.s
�1) by: Q = uS. The left-hand side of the momentum equation is written in its conservative form151

(hyperbolic part of the model) while the right-hand is a source term. This source term can viewed as pulling the152

model to the basic equilibrium: the gravitational force vs the friction forces. This classical model is considered with a153

specific bathymetry geometry built from the water surface observables. The discrete cross sections are asymmetrical154

trapezium layers; each layer is defined by one triplet (Hi,wi,Yi) corresponding respectively to the water elevation, the155

water surface width associated to Hi and a centering parameter. In a SWOT context, each layer corresponds to a156

satellite pass.157

Remark 1. If the Froude number, Fr = u

c
, tends towards 0 then the 1D St Venant model can be written as a depth-158

averaged scalar equation: the diffusive wave model, see e.g. [12, 39]. In the case of a wide channel (the hydraulic radius159

Rh ⇡ h), the advective term of the equation corresponds to the velocity 5
3u . In the identifiability maps presented in160

a next section, this wave velocity 5
3u is plotted simultaneously with the Saint-Venant model wave velocities, that is161

(u� c) and (u+ c) (gravity waves model).162

163

164
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Figure 2.1. Effective geometry considered for each cross section: superimposition of m trapeziums
(yz-view).

The Strickler coefficient K is defined as a power law in the water depth h:165

166

(2.2) K(h) = ↵ h
�

167

where ↵ and � are two constants to be determined. This a-priori law makes possible to set the roughness in function168

of the flow regime. This power-law is richer than a constant uniform value as it is often set in the literature. Also169

such a power-law can be defined by sections or reaches.170

The discharge at upstream boundary Qin(t) will be considered as an unknown variable of the model (it will be a171

control parameter of the model). It will be defined by one of these two methods:172

IDbasic.: At each identification time tj , tj 2 [t1..tp], a value of Qin(tj) is computed by the VDA process. Next173

the identified inflow discharge is continuously constructed by simple linear interpolation.174

IDFourier.: The inflow discharge is defined as Fourier series:175

176

(2.3) Qin(t) =
a0

2
+

NFSX

n=1

✓
an cos(nt

2⇡

T
) + bn sin(nt

2⇡

T
)

◆

177

where {a0; an, bn}, n 2 [1..NFS ], are the Fourier coefficients and T is the total simulation time. The lower frequency178

represented by the Fourier series is 1/T and the highest one is NFS/T . Then this way to identify Qin(t) is global in179

time (on the contrary to punctual basic approach above). Obviously, the hydrograph must be periodic. However this180

is not an issue since the hydrograph can be extended to make a T-periodic function (T denoting the final simulation181

time).182

The numerical scheme used is the classical finite volume scheme HLL [25] with Euler integration in time. This183

numerical scheme with the specificities due to the particular geometrical transformations are presented in Appendix184

7.1 and Appendix 7.2. The equations above have been implemented into the computational code DassFlow [36]. Note185

that few numerical schemes are possible: the classical implicit Preissmann’s scheme, the HLL finite volume scheme186

and also an original semi-implicit multi-regime scheme.187

2.2. Inverse problem: Variational Data Assimilation (VDA) formulation . The inference of the unknown188

parameters are performed by the VDA approach. It consists in minimizing a cost function J(k) measuring the discrep-189

ancy between the model output (state variables) and the available measurements (which are sparse and uncertain):190

mink J(k). Since J depends on k through the model solution (S,Q), it is an optimal control problem. It is classi-191

cally solved by introducing the adjoint model and by computing iteratively a “better” control vector k. The latter192

contains the inflow discharge Qin(t) and the coefficient K(h) defined by (2.2). In the case the unknown parameters193

are computed at given times [t1..tp] (it is the identification time grid), k is defined by:194

195

k = (Qin,1, ..., Qin,p, ↵, �)
T

196

In the case the inflow discharge is decomposed as a Fourier series, see 2.3, k is defined by:197

198

k = (a0, a1, b1..., aNFS , bNFS , ..., ↵, �)
T

199
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The VDA process requires the computation of the gradient of the cost function rJ with respect to k. The200

computation of rJ is done with DassFlow software which has been originally designed to generate automatically the201

discrete adjoint model using the source to source differentiation tool Tapenade [26]. The cost function expression J202

depends on the observations; the latter are presented below while the expression of J is detailed in Section 2.5.203

The employed optimization algorithm is a the L-BFGS algorithm (here the M1QN3 routine [23]). Details on the204

basis of VDA can be found e.g. in [35]. Given a first guess on parameters k0, the iterates ki are searched with the205

descent algorithm such as the cost function J decreases. For each iteration of the minimization:206

(1) The cost function J(ki) and its gradient rJ(ki) are computed by performing the forward model (from 0 to207

T ) and its adjoint (from T to 0).208

(2) Given ki , J(ki) and rJ(ki), the M1QN3 routine is invoked to compute a new iterate such that: J(ki+1) <209

J(ki).210

(3) The few convergence criteria are tested: either |J |  10�7 , or |J(ki+1)� J(ki)|  10�5 or i > 100.211

In order to measure the accuracy of the identified discharge Q
ident
in

= (Qident
in,1 , Q

ident
in,2 , ..., Q

ident
in,p

)T , the classical Nash-212

Sutcliffe criteria E is considered, [41]:213

214

(2.4) E(Qident
in

) = 1�
P

p

i=1

�
Q

real
in,i

�Q
ident
in,i

�2
P

p

i=1

�
Q

real
in,i

� Q̄
real
in

�2 , with Q̄
real
in

=
pX

i=1

Q
real
in,i

p

215

The vector Q
real
in

= (Qreal
in,1, Q

real
in,2, ..., Q

real
in,p

)T contains the true values. The Nash-Sutcliffe value E is close to 1 for216

values of Qident
in

close to Q
real
in

; it is close to 0 for values of Qident
in

close to Q̄
real
in

; finally it is close to �1 for values of217

Q
ident
in

not correlated to the true value Q
real
in

.218

For a given quantity u (it will be Qin, ↵ or �), e2(u) denotes the 2-norm relative error:219

220

(2.5) e2(u) =
kuident � u

realk2
kurealk2

221

2.3. Design of the inversion experiments. The identifiability of the river flow model parameters from water surface222

observables is studied on a so-called academic test case before being studied on a real data set (a portion of the Garonne223

river, France). Analyzing an “academic” case first is important to properly analyse the numerical inversions. Indeed,224

the academic test case makes possible to focus on the computational method (based on the classically called twin225

experiments) without the specific real data difficulties (difficulties due to potential difference of scales, measurement226

errors, un-modeled subscale phenomena etc). Then so-called twin experiments are considered. It consist to set the227

inverse problem as follows:228

• Realistic true values of the parameters (roughness uniform in space and discharge hydrographs) are fixed.229

Then the forward model is run, which allows to compute the SWOT like data (that is water elevation H and230

WS width w at the reach scale -see details in next section-).231

• Given the perturbed synthetic data, the parameter identifiability is investigated for various temporal samplings232

of observations. The input “parameters”, inflow discharge Qin(t) and coefficient power-law K(h), are computed233

by VDA. The inflow discharge may be sought in a reduced Fourier basis; the latter being defined from a-priori234

fixed frequency. In the first numerical experiments, the bathymetry is given. This makes possible to focus the235

investigation on the identifiability of the inflow discharge in terms of frequency ratio between the observation236

and the minimal identified frequency. In the last experiment (Garonne river), the considered bed level can be237

given or estimated from one in-situ value and following the method presented in [18].238

2.3.1. Academic test case. The aim of this test case is to investigate the identifiability of several discharge hydrographs239

and roughness on a fully controlled and low CPU time test case Its geometry consists in a 1000 m length channel.240

Each cross-section is defined as a superposition of 5 trapeziums. The river bed elevation zb and water surface width241

w are not constant; they are defined as follows: zb(x) = z�(x) + z�(x), with mean slopes defined by:242

243

z�(x) =

8
><

>:

10� 0.001x if 0  x  300

9.7� 0.004(x� 300) if 300 < x  700

8.1� 0.002(x� 700) else
244

and local bed level oscillations as follows: z�(x) =
P4

i=0 cn sin(dn(x � 50)
2⇡

T
)if 50  x  950 and equal to 0245

otherwise.246

with cn = {0.01, 0.01, 0.015, 0.02, 0.02} and dn = {1, 2, 4, 8, 16}. The triplets (Hi,j , wi,j , Yi,j) for cross section j as247

defined in Section 2.1 with i being a vertical index read: Hi,j = H
0
i
+zb(xj) with H

0
i
= {1, 2, 3, 4, 5}, Yi,j = {0, 0, 0, 0, 0}248

and:249
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250

(2.6) wi,j =

8
<

:
w

0
i,j

+ sin

✓
⇡(xj � 50)

900

◆
if 50  x  950

w
0
i,j

else
with w

0
i,j

= {3, 4.9, 5.1, 6.4, 7.3}

251

The coefficient K equals 25m1/3
.s

�1 (↵ = 25 and � = 0 in Eq. (2.2)). The considered inflow discharge respecting252

realistic discharge magnitudes and time scales creates a comparable flooding than those considered in the considered253

real case (Garonne river). The hydraulic propagation time Twave over the whole river domain equals ⇠ 160s for a254

wave velocity (u + c) and the total simulation time is 1000s (cf.Table 1. Recall that Twave is of great interst when255

using observations of water surface features within a river domain for identifying an inflow discharge (in x = 0). The256

steady-state backwater curve, velocities and local Froude number values (Fr = up
g

A
W

, with u = Q/A the mean cross257

sectional velocity) are presented on Fig. 2.2 for Qin = 10m3
.s

�1 . The downstream boundary condition is a power258

law rating curve defined by: hout(Q) = 0.45 Q
0.6
out

(m).259

260

Figure 2.2. Academic test case. (Left) Steady state flow for Qin = 10m3
.s

�1 (quite a low value with
respect to the considered hydrograph in the forthcoming experiments): (Left, top) Water elevation
H (Right, top) Discharge Q. (Left, Bottom) Froude F and (Right, Bottom) Velocity U vs river
curvilinear abscissa. (Right) Cross-section example (for x = 500m).

261

Academic test case Garonne river

mean µ [m/s] standard deviation � [m/s] mean µ standard deviation �

min(|u+ c|) 6.3027 0.6063 5.4502 0.6805

mean(|u+ c|) 6.3521 0.6224 6.0739 0.6561

max(|u+ c|) 6.4028 0.6394 6.6827 0.8052

min(|u|) 1.3018 0.2916 0.7198 0.2507

mean(|u|) 1.376 0.2972 1.1023 0.1968

max(|u|) 1.4361 0.3069 1.391 0.2607

Hydraulic propagation time ⇠ 160 sec ⇠ 3.5 hours
Twave =

L

mean(|u+c|)

Table 1. Statistics on the wave velocity (u+c), velocity u and the hydraulic propagation time Twave

both for the academic and the Garonne test case.
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2.3.2. Garonne river test case. The 1D Garonne dataset contains a DEM of the river bathymetry between Toulouse262

and Malause (South West of France, [51, 32, 18]) defined as follows:263

• 173 cross sections measurements from the field, distant of 56 to 2200 meters with a median value of 438 m,264

• a mesh containing 1158 cross sections; they result of linear interpolations of the original 173 cross sections,265

• the cross sections are merged into lidar data of banks and floodplain elevations (5 m horizontal accuracy).266

The mean slope of this 74 km portion of the Garonne River is �0.0866% (86.6 cm/km ). The reference bathymetry is267

the effective one respecting the trapezium superimposition structure as described in the academic case and preserving268

the wetted areas, see figures 2.1 and 2.3. The considered bathymetry can be the reference one or the so-called “low-269

Froude bathymetry” estimated from one (1) in-situ measurement and the method proposed in [18]. On the present270

case it is those at the location x = 40 km (the reference point indicated in Fig. 2.1).271

The effective SWOT like bathymetry (superimposition of trapeziums respecting the true wetted section values)272

is compared to the Low Froude bathymetry (same trapeziums but not the same zb ) in Fig 2.3. The difference273
1
N

P
N

n=1 |Ztrue

b
� Z

LF

b
| equals 38 cm.274

The final mesh size, i.e. the spacing between interpolated cross sections extended on banks, is between 37.26m and275

70.0m at maximum (the average spacing being 63.96m). The friction coefficient may be variable, depending on the276

water depth. Its value is detailed in the identification experiment section.277

The considered hydrograph is those measured at Toulouse during a 80 days period in 2010, see e.g. Fig. 5.2. In278

terms of wave propagation, basic statistics are indicated in Table 1 and the hydraulic propagation time within the279

whole river portion equals Twave ⇠ 3.5 hours.280

All the forthcoming numerical inversions can be performed from either the effective true value of bed level or from281

the low-Froude one. Indeed the obtained results in terms of infered discharge and roughness coefficient are similar. The282

assimilation of partial in-situ data in addition of the altimetry measurements is addressed into details in a forthcoming283

study. Then the error pourcentages on the estimated discharge values in next sections are those obtained from the284

effective true value.285

286
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Figure 2.3. Garonne data (Top) Effective bed elevation (zb�mean slope) : the effective true value
(gray) and the low-Froude estimated value (blue). (Bottom) First cross sectional layer width w0 on
151 vertical layers, see Fig.

Remark 2. Concerning the unsual definition of K, an uniform power-law, see Eq. (2.2), it is worth to notice that the287

forthcoming inversions performed by a VDA approach could have been done with a locally defined power-law Kr(h)288

with r the “reach” number. However since the main goal of the present study is to focus on the identifiability of the289

inflow discharge, in particular in terms of frequency flow variations, an uniform power law K(h) has been considered.290

Moreover as it has been already mentioned, such a power-law gives already more degree of freedom than a mean291

uniform constant value K̄ as it is almost always considered in the literature.292

2.4. The (SWOT-like) altimetric data . The identifiability capability of the present inverse method depends on293

the spatial and temporal density of the water surface measurements. Synthetic SWOT observations are generated294

over the studied domain (Fig. 2.4 ) from the expected SWOT ground tracks representing three temporal revisits over295

the domain during a 21 days cycle. Then each swath (50 km wide) defined by the SWOT ascending and descending296

tracks are split into 1 km stripes. These stripes define the so-called reaches; these splitting lenghts may related with297

the physical flow features, see e.g. [17]. Only 25 stripes contain the considered Garonne river portions. These 25298

observed reaches can be classified in 3 groups observed at different times �T i
, i = 1..3 within a 21 days satellite period299

(see Eqn (2.10) and Fig. 2.4 ).300

1D forward model outputs are averaged in space at each observation time (H̄r(t) and w̄r(t)) in order to reproduce301

SWOT like observations at the reach scale; next a random noise is added in order to be representative of SWOT302

observation errors averaged this reach scale.303

304
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Figure 2.4. Location of SWOT reaches on the Garonne river.
(Left) Aerial view from OpenStreetMap of Garonne River (black line) and SWOT reaches location
with ascending (green) and descending (blue when the river is seen and red otherwise) tracks. (Right)
Longitudinal river profile with the three groups respectively observed at �T 1 = 12.58 days, �T 2 = 14.11
days and �T

3 = 1.51 days

305

2.5. Cost function. The cost function J to be minimized is defined from the available measurements as follows:306

J(k) = j
obs(k) + � j

reg(k)(2.7)

307

where j
reg(k) is a regularization term defined later, and j

obs(k) is defined by:

j
obs(k) =

1

2

Z
T

0
||H̄k(t)�H

obs(t)||2
W
dt(2.8)

308

where H̄
k(t) and H

obs(t) are defined by:309

• H̄
k(t) =

�
H̄

k
0 (t), H̄

k
1 (t), H̄

k
2 (t), ..., H̄

k
Nr�2(t), H̄

k
Nr�1(t)

�T
310

• H
obs(t) =

�
H

obs
0 (t), Hobs

1 (t), Hobs
2 (t), ..., Hobs

Nr�2(t), H
obs
Nr�1(t)

�T
311

W is a symmetrical positive semi-define matrix Nr ⇥Nr, Nr the number of observed reaches, and it defines an error312

covariance matrix. Its extra diagonal terms wi,j , i 6= j, represent the correlation of error observations between reach313

i and reach j; its diagonal terms wi,i are the a-priori confidence on the observation of reach i. In a real measurement314

context, reaches close to the satellite nadir would be observed with lower errors. Hence, the diagonal coefficient values315

should depend on the distance between the reach r and the nadir. Extra-diagonal terms are difficult to estimate and316

considered to be null here. In all the following, the matrix W is the identity matrix of RNr (same confidence on all317

observations).318

The regularization term j
reg(k) is defined by:319

320

j
reg(k) = j

reg
Q

(k) + �j
reg
K

(k)

321

where jreg
Q

(k) (respectively j
reg
K

(k)) is the regularization term on the discharge (respectively the Strickler coefficient).322

323

The balance coefficient � between j
reg(k) and j

obs(k) can be classically set following the empirical Morozov’s324

discrepancy principle and/or the classical L-curve strategy [38]. It will be observed in the numerical experiments that325

no prior regularization needs to be considered on the friction term parameterized with a power law with constant326

coefficients in space. Moreover, in the SWOT context, given the low frequency and high sparsity of the observations,327

it is difficult (and numerically unnecessary) to define such a regularization term on Qin(t). This regularization may328

be done by defining Qin(t) in the Fourier basis with frequencies a priori defined from the observation frequency, see329

the discussion in the next section.330

331

Let Nt,r denote the number of SWOT observation of the reach r. Then the discrete form of the cost function J332

reads:333



ON THE ASSIMILATION OF ALTIMETRIC DATA IN 1D SAINT-VENANT RIVER FLOW MODELS 10

334

(2.9) J(k) =
1

2

X

r=1,Nr

X

j=1,Nt,r

�
H̄

k

r,j
� H̄

obs

r,j

�2

335

with H̄
k
r,j

= 1
⌦r

P
i=1,Nr

H
k
i,j
dx. With ⌦r the curvilinear length of reach r.336

Let us remark that in an altimetry context, the i
th observation time of reach group g, tg

i
satisfies:337

338

(2.10) t
g

i
= i�T + �T

g

339

where �T is the satellite period and �T
g is the time lap of the first observation of the reach group g. Thus if a340

river is observed by 3 satellite passes during 1 repeat period (like it is the case for the Garonne river, see Fig. 2.4),341

then there are 3 different �T
g (i.e. g = 1, 2 or 3).342

All the equations and algorithms previously described have been implemented into the computational code DassFlow343

[36]. It contains the 1D shallow water model dedicated to the altimetric data (effective cross section geometries) with344

all required boundary conditions, a Strickler coefficient K(h) depending on the water depth plus a complete VDA345

process. The adjoint equations are obtained by automatic differentiation [26] and the minimizer is a BFGS algorithm.346

Note that few numerical schemes are possible: the classical implicit Preissmann’s scheme, the classical explicit HLL347

finite volume scheme and also an original semi-implicit multi-regime scheme.348

3. Discharge identification on the academic test case349

This section aims at analyzing the inference capability of the 1D river Saint-Venant model from the water surface350

observables described previously. As a first step, the unknown parameter is the inflow discharge Qin(t) only on the351

academic channel described previously (Section 2.3.1). From the available observation distribution, (x, t)-identifiability352

maps are calculated. They provide an overview of the inference capability of the forthcoming VDA process. These353

maps are analyses in three contexts depending on three scenario of observation sparsity (see Fig. 3.1):354

OD1: (Observation Distribution #1), the whole domain is observed (10 reaches),355

OD2: the observations are available at upstream and downstream only (2x3 reaches), Fig. 3.1 (middle).356

OD3: the observations are available in the middle only (4 reaches), Fig. 3.1(right).357

Then the inference of Qin(t) is performed either classically by identifying its values on a fixed identification grid358

(IDbasic case, with dta the constant assimilation time step), or by computing Qin(t) as a Fourier series (IDFourier359

case). IDFourier case leads to a “global” computation of Qin(t) (on the contrary to the IDbasic). In both cases, an360

analysis of the influence of the identification time grid is done.361

362

Figure 3.1. Location of the observation reaches. (Left) Case OD1: the whole domain is observed
(10 reaches). (Middle) Case OD2: observations are located at upstream and downstream (6 reaches).
(Right) Case OD3: observations are located in the middle (4 reaches).

3.1. The identifiability map. This subsection introduces the identifiability maps. This map represents the com-363

plete information in the (x, t) plane: the observations (the observed “space-time windows”), the hydrodynamic waves364

propagation (1D Saint-Venant model) and the misfit to the “local equilibrium” (more precisely the local misfit with365

the steady state uniform flow represented by the Manning-Strikler law). This preliminary analysis makes possible to366

roughly estimate the time-windows which can be quantified by VDA since the inflow discharge values arise from these367

observed “space-time windows”. This original reading of the hydraulic inverse problem is qualitative only but fully368

instructive. Indeed this will make possible in the next section to roughly estimate whether the sought information has369

been observed or not, in particular in terms of frequency (orders of magnitude).370
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The observations are generated from the hydrograph Q
real
in

(t) shown in Fig. 3.3 Top-Left. Recall that the so-called371

hydraulic propagation time Twave ⇠ 160 s (estimation based on the mean wave velocity (u+ c)). From the hydraulic372

propagation time and the observation time step dtobs (time between satellite overpasses), the identifiability index is373

defined as follows:374

375

(3.1) Iident =
Twave

dtobs
376

In the present case, dtobs = 100 s, hence lower than the hydraulic propagation time; the identifiability index Iident377

⇠ 1.6. This means that at least the low frequency variations are observed.378

An instructive analysis of the inverse problem consists to plot the so-called identifiability map in the plane (x, t).379

Since the inflow discharge (that is Q(t) defined at x = 0) is the central sought “parameter”, the important wave380

velocity is the positive one i.e. (u + c) in considering the Saint-Venant system waves. Indeed recall that without the381

source terms (i.e. gravity waves model), the 1D Saint-Venant model wave velocities are (u� c) and (u+ c). Moreoiver382

if considering the diffusive wave model, that is including the RHS of the Saint-Venant system, the wave velocity equals383
5
3u in the case of a wide channel (see e.g. [12, 39, 52]and 1.384

For each reach r (Nr = 10 in the OD1 case) and for each observation time t
r

i
(11 in the OD1 case), the velocity385

waves of the 1D Saint-Venant model (and the diffusive wave model) are plotted, see Fig. 3.2. To do so, ūr

i
and c̄

r

i
386

corresponding to the reach r at time i are approximated; ū denotes the mean velocity value and c̄ = (gh̄)1/2 (assuming387

a rectangular cross section) with h̄ the mean water depth. Let us point out that in the present twin experiments, ū388

is known. In a realistic context, ū can be estimated from a low complexity 0.5D model (Manning-Strikler’s equation389

applied at each reach). Such estimations are sufficiently accurate to make the present analysis.390

The (r, i) observation time interval is defined as follows: T
w

r,i
= [tr

i
� Lr/(ū+ c̄)r

i
, t

r

i
] with Lr the reach length and391

t
r

i
the observation time. Each observation space time window T

w

r,i
is plotted (in color) in Fig. 3.2. Each rectangle392

diagonal corresponds to the local (ū+ c̄) line; indeed the height of the rectangle T
w

r,i
corresponds to (ūr

i
+ c̄

r

i
)⇥Lr . It393

can be noticed that the space-time variation of (ū+ c̄) is not significant, see the rectangle height variations and Table394

1.395

In the present case, the whole domain is observed at t = 0 hence the wave velocity (ū+ c̄) at t = 0 can be estimated396

accurately.397

The identifiability map in (x, t) is plotted for the three cases depending on the observation sparsity: cases OD1,398

OD2 and OD3, see Fig. 3.2.399

The rectangle colors represent the misfit to the steady uniform flow (in norm 1). It is the right-hand side (the400

source term) in norm 1 of the momentum equation, see (2.1):401

(3.2) "Steady uniform flow misfit" = Norm1[ g

Z
h

0
(h� z)

@w̃

@x
dz � gS(

@zb

@x
+ Sf ) ]

If this source term vanishes (blue colors in Fig. 3.2), it means that locally in space and time the flow variables satisfy402

the steady state uniform flow equation (here the Manning-Strikler equation). On the contrary, if the misfit term403

becomes important (e.g. orange - red colors) then the hyperbolic feature of the model is important.404

In terms of energy, this non-conservative source term contains the dissipative friction term Sf ; while the left-hand405

side of the 1D Saint-Venant model is conservative, see (2.1). Therefore Fig. 3.2 provide a rough estimation of the406

propagation features of the flow model including advection diffusion phenomena.407

Typically, the peak time at inflow is represented by the rectangle (r, i) = (1, 6). The corresponding wave velocity408

(ū+ c̄) is faster than those arising from the middle of the domain for example, see rectangle (6, 6).409

To illustrate differently the advective-diffusion phenomena corresponding to Fig. 3.2, the discharge throughout the410

domain is plotted at the three observations times 400s, 500s (peak time at inflow) and 600s in Fig. 3.2 Top Right.411

All these information represented in the (x, t) plane constitute the so-called identifiability map. Its analysis provides412

a comprehensive overview of the inversion capability, in particular with respect to the inflow discharge Qin(t).413

If a characteristic (ū+ c̄) line crosses one or more observed reaches (the colored rectangles on Fig. 3.2), the identifi-414

ability of discharge is ensured at the time corresponding approximately to the intersection between the characteristic415

and the vertical axis. In other words, for a reach observed at time t
r

i
and abscissa rLr, the inflow discharge should416

be identifiable at time ⇠ (tr
i
� rLr/(ū + c̄)). Typically, in the present case, the identifiability maps show that any417

change on Qin is observed at least few times, and this is true for the three scenarios OD1, OD2 and OD3. In other418

words, there is no blind time-space window; the same hydraulic information may be observed even few times. Then419

the forthcoming identification computations based on VDA will be robust and accurate for the complete simulation420

time range [0, T ].421

This a-priori analysis is confirmed by the VDA experiments presented in next paragraphs.422

Remark 3. The present source term estimation provides an a-posteriori model error if employing the usual Manning-423

Strikler’s law to model the flow.424

425
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Remark 4. It can be noticed that since the wave velocity 5
3 ū is slower than (ū + c̄), see Fig. 3.2. Following the426

same analysis, it shows that the inflow discharge identifiability in the diffusive wave model would be higher than in427

the present 1D Saint-Venant model. However if considering a wave velocity value or another, the present analysis428

remains qualitatively the same; while the quantitive conclusions would differ slightly. The present identifiability map429

has been arbitrarily plotted using the Saint-Venant waves velocities (recall, values valid if not considering the RHS).430

For a comparison between the diffusive wave model and the present Saint-Venant model, see e.g. [39] and references431

therein.432

433

Figure 3.2. The identifiability maps in (x, t) in the case: (Top, Left) OD1 (full observations);
(Bottom, Left) OD2; (Bottom, Right) OD3.
The estimated wave velocities are plotted in red (continuous line) for the 1D St-Venant model (u+ c),
and in green for the diffusive wave model (53 ū). The red dotted line represents outgoing wave velocity
(u� c) (on the Fig., from the reach r=6 at observation instant i=6). The “steady uniform flow misfit”
defined by (3.2) is represented in each rectangle by the colors.
(Top, Right). Discharge Q(x, ·) vs x at three observations times: 400s, 500s (=the peak time at
inflow), 600s.

434

435

3.2. Identification for various dta. In this section, assuming that both the river bathymetry and the friction law436

are given, few identifications of inflow discharge are performed with :437

• a fixed observation time step dtobs = 100s and various assimilation time steps dta, ranging from 1/10 to 1 dtobs438

- IDBasic case in Section 2.1. The parameter vector is k = (Q1, ..., Qp)
T with dta = (ti+1�ti) = 8i 2 [1..p�1].439

• Qin(t) represented in a reduced basis (Fourier series, see (2.3) - IDFourier case in Section 2.1. The parameter440

vector reads: k = (a0, a1, b1..., aNFS , bNFS )
T and the identification with VDA of NFS = 7 and NFS = 25441

Fourrier coefficients is tested.442

The inflow discharge and the gradient value are plotted in Fig. 3.3 Top, for IDBasic case with dta = dtobs/10 and443

dta = dtobs. In the case dta = dtobs/10 the result is excellent, and if dta = dtobs the accuracy remains good (excepted444

at peak time, t ⇡ 500s) - convergence reached in 45 and 17 iterations respectively.The errors on the identified inflow445

discharge are plotted in Fig. 3.3. Both the 2-norm error and (1 � E), with E the Nash–Sutcliffe criteria, are the446
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lowest for dta between 20 s and 50s = dtobs/2 (with (1� E) ⇠ 0.0077). Roughly, the error is improved if dta < dtobs447

but dta not too small. Indeed, for dta << dtobs, typically dta = dtobs/10, over and under estimations of the discharge448

appear. Indeed, if dta is small, any change of Qin between two identification times, is not observed, Fig. 3.3 Left-top.449

The value obtained for dta = dtobs/2 is almost the optimal value. As a practical guide, a simple rule would be to set450

dta = dtobs
2 i.e. consider one intermediate point only between two observations.451

For IDFourier case roughly the same accuracy and behaviors as in the previous case are obtained, see Fig. 3.3452

Bottom. Indeed the minimal error, (1� E) ⇠ 0.005, is obtained with T/NFS ⇠ dtobs/2 . Again, as a practical guide,453

a simple rule would be to set NFS such that T

NFS
= dtobs

2 i.e. considering one intermediate point (and only one)454

between two observations, Fig. 3.3.455

The advantages of identifying Qin(t) as a Fourier series are the following: the control vector is smaller, the frequency456

imposed a-priori can be quite easily estimated, and the identified inflow discharge remains smooth (this circumvents457

the potential oscillations obtained in the case IDbasic with dta << dtobs for example).458

459

Figure 3.3. (Top) Discharge identification: IDbasic approach with dtobs = 100 s. (Left, top) Dis-
charge identification with dta = dtobs = 100 s and dta = dtobs/10 = 10 s. (Right, top) Normalized
gradient rQJ with dta = dtobs and dta = dtobs/10 = 10 s. (Middle) Errors vs dta; dta = dtobs/2
is almost the optimal value. (Bottom) Discharge identification: IDFourier case (Fourier series recon-
struction) with dtobs = 100 s: (Bottom Left) Discharge identification with NFS = 7 and NFS = 25.
(Bottom Right) Errors vs T/NFS

3.3. Identification robustness vs observation sparsity. A VDA process is global in time. The previous numerical460

experiments demonstrate that refining too much the identification time grid dta compared to dtobs (typically dta =461

dtobs/10) deteriorates the identification accuracy. In other words, given an observation time grid, the identification462

of the time dependent inflow discharge cannot be obtained at much finer time scale. All these previous experiments463

have been performed with observations available on the whole domain (case OD1, see Section 3). In a real case (e.g.464

SWOT data of Garonne river test, see Section 2.4) the observations are not available for the whole domain, nor all465



ON THE ASSIMILATION OF ALTIMETRIC DATA IN 1D SAINT-VENANT RIVER FLOW MODELS 14

at the same time. Thus in the present experiments, the robustness and accuracy of the discharge identification is466

investigated if considering real-like SWOT data hence much sparse observations.467

The inflow identification are performed with a pseudo-optimal assimilation time step dta = 25 s (still with dtobs =468

100 s) for the three cases OD1, OD2, OD3, see Fig. 3.1.469

As discussed in Section 3.1, the identifiability maps (see Fig. 3.2) indicate that in the three cases the identification470

should be accurate. Indeed, the numerical results obtained by VDA confirm this a-priori analysis since the error is471

extremely low, typically E > 0.99, see Tab. 2. The identified inflows are not plotted since the results are similar to472

the previous case.473

474

475

OD 1 OD 2 OD 3

Nash-Sutcliffe coefficient (E) 0.993 0.994 0.991

Table 2. Academic test case, Nash-Sutcliffe coefficient (E) for dta = 25 s in function of the observa-
tions availability: cases OD1, OD2, OD3.

4. Discharge and roughness identification in the academic test case476

In the previous section, Qin(t) only was infered. In the present section both the time-dependent inflow discharge477

and the Strickler coefficient K (time-independent) are infered by the VDA process. Let us recall that K is defined478

by: K = ↵h
� . Then the control vector reads: k = (Qin,1, Qin,2, ..., Qin,p, ↵, �)

T in the IDbasic case and k =479

(a0, a1, b1..., aNFS , bNFS , ↵, �)
T in the IDFourier case. In the present experiments the bathymetry is given. The480

synthetic observations are generated from the same hydrograph (inflow discharge) as previously and an uniform481

coefficient K = 25 i.e. ↵ = 25 and � = 0 in Eqn (2.2). First guesses are respectively chosen equal to Qin(t) =482

100m3
.s

�1 for all t, and to (↵,�) = (23.5, 0.1) (hence considering K depending on h). The observations are available483

in the whole domain: OD1 scenario.484

4.1. Identifications in the IDbasic and IDFourier cases. The identified inflow discharge with a basic linear485

reconstruction (IDbasic case) is as accurate as in the previous case i.e. while identifying Qin only. The identified486

discharge are plotted in Fig. 4.1 Left top in the case dta = 10 s and dta = 100 s.487

For dta = 10 s, the identification of the roughness parameters ↵ and � is accurate, see Fig. 4.1 Bottom; the488

minimization algorithm has converged in 64 iterations. For dta = 100 = dtobs, the minimization algorithm has more489

difficulties to converge, see Fig. 4.1 Top right. In the IDFourier case, the results are similar.490

In both cases (IDbasic and IDFourier), the identified quantities are accurate if the identification time step dta is491

small enough compared to dtobs, or if the Fourier mode number NFS is large enough. In such cases, the identification492

of Qin(t) is as accurate and robust as in the previous case (when Qin(t) only was identified).493

But if dta = dtobs or equivalently if NFS is small, then the minimization algorithm has more difficulties to converge,494

hence the VDA process provides less accurate quantities.495

The errors on the roughness coefficients are plotted in Fig. 4.3. Since the error made on the identified discharge496

are very similar than in the previous case they are not plotted. The value of dta (resp. NFS) such that dta = dtobs/2497

(resp. T/NFS = dtobs/2) are almost the optimal values. Thus the basic practical rule consisting to set the assimilation498

frequency equal to the double of the observation frequency is relevant.499

500

501

502

4.2. Sensitivity of identifications to first guesses and observation errors. The sensitivity of the identified503

quantities (Qin(t) and (↵,�)) with respect to the first guess values Qin,FG and (↵,�)FG is investigated: OD1 case504

(complete spatial observations), IDFourier case with NFS = 20. For each sensitivity map representing identification505

errors in the space of first guess values of ↵ and Qin ( Fig. 4.4) the parameter � is fixed (� = 0). They show that the506

identification of inflow discharge Qin(t) and the roughness coefficients are accurate for a large value range of Qin,FG.507

However the accuracy is important for low values of Qin,FG. Thus it is preferable to over estimate the first guess508

(hence starting from high water levels) than under estimate it. The results are very similar if the fixed parameter is509

the discharge Qin or the roughness law parameter ↵, then the corresponding figures are not presented.510

Finally the impact of observation errors on the three identified quantities are presented in Fig. 4.5. A Gaussian noise511

N (0,�) is added to the water elevation data H
obs. In the case � = 0.1m (this corresponds to the expected error of the512

forthcoming SWOT instrument, cf. [46]), the error on the roughness law parameters (↵,�) equals approximatively 5%513

and the Nash–Sutcliffe criteria E ⇡ 0.5. In a bad observational context with � = 0.5m, the error on the roughness law514

parameters (↵,�) equals approximatively 10�25% and the Nash–Sutcliffe criteria E(Q) becomes negative. Therefore,515
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Figure 4.1. Discharge and roughness identification in the academic test case (IDbasic case). (Left,
top) Discharge identification with dta = dtobs = 100 s and dta = dtobs/10 = 10 s. (Right, top)
Function cost J ,||rQJ ||,||r↵J || and ||r�J || vs minimization iterations. (Left, bottom) Roughness law
coefficient ↵ vs minimization iterations. (Right, bottom) Roughness law coefficient � vs minimization
iterations.

the identification of the composite control parameter (Qin(t);K(h)) turns out to be quite sensitive to the observation516

errors but its inference remains accurate in the case of a SWOT-like accuracy (� = 0.1m).517

518

519
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Figure 4.2. Discharge and roughness identification in the academic test case (IDFourier case). (Left)
Discharge identification with NFS = 7 and NFS = 25. (Right) Function cost J ,||ra0J ||,||ranJ ||,
||rbnJ ||,||r↵J || and ||r�J || vs minimization iterations.

Figure 4.3. Roughness identification in the academic test case: errors e2 on the coefficients (↵,�).
(Left) IDbasic case: errors vs dta. (Right) IDFourier case: errors vs T/NFS .

Figure 4.5. Error on the identified quantities with k = (a0, a1, b1..., aNFS , bNFS , ↵, �)
T vs the

observation error � (standard deviation of the Gaussian noise). The vertical dashed line represents
the expected error of the SWOT mission, both in norm 2 and Nash-Sutcliffe criteria.
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Figure 4.4. Sensitivity to the first guess: errors on the identified quantities vs ↵FG and Qin,FG (�
is fixed). (Left, top) Error e2(↵). (Right, top) Error e2(�). (bottom) Error on Qin : Nash–Sutcliffe
criteria E.

5. Garonne river test case520

The accuracy and the robustness of the VDA process, see sections 2.2 and 2.5, is investigated in a realistic data521

context. The test case is the Garonne river (portion downstream of Toulouse) described in Section 2.3.2. The522

considered hydrograph is presented on Fig. 5.2. The SWOT-like observations are generated by the model following523

the method presented in Section 2.4. For the VDA computations the first guess Qin,FG is chosen constant and equal524

to 268 m
3
/s (the mean value of the true hydrograph), see the horizontal dotted lines in the inflow discharge graphs,525

Fig. 5.2.526

As a first step and following Section 3.1, the identifiability maps are computed. Scenario 1 (Section 5.2) consists to527

consider a SWOT temporal sampling as defined in Section 2.4. The repeat period is 21 days and the simulation time528

is T = 80 days. Scenario 2 is based on a densified SWOT temporal sampling by a factor 100: the repeat period is 0.21529

day and the simulation time T = 0.8 day. This theoretical scenario would correspond to a combination of observations530

provided by different satellites. Also during the SWOT CalVal period (the first weeks after the launch), the satellite531

will be on a lower orbit and will offer a ⇠ 1 day repeat period on some rivers.532

It has been shown in the previous section (academic test case) that the error made on the identified inflow discharge533

Qin(t) is similar if identifying Qin(t) only or the composite control vector (Qin(t), K(h)). Moreover still in terms of534

error on the identified inflow discharge Qin(t) only, the accuracy obtained from the true effective bathymetry or from535

the low Froude effective bathymetry are very similar. Obviously the corresponding identified value of K(h) differ536

between the two cases. This illustrates again the equifinality issue related to the bed properties, that is the pair537

(bathymetry, friction).538

Observe that the VDA process could be performed for the complete unknown parameter (Qin(t), K(h)) and Zb(x)539

(this has been done and its fine analysis is out of the scope of the present article). However, it may be not the best540

strategy to calibrate a river dynamic flow model since the equifinality issue on the bed properties (K,Zb). That541

is the reason why in the present study we do focus on the inversion with respect to Qin(t) (or equivalently with542

respect to (Qin(t), K(h))), and we investigate into details the reliability and accuracy of the obtained results. The543

eqbathymetryuifinality issue is complex; it is the main purpose of an on-going study and likely next article.544

5.1. Identifiability maps. The identifiability maps are computed from the observations following the method de-545

scribed in Section 3.1 for both scenarios, see Fig. 5.1. On the contrary to the academic test case, no observation is546

available at t = 0 hence the wave velocity (ū + c̄) propagating from t = 0 cannot be estimated. Fig. 5.1 Left shows547
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that in the SWOT sampling case, the identifiability of Qin(t) is approximatively limited to the observation “day time”,548

hence preventing to infer in-between inflow variations (since no constraining information). The lack of constraining549

observation is accentuated here since a single quite short river portion is considered with its hydraulic propagation550

time Twave ⇠ 3.4 h only, see Tab. 1, hence an extremely low identifiability index Iident ⇠ 6.7 10�3.551

The next scenario (Scenario 2) is a 100 times greater revisit frequency: dtobs = 0.21 day. Keeping the same552

hydrograph but rescaled in time, the hydraulic propagation time Twave is the same (⇠ 3.4 h) but the observation553

frequency equals 0.21 day, hence the identifiability index is 100 times greater: Iident ⇠ 0.67. This rough analysis554

informs that almost the complete wave set traveling within the river portion should be captured by the sensor.555

In the identifiability maps Fig. Fig. 5.1 the inflow discharge identifiability is represented by the vertical dashed lines556

at x = 0: in red the characteristics feet provided from the “far” green observed reaches (hence an identifiability likely557

less accurate); in black the characteristics feet provided by the “close” blue observed reaches (hence an identifiability558

likely very accurate).559

Recall that this identifiability analysis is based on the wave velocities estimations only, while the dissipation due to560

the friction source term is not taken into account. However these maps indicate that in Scenario 2 a large proportion561

of inflow values should be accurately identifiable (see the vertical points at x = 0).562

The forthcoming VDA experiments confirm this a-priori analysis; the dashed vertical lines (red and black) on Fig.563

5.1are taken back on the identified discharge graphs on Fig. 5.3.564

565

Figure 5.1. Identifiability maps in the Garonne river case: (Left) Scenario 1 (SWOT like, 21 days
repeat) (Right) Scenario 2 (100 times more frequent, 0.21 day repeat). The circles centered at t ⇡ 0.45
days correspond to the inflow peak. .
In Scenario 1, the identifiability index Iident is so tiny that all the characteristics are almost horizontal
and the identifiable times at x = 0 corresponds roughly at the “observation day”.
In Scenario 2, the velocity waves (ū+ c̄) (dotted lines) are estimated at each reach from the available
observations (see sections 3.1 and 5.1). The rectangle heights are proportional to the local value (ū+c̄).
The dashed vertical lines at upstream represent the characteristic feet i.e. the sets of points which can
be identified in the model without the dissipative source term: in red the information coming from
the “far” green observed reaches (hence an identifiability likely less accurate); in black the information
coming from the close blue observed reaches (hence an identifiability likely very accurate). These
dashed vertical lines (red and black) are taken back from the identified discharge graphs Fig. 5.3.

5.2. Scenario 1: real SWOT temporal sampling. The Strickler coefficient K and the bed level zb are given. The566

latter is either the effective true bathymetry or the bathymetry estimated by the low-Froude equation presented in567

[18] and one (1) in-situ measurement. The numerical results presented below are those obtained with the effective568

bathymetry estimated from the low-Froude equation and the exact lowest wetted area at x = 40 km (the so-called569

reference point in Fig. 2.1). Next the inflow discharge is identified by VDA from the real SWOT space time sampling.570

Following the preliminary study based on the identifiability map, Qin(t) is decomposed as a Fourier series(IDFourier571

case) with NFS = 5 (Fig. 5.2 Left) and NFS = 10 (Fig. 5.2 Right). Then as expected, the identification is accurate572

in the vicinity of each observation (the vertical colored lines in Fig. 5.2) but inaccurate elsewhere. Indeed, norm 2573

of the identified discharge at observation times is e
Tobs

2 ⇠ 16.5% and e2 ⇠ 42% if considering the whole hydrograph574

(more precisely 41.4% for NFS = 5 and 54.5% for NFS = 10).As expected increasing the identification frequency575

(case NFS = 10) does not improve the coarser approximation (NFS = 5) since the latter already corresponds to an576

adequate frequency compared to the observation mean frequency, see Fig. 5.2.577

As already discussed, the identifiability index is extremely small (Iident ⇠ 6.7 10�3). This very small index value578

is due to the important spatiotemporal sparsity of the data and a short river portion (74 km). However the VDA579
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process makes possible to infer quite accurately the inflow discharge roughly at observation day times, but the too580

small identifiability index prevents to constraint the inflow discharge between the observation times.581

All these results corroborate the a-priori analysis made from the identifiability map.582

Let us point out that in a complete river network, each observation (at a given location and a given time) is spread583

into the whole network model (at the various wave velocities) if the hydraulic propagation time is larger than the584

observation frequency (i.e. with a identifiability greater than 1). Then each satellite overpass can constraint the585

lowest frequency of the inflow hydrograph in the network.586

587

Figure 5.2. Garonne river, Scenario 1. Discharge identification with Fourier series with: (Left)
NFS = 5, eTobs

2 (Qestimate

in
) = 17.1% . (Right) NFS = 10, eTobs

2 (Qestimate

in
) = 16.2% .

Vertical lines corresponds to the time observations (blue for Group 1, red for Group 2 and green for
Group 3). The horizontal dotted line corresponds to the first guess Qin = 268m3

/s.

588

5.3. Scenario 2: densified SWOT temporal sampling by a factor 100. In the present case, the data sampling589

and the hydrograph are re-scaled / densified in time by a factor 100. The numerical inversions are strictly the same590

as the previous ones but the time scale and the values of NFS.591

The re-scaled hydrograph remains consistent with the domain length since the peak duration is higher than the592

response time of the whole river portion; recall Twave ⇠ 3.4 hours. The identifiability index Iident ⇠ 0.67.593

As indicated on the identifiability map Fig. 5.1, a majority of the inflow information is observed since it has time594

enough to travel throughout the domain. This suggests that the inflow values are in majority accurately identifiable595

but are not during some (a-priori short) time intervals. These more or less accurate time intervals are indicated as596

the black and red dots in Fig. 5.1 and Fig. 5.3.597

The VDA results are presented on Fig. 5.3, read e.g. the case NFS = 10, Left-Bottom. The values at the times598

corresponding to the black identifiability intervals are accurate (as expected). The norm 2 error at observation times599

equals ⇠ 4.5%. On the contrary, the peak is partially captured only since it occurs during a red identifiability interval600

(see the red dots on Fig. 5.1 and Fig. 5.3). However, the identification is globally correct considering the quite low601

identifiability index Iident value of the scenario. Indeed the index is strictly lower than 1, hence suggesting some “blind”602

time intervals in terms of identifiability.603

As indicated in Fig. 5.3), the VDA process is performed for four values of NFS= NFS = 5, 10, 15 and 40. In604

the numerical method, the value of NFS has to be a-priori set. This can be easily done from the identifiability map605

analysis and the dtobs value. Indeed it has already been suggested that setting NFS such that: T/NFS ⇠ dtobs/2606

(which corresponds here to NFS ⇠ 8 ) should be quite optimal.607

In view to fully analysis the sensitivity with respect to the NFS value, the results obtained from for the four values608

above are compared. Moreover, to better understand the origin of the identification errors, the approximation of the609

exact inflow discharge Q
target

in
(t) by the same Fourier series is plotted in each case, see the four curves “Exact FS with610

NFS=...” in Fig. 5.3. This makes possible to analyze the error origin from the Fourier series approximation and from611

the VDA process (with respect to the present index value ).612

The best results is obtained with NFS equals to 10 (the case 15 is good too), providing an error at observation613

times ⇠ 4.2%, and ⇠ 20% if considering the whole hydrograph, see Fig. 5.3. All errors are detailed in the title of Fig.614

5.3.615

616
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Figure 5.3. Garonne river, Scenario 2. Discharge identification with Fourier series with: (Left, top)
NFS = 5, e2(Qestimate

in
) = 27.6% , eTobs

2 (Qestimate

in
) = 11.6% (Right, top) NFS = 10 e2(Qestimate

in
) =

22.5% , eTobs

2 (Qestimate

in
) = 4.2% (Left, bottom) NFS = 15, e2(Qestimate

in
) = 18.4% , eTobs

2 (Qestimate

in
) =

4.6% (Right, bottom) NFS = 40, e2(Qestimate

in
) = 23.7% , e

Tobs

2 (Qestimate

in
) = 8.5% . The vertical

colored lines correspond to the observation times (blue for Group 1, red for Group 2 and green for
Group 3), see Fig. 2.4.
The horizontal colored dashed lines (red and black) at Q = 50 correspond to the characteristic feet,
lines taken back from the identifiability maps.
The horizontal dotted black line corresponds to the first guess Qin = 268 m

3
/s.

617

6. Conclusion618

619

The identifiability of inflow discharge and roughness coefficients have been investigated into details in the context620

of SWOT like data (sparse altimetric data of the river surface) and highly frequent revisiting. The bed level was either621

given or otherwise infered by a lower complexity model. The investigations have been led in for a single (relatively622

short) river reach, hence in a “high-resolution” context, and at the lowest spatiotemporal limit of the data-model623

inversion capability. The difficulty of the inverse problem (or equivalently the data-model inversion capability) has624

been analyzed in terms of the hydraulic propagation time Twave = L

mean(u+c) and the identifiability index Iident =625

Twave

dtobs
. Identifiability maps representing the complete information in the (x, t)-plane (the model wave propagation,626

the observations and the misfit with the Manning-Strikler’s law) have been proposed. Their analysis provides a627

comprehensive overview of the considered inverse problem. Typically in the SWOT data context, the identifiability628

map of the tested cases suggests that the observations sampling in relation with the characteristic time of the river629

makes possible to accurately infer the inflow discharge at the “observation day time” but prevents to infer accurately630

a “continuous” hydrograph, that is inflow discharge values between the observation times.631

The numerous numerical VDA experiments (performed both on academic test cases and on a 74 km portion of the632

Garonne river) have confirmed the preliminary analysis based on the identifiability maps. Moreover it has been shown633

that in the present case (a single river reach without any additional prior information on the river flow dynamics),634



ON THE ASSIMILATION OF ALTIMETRIC DATA IN 1D SAINT-VENANT RIVER FLOW MODELS 21

the optimal assimilation time step should be set approximatively to the half of the observation time step (one point635

of identification between two satellite time revisits). From this basic guideline, reducing the control parameter Qin(t)636

in a Fourier series can be easily done by selecting the lowest identifiable frequency plus a few others. All these637

numerical results have been analyses for various observation sampling densities hence different identifiability indices.638

In other respect, sensitivity analyses with respect to the observation errors and with respect to the first guesses values639

demonstrate the good robustness of the VDA inferences.640

It has been demonstrated that infering the roughness values (defined as a power law) simultaneously with the inflow641

discharge Qin(t) does not affect the accuracy of the identified discharge values. This robustness feature can be partially642

explained directly from the identifiability map too. Indeed K(h) is a spatially distributed coefficient (the x� axis on643

the map) while Qin(t) is a point-wise time-dependent coefficient (the y � axis on the map).644

Finally the present study completes the previous analyses led on this topic. It investigates the lowest spatiotemporal645

limit for a given single river reach. It demonstrates the limits of these forthcoming data inversion capability but also646

their great potential to constraint 1D river flow dynamic models and infer the discharge, including if considering a647

single relatively short river reach. This study constitutes an important stage before addressing the identifiability and648

inferences by VDA of multi-satellites, multi-sensors data. Let us point out that if considering a complete river network649

then the hydraulic propagation time is a-priori larger than if considering a single river reach of the network, then the650

identifiability index is more important. Indeed in this case each observation (given at one location and one instant)651

can be spread into the whole network following the wave characteristics. Then if the total hydraulic propagation time652

is larger than the observation frequency (that is the identifiability index larger than 1) then each satellite overpass653

can constraint “continuously” the inflow hydrograph of the network.654

The VDA process could have been performed for the complete unknown parameter set (Qin(t),K(h)) and Zb(x) (by655

employing the present computational software DassFlow). However without prior information, the computed optimal656

solution is not necessarily the correct one since many pairs (K,Zb) can provide the correct discharge values. In other657

words the equifinality issue on the bed properties may prevent a correct descriptive model to be predictive. This658

equifinality issue is a topic of further research, in the present context of sparse altimetric data too. In the future,659

similar numerical experiments should be performed for a complete river network and for longer time simulations, hence660

making increase the identifiability index of the considered data-model inversion capability.661
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7. Appendices675

7.1. River model geometry . The resolution of the Saint-Venant equation (1D shallow water) (2.1) requires the676

computation of wet surface S and perimeter Pe in function of water depth h and geometrical parameters. Then677

sequences of wet surface (Si)06i6I and perimeter (Pei)06i6I are introduced with I 2 0, .., Np where Np is the maximal678

number of triplets (Hi, wi, Yi)0iNp .679

For the notations, the reader should refer to Fig. 7.1.680

• The wet surfaces (Si)06i6I are defined by:681

682 (
S0 = (H0 � zb)w0

Si =
1

2
(wi�1 + wi) (Hi �Hi�1) 8i 2 J1, NpK

683

• The wet perimeters (Pei)06i6I are defined by:684

685 8
>>>><

>>>>:

Pe0 = w0 + 2(H0 � zb)

Pei =

 ✓
Wi

2
�
✓
Wi�1

2
� yi

◆◆2

+ (Hi �Hi�1)
2

!1/2

| {z }
=Pe1i

+

 ✓
Wi

2
�
✓
Wi�1

2
+ yi

◆◆2

+ (Hi �Hi�1)
2

!1/2

| {z }
=Pe2i

8i 2 J1, NpK

686
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with yi = Yi�1 � Yi, i 2 J1, NpK.687

Let m 2 N such that: Hm < h < Hm+1 ; or equivalently,
P

m

i=1 Si < S <
P

m+1
i=1 Si.688

Thanks to the sequences (Si)06i6I and (Pei)06i6I , it is possible to define the following geometric functions:689

• Function Pe(h):690

691

Pe(h) =

8
>>><

>>>:

0 if h = 0
2h+ w0 if 0 < h 6 H0 � zb

(2h+ w0) +
mX

i=1

Pei + Pe
0
m

if h > H0�zb

692

with:693

694

Pe
0
m

=

✓⇣
Wm+1

2 �
�
Wm
2 � ym+1

�⌘2
+ (Hm+1 �Hm)2

◆1/2 ⇣
(h+zb)�Hm

Hm+1�Hm

⌘
+

✓⇣
Wm+1

2 �
�
Wm
2 + ym+1

�⌘2
+ (Hm+1 �Hm)2

◆1/2 ⇣
(h+zb)�Hm

Hm+1�Hm

⌘

695

• Function S(h):696

697

S(h) =

8
>>><

>>>:

0 if h = 0
hw0 if 0 < h 6 H0 � zb
mX

k=0

si + s
0
m

if h > H0�zb

698

with:699

700

s
0
m

=
1

2

✓
2wm +

✓⇣
Pe

2
1(m+1) � (Hm+1 �Hm)2

⌘ 1
2
+
⇣
Pe

2
2(m+1) � (Hm+1 �Hm)2

⌘ 1
2

◆✓
(h+ zb)�Hm

Hm+1 �Hm

◆◆
((h+zb)�Hm)

701

• Function h(S):702

703

h(S) =

8
><

>:

0 if S = 0
S

w0
if S 6 s0

Hm � zb + h
0
m

if S > s0

704

with:705

706

h
0
m

= �
✓

wm �X

wm+1 � wm

◆
(Hm+1 �Hm) , where X =

s

w2
m
+ 2

✓
wm+1 � wm

Hm+1 �Hm

◆
(S � sm)

707

If m is such that wm+1 = wm, so the relation is simplify by: h
0
m

= (s�sm)
wm

708

• Function w(h):709

710

w(h) =

8
<

:

0 if h = 0
w0 if 0 < h 6 H0 � zb

wm+↵1(m+1)((h+ zb)�Hm) + ↵2(m+1)((h+ zb)�Hm) if h > H0�zb
711

With ↵1i and ↵2i the slope of trapezium i so:712

713

↵1i,↵2i =

⇣
wi

2
�
⇣
wi�1

2
± yi

⌘⌘

Hi �Hi�1

714

715
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Figure 7.1. Notation used for the geometric functions.

7.2. Finite volume scheme. The Saint-Venant equation (1D shallow water) (2.1) are computationally solved by the716

following first order finite volume scheme. The conservative part of the system is written following the form proposed717

in [54]. The Riemann solver is the classical HLL scheme; the source term is discretized by a classically splitting718

approach, see e.g. [53]. The resulting numerical scheme is well-balanced in the sense it satisfies the water at rest719

property (also called C-property in the literature). The computational code has been widely assessed on classical720

benchmarks (transcritical flow with and without chocks, low Froude flows and of course C-property). The present721

scheme has been compared with respect to other schemes (the classical Preissmann see e.g. [13] but also an original722

low-Froude scheme).723

7.2.1. First order scheme. Eqn (2.1) are rewritten in conservative form as follows:724

725

(7.1)

8
><

>:

@S

@t
+

@Q

@x
= 0 (7.1.1)

@Q

@t
+

@

@x

✓
Q

2

S
+ P

◆
= g

Z
h

0
(h� z)

@w̃

@x
dz � gS

@zb

@x
� gSSf (7.1.2)

726

where P is a “pressure term” as proposed by [54], next used by [24]. It is defined by:727

728

(7.2) P (x, S̃, t) = g

Z
h(x,t)

0
(h(x, t)� z)w̃(x, z, t)dz

729

Then (2.1) is re-written as follows:730

731

(7.3)
@U

@t
+

@F(U)

@x
= S(U)

732

733

with U =


S

Q

�
, F(U) =

2

4
Q

Q
2

S
+ P

3

5 , S(U) =

2

4
0

g

Z
h

0
(h� z)

@w̃

@x
dz � gS

@zb

@x
� gSSf

3

5 and P = g

Z
h

0
(h� z)w̃dz

734

The Jacobian matrix of F reads:735

JF =


0 1

c
2 � u

2 2u

�
since c =

r
@P

@S
= gh and u =

Q

S

736

The eigenvalues of JF are: �1 = u + c and �2 = u � c; their associated eigenvectors are: r1 = (1, u + c)T and737

r2 = (1, u� c)T .738

To solve the homogeneous form of (7.3), the classical scheme based on the Euler time scheme is used:739

740

(7.4) Un+1
i

= Un

i
��t

n
Fn

i+1/2 � Fn

i�1/2

�xi

741

The numerical flux Fn

j
are computed by the standard HLL formula, such as derived in [25], see also e.g. [53] and742

references therein.743

744
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Figure 7.2. Notations. (Left, top) Notations for the river cross sections in (yz-view). (Right, top)
Variational notations for the river cross sections in (yz-view). (Left, bottom) Notations for the river
cross sections in (xy-view). (Right, bottom) Effective geometry considered for each cross section:
superimposition of m trapeziums. For the Garonne river case, m = 150 (yz-view).

7.2.2. Pressure term discretization. The pressure term P = g
R
h

0 (h � z)w̃dz has to be correctly discretized to745

obtain the convergence of the HLL scheme. Thanks to the particular geometry, it is possible to compute the pressure746

term piecewise. This computational step is CPU time consuming if the number of trapezium is high (recall 150 for747

the For the Garonne river case).748

Let P
n

i
be the discrete pressure term with i the cross section number; let j be the trapezium layer number. Let us749

denotes: h
n

i
⌘ h , Hj,i ⌘ Hj , zbi ⌘ zb , ↵1j,i ⌘ ↵1i , ↵2j,i ⌘ ↵2i , wj,i ⌘ wj and hj = (Hj � zb) with h�1 = 0. Then,750

• If h(x, t) = 0, Pn

i
= 0.751

• If 0 < h(x, t)  H0,752

P
n

i
=

1

2
gw0,i(h

n

i
)2

753

• Else,754

P
n

i
= g

mX
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⇣
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⇣
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h
2
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2
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2

⌘⌘
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755

7.2.3. Source term discretization. In order to solve the non-homogeneous problem (7.3), a classical splitting756

method is used, see e.g. [53].757

Let us denote Ūn+1
i

= [S̄n+1
i

, Q̄
n+1
i

]T the solution of the homogeneous problem (7.3) at point xi and time t
n+1 ; let758

us denote Un+1
i

= [Sn+1
i

, Q
n+1
i

]T the solution of the non-homogeneous problem at xi and t
n+1. Then the complete759

numerical scheme to solve (7.3) reads:760

761

(7.5)
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