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This work proposes block-coordinate fixed point algorithms with applications to nonlinear analysis and optimization in Hilbert spaces. The asymptotic analysis relies on a notion of stochastic quasi-Fejér monotonicity, which is thoroughly investigated. The iterative methods under consideration feature random sweeping rules to select arbitrarily the blocks of variables that are activated over the course of the iterations and they allow for stochastic errors in the evaluation of the operators. Algorithms using quasinonexpansive operators or compositions of averaged nonexpansive operators are constructed, and weak and strong convergence results are established for the sequences they generate. As a by-product, novel block-coordinate operator splitting methods are obtained for solving structured monotone inclusion and convex minimization problems. In particular, the proposed framework leads to random block-coordinate versions of the Douglas-Rachford and forward-backward algorithms and of some of their variants. In the standard case of m = 1 block, our results remain new as they incorporate stochastic perturbations.

Introduction

The main advantage of block-coordinate algorithms is to result in implementations with reduced complexity and memory requirements per iteration. These benefits have long been recognized [START_REF] Auslender | Méthodes numériques pour la décomposition et la minimisation de fonctions non différentiables[END_REF][START_REF] Céa | Optimisation: Théorie et Algorithmes[END_REF][START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF] and have become increasingly important in very large-scale problems. In addition, blockcoordinate strategies may lead to faster [START_REF] Chouzenoux | A block-coordinate variable metric forward-backward algorithm[END_REF] or distributed [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] implementations. In this paper, we propose a block-coordinate fixed point algorithmic framework to solve a variety of problems in Hilbertian nonlinear numerical analysis and optimization. Algorithmic fixed point theory in Hilbert spaces provides a unifying and powerful framework for the analysis and the construction of a wide array of solution methods in such problems [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Cegielski | Iterative Methods for Fixed Point Problems in Hilbert Spaces[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems[END_REF]. Although several block-coordinate algorithms exist for solving specific optimization problems in Euclidean spaces, a framework for dealing with general fixed point methods in Hilbert spaces and which guarantees the convergence of the iterates does not seem to exist at present. In the proposed constructs, a random sweeping strategy is employed for selecting the blocks of coordinates which are activated over the iterations. The sweeping rule allows for an arbitrary sampling of the indices of the coordinates. Furthermore, the algorithms tolerate stochastic errors in the implementation of the operators. This paper provides the first general stochastic block-coordinate fixed point framework with guaranteed convergence of the iterates. It generates a wide range of new algorithms, which will be illustrated by numerical experiments elsewhere.

A main ingredient for proving the convergence of many fixed point algorithms is the fundamental concept of (quasi-)Fejér monotonicity [START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms, in: Inherently Parallel Algorithms for Feasibility and Optimization[END_REF][START_REF] Combettes | Fejér monotonicity in convex optimization[END_REF][START_REF] Eremin | Fejér processes in theory and practice: Recent results[END_REF][START_REF] Raik | Fejér type methods in Hilbert space[END_REF]. In Section 2, refining the seminal work of [START_REF] Yu | On the method of generalized stochastic gradients and quasi-Fejér sequences[END_REF][START_REF] Yu | On convergence of random quasi-Fejér sequences[END_REF][START_REF] Yu | Random Fejér and quasi-Fejér sequences[END_REF], we revisit this concept from a stochastic standpoint. By exploiting properties of almost super-martingales [START_REF] Robbins | A convergence theorem for non negative almost supermartingales and some applications[END_REF], we establish novel almost sure convergence results for an abstract stochastic iteration scheme. In Section 3, this scheme is applied to the design of block-coordinate algorithms for relaxed iterations of quasinonexpansive operators. A simple instance of such iterations is the Krasnosel'skiȋ-Mann method, which has found numerous applications [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Byrne | Iterative Optimization in Inverse Problems[END_REF]. In Section 4, we design block-coordinate algorithms involving compositions of averaged nonexpansive operators. The results are used in Section 5 to construct block-coordinate algorithms for structured monotone inclusion and convex minimization problems. Splitting algorithms have recently becomes tools of choice in signal processing and machine learning; see, e.g., [START_REF] Byrne | Iterative Optimization in Inverse Problems[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Vito | A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization[END_REF][START_REF] Raguet | A generalized forward-backward splitting[END_REF][START_REF]Optimization for Machine Learning[END_REF]. Providing versatile block-coordinate versions of these algorithms is expected to benefit these emerging areas, as well as more traditional fields of applications of splitting methods, e.g., [START_REF] Glowinski | Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[END_REF]. One of the offsprings of our work is an original block-coordinate primal-dual algorithm which can be employed to solve a large class of variational problems.

Stochastic quasi-Fejér monotonicity

Fejér monotonicity has been exploited in various areas of nonlinear analysis and optimization to unify the convergence proofs of deterministic algorithms; see, e.g., [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Combettes | Fejér monotonicity in convex optimization[END_REF][START_REF] Eremin | Fejér processes in theory and practice: Recent results[END_REF][START_REF] Raik | Fejér type methods in Hilbert space[END_REF]. In the late 1960s, this notion was revisited in a stochastic setting in Euclidean spaces [START_REF] Yu | On the method of generalized stochastic gradients and quasi-Fejér sequences[END_REF][START_REF] Yu | On convergence of random quasi-Fejér sequences[END_REF][START_REF] Yu | Random Fejér and quasi-Fejér sequences[END_REF]. In this section, we investigate a notion of stochastic quasi-Fejér monotone sequence in Hilbert spaces and apply the results to a general stochastic iterative method. Throughout the paper, the following notation will be used. 1 Notation 2.1 H is a separable real Hilbert space with scalar product • | • , associated norm • , and Borel σ-algebra B. Id denotes the identity operator on H and and → denote, respectively, weak and strong convergence in H. The sets of strong and weak sequential cluster points of a sequence (x n ) n∈N in H are denoted by S(x n ) n∈N and W(x n ) n∈N , respectively. The underlying probability space is (Ω, F, P). A H-valued random variable is a measurable map x : (Ω, F) → (H, B). The σ-algebra generated by a family Φ of random variables is denoted by σ(Φ). Let F = (F n ) n∈N be a sequence of sub-sigma algebras of F such that (∀n ∈ N) F n ⊂ F n+1 . We denote by + (F ) the set of sequences of [0, +∞[-valued random variables (ξ n ) n∈N such that, for every n ∈ N, ξ n is F n -measurable. We set

(∀p ∈ ]0, +∞[) p + (F ) = (ξ n ) n∈N ∈ + (F ) n∈N ξ p n < +∞ P-a.s. (2.1) 
and

∞ + (F ) = (ξ n ) n∈N ∈ + (F ) sup n∈N ξ n < +∞ P-a.s. . (2.2)
Given a sequence (x n ) n∈N of H-valued random variables, we define

X = (X n ) n∈N , where (∀n ∈ N) X n = σ(x 0 , . . . , x n ). (2.3) 
Equalities and inequalities involving random variables will always be understood to hold P-almost surely, even if the expression "P-a.s." is not explicitly written. For background on probability in Hilbert spaces, see [START_REF] Fortet | Vecteurs, Fonctions et Distributions Aléatoires dans les Espaces de Hilbert[END_REF][START_REF] Ledoux | Probability in Banach Spaces: Isoperimetry and Processes[END_REF].

Lemma 2.2 [59, Theorem 1] Let F = (F n ) n∈N be a sequence of sub-sigma algebras of F such that (∀n ∈ N) F n ⊂ F n+1 . Let (α n ) n∈N ∈ + (F ), (ϑ n ) n∈N ∈ + (F ), (η n ) n∈N ∈ 1 + (F ), and (χ n ) n∈N ∈ 1 + (F ) be such that (∀n ∈ N) E(α n+1 | F n ) + ϑ n (1 + χ n )α n + η n P-a.s.
(2.4) 

Then (ϑ n ) n∈N ∈ 1 + (F )
(z)) n∈N ∈ 1 + (X ), (ϑ n (z)) n∈N ∈ + (X )
, and (η n (z)) n∈N ∈ 1 + (X ) such that the following is satisfied P-a.s.:

(∀n ∈ N) E(φ( x n+1 -z ) | X n ) + ϑ n (z) (1 + χ n (z))φ( x n -z ) + η n (z). (2.5)
Then the following hold:

(i) (∀z ∈ F) n∈N ϑ n (z) < +∞ P-a.s. (ii) (x n ) n∈N is bounded P-a.s.
(iii) There exists Ω ∈ F such that P( Ω) = 1 and, for every ω ∈ Ω and every z ∈ F, ( x n (ω) -z ) n∈N converges.

(iv) Suppose that W(x n ) n∈N ⊂ F P-a.s. Then (x n ) n∈N converges weakly P-a.s. to an F-valued random variable.

(v) Suppose that S(x n ) n∈N ∩ F = ∅ P-a.s. Then (x n ) n∈N converges strongly P-a.s. to an F-valued random variable.

(vi) Suppose that S(x n ) n∈N = ∅ P-a.s. and that W(x n ) n∈N ⊂ F P-a.s. Then (x n ) n∈N converges strongly P-a.s. to an F-valued random variable.

Proof. (i): Fix z ∈ F. It follows from (2.5) and Lemma 2.2 that n∈N ϑ n (z) < +∞ P-a.s.

(ii): Let z ∈ F and set (∀n ∈ N) ξ n = x n -z . We derive from (2.5) and Lemma 2.2 that (φ(ξ n )) n∈N converges P-a.s., say φ(ξ n ) → α P-a.s., where α is a [0, +∞[-valued random variable. In turn, since lim t→+∞ φ(t) = +∞, (ξ n ) n∈N is bounded P-a.s. and so is (x n ) n∈N . For subsequent use, let us also note that 

( x n -z ) n∈N converges to a [0,
τ (ω) + δ(ω) < ζ(ω) -δ(ω) ξ ln (ω) and, since φ is strictly increasing, φ(ξ kn (ω)) φ(τ (ω) + δ(ω)) < φ(ζ(ω) -δ(ω))
φ(ξ ln (ω)). Taking the limit as

n → +∞ yields α(ω) φ(τ (ω) + δ(ω)) < φ(ζ(ω) -δ(ω)) α(ω), which is impossible. It follows that τ (ω) = ζ(ω)
and, in turn, that ξ n (ω) → τ (ω). Thus, ξ n → τ P-a.s.

(iii): Since H is separable, there exists a countable set Z such that Z = F. According to (2.6), for every z ∈ F, there exists a set Ω z ∈ F such that P(Ω z ) = 1 and, for every ω ∈ Ω z , the sequence ( x n (ω) -z ) n∈N converges. Now set Ω = z∈Z Ω z and let Ω be its complement. Then, since Z is countable,

P( Ω) = 1 -P( Ω) = 1 -P( z∈Z Ω z ) 1 -z∈Z P( Ω z ) = 1, hence P( Ω) = 1.
We now fix z ∈ F. Since Z = F, there exists a sequence (z k ) k∈N in Z such that z k → z. As just seen, (2.6) yields

(∀k ∈ N)(∃ τ k : Ω → [0, +∞[)(∀ω ∈ Ω z k ) x n (ω) -z k → τ k (ω).
(2.7)

Now let ω ∈ Ω. We have

(∀k ∈ N)(∀n ∈ N) -z k -z x n (ω) -z -x n (ω) -z k z k -z . (2.8) 
Therefore

(∀k ∈ N) -z k -z lim n→+∞ x n (ω) -z -lim n→+∞ x n (ω) -z k = lim n→+∞ x n (ω) -z -τ k (ω) lim n→+∞ x n (ω) -z -τ k (ω) = lim n→+∞ x n (ω) -z -lim n→+∞ x n (ω) -z k z k -z .
(2.9)

Hence, taking the limit as k → +∞ in (2.9), we obtain that ( x n (ω) -z ) n∈N converges; more precisely, lim n→+∞ x n (ω) -z = lim k→+∞ τ k (ω).

(iv): By assumption, there exists Ω ∈ F such that P( Ω) = 1 and (∀ω ∈ Ω) W(x n (ω)) n∈N ⊂ F. Now define Ω as in the proof of (iii), let ω ∈ Ω ∩ Ω, and let x(ω) and y(ω) be two points in W(x n (ω)) n∈N , say x kn (ω)

x(ω) and x ln (ω) y(ω). Then (iii) implies that ( x n (ω) -x(ω) ) n∈N and ( x n (ω) -y(ω) ) n∈N converge. In turn, since

(∀n ∈ N) x n (ω) | x(ω) -y(ω) = 1 2 x n (ω) -y(ω) 2 -x n (ω) -x(ω) 2 + x(ω) 2 -y(ω) 2 ,
(2.10) the sequence ( x n (ω) | x(ω) -y(ω) ) n∈N converges, say

x n (ω) | x(ω) -y(ω) → (ω).

(2.11)

However, since x kn (ω)

x(ω), we have x(ω) | x(ω) -y(ω) = (ω). Likewise, passing to the limit along the subsequence (x ln (ω)) n∈N in (2.11) yields y(ω) | x(ω) -y(ω) = (ω). Thus,

0 = x(ω) | x(ω) -y(ω) -y(ω) | x(ω) -y(ω) = x(ω) -y(ω) 2 .
(2.12)

This shows that x(ω) = y(ω). Since ω ∈ Ω, (x n (ω)) n∈N is bounded and we invoke [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Lemma 2.38] to conclude that x n (ω)

x(ω) ∈ F. Altogether, since P( Ω ∩ Ω) = 1, x n x P-a.s. and the measurability of x follows from [55, Corollary 1.13].

(v): Let x ∈ S(x n ) n∈N ∩ F P-a.s. Then there exists Ω ∈ F such that P( Ω) = 1 and (∀ω ∈ Ω) lim x n (ω) -x(ω) = 0. Now let Ω be as in (iii) and let ω ∈ Ω ∩ Ω. Then P( Ω ∩ Ω) = 1, x(ω) ∈ F, and (iii) implies that ( x n (ω) -x(ω) ) n∈N converges. Thus, lim x n (ω) -x(ω) = 0. We conclude that x n → x P-a.s.

(vi)⇒(v): Since ∅ = S(x n ) n∈N ⊂ W(x n ) n∈N ⊂ F P-a.s., we have S(x n ) n∈N ∩ F = ∅ P-a.s.
Remark 2.4 Suppose that φ : t → t 2 in (2.5). Then special cases of Proposition 2.3 are stated in several places in the literature. Thus, stochastic quasi-Fejér sequences were first discussed in [START_REF] Yu | On the method of generalized stochastic gradients and quasi-Fejér sequences[END_REF] in the case when H is a Euclidean space and for every n ∈ N, ϑ n = χ n = 0 and η n is deterministic. A Hilbert space version of the results of [START_REF] Yu | On the method of generalized stochastic gradients and quasi-Fejér sequences[END_REF] appears in [START_REF] Barty | Hilbert-valued perturbed subgradient algorithms[END_REF] without proof. Finally, the case when all the processes are deterministic in (2.5) is discussed in [START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms, in: Inherently Parallel Algorithms for Feasibility and Optimization[END_REF].

The analysis of our main algorithms will rely on the following key illustration of Proposition 2.3. This result involves a general stochastic iterative process and it should also be of interest in the analysis of the asymptotic behavior of a broad class of stochastic algorithms, beyond those discussed in the present paper. Theorem 2.5 Let F be a nonempty closed subset of H, let (λ n ) n∈N be a sequence in ]0, 1], and let (t n ) n∈N , (x n ) n∈N , and (e n ) n∈N be sequences of H-valued random variables. Suppose that the following hold:

(i) (∀n ∈ N) x n+1 = x n + λ n (t n + e n -x n ). (ii) n∈N λ n E( e n 2 | X n ) < +∞ P-a.s. (iii) For every z ∈ F, there exist (θ n (z)) n∈N ∈ + (X ), (µ n (z)) n∈N ∈ ∞ + (X ), and (ν n (z)) n∈N ∈ ∞ + (X ) such that (λ n µ n (z)) n∈N ∈ 1 + (X ), (λ n ν n (z)) n∈N ∈ 1/2 + (X )
, and the following is satisfied P-a.s.:

(∀n ∈ N) E( t n -z 2 | X n ) + θ n (z) (1 + µ n (z)) x n -z 2 + ν n (z).
(2.13)

Then

(∀z ∈ F) n∈N λ n θ n (z) < +∞ P-a.s.

(2.14)

and n∈N λ n (1 -λ n )E( t n -x n 2 | X n ) < +∞ P-a.s. (2.15)
Furthermore, suppose that:

(iv) W(x n ) n∈N ⊂ F P-a.s.
Then (x n ) n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addition,

(v) S(x n ) n∈N = ∅ P-a.s.,
then (x n ) n∈N converges strongly P-a.s. to x.

Proof. Let z ∈ F and set

(∀n ∈ N) ε n = λ n E( e n 2 | X n ). (2.16) 
It follows from Jensen's inequality and (iii) that

(∀n ∈ N) E( t n -z | X n ) E( t n -z 2 | X n ) (1 + µ n (z)) x n -z 2 + ν n (z) 1 + µ n (z) x n -z + ν n (z) (1 + µ n (z)/2) x n -z + ν n (z).
(2.17)

On the other hand, (i) and the triangle inequality yield

(∀n ∈ N) x n+1 -z (1 -λ n ) x n -z + λ n t n -z + λ n e n . (2.18) 
Consequently, 

(∀n ∈ N) E( x n+1 -z | X n ) (1 -λ n ) x n -z + λ n E( t n -z | X n ) + λ n E( e n | X n ) 1 + λ n µ n (z) 2 x n -z + λ n ν n (z) + λ n E( e n 2 | X n ) = 1 + λ n µ n (z) 2 x n -z + λ n ν n (z) + ε n . ( 2 
(∀n ∈ N) x n -z ρ 1 (z) and E( t n -z 2 | X n ) ρ 2 (z). (2.20) 
Now set

(∀n ∈ N)            χ n (z) = λ n µ n (z) ξ n (z) = 2λ n (1 -λ n ) x n -z e n + 2λ 2 n t n -z e n + λ 2 n e n 2 ϑ n (z) = λ n θ n (z) + λ n (1 -λ n )E( t n -x n 2 | X n ) η n (z) = E(ξ n (z) | X n ) + λ n ν n (z).
(2.21)

On the one hand, it follows from (2.21), the Cauchy-Schwarz inequality, and (2.16) that

(∀n ∈ N) E(ξ n (z) | X n ) = 2λ n (1 -λ n ) x n -z E( e n | X n ) + 2λ 2 n E( t n -z e n | X n ) + λ 2 n E( e n 2 | X n ) 2λ n x n -z E( e n 2 | X n ) + 2λ n E( t n -z 2 | X n ) E( e n 2 | X n ) + λ 2 n E( e n 2 | X n ) 2(ρ 1 (z) + ρ 2 (z))ε n + ε 2 n . (2.22)
In turn, we deduce from (2.16), (2.21), (ii), and (iii) that

η n (z) n∈N ∈ 1 + (X ) and χ n (z) n∈N ∈ 1 + (X ). (2.23)
On the other hand, we derive from (i), [7, Corollary 2.14], and (2.21) that

(∀n ∈ N) x n+1 -z 2 = (1 -λ n )(x n -z) + λ n (t n -z) 2 + 2λ n (1 -λ n )(x n -z) + λ n t n -z | e n + λ 2 n e n 2 (1 -λ n ) x n -z 2 + λ n t n -z 2 -λ n (1 -λ n ) t n -x n 2 + ξ n (z). (2.24)
Hence, (iii), (2.21), and (2.22) imply that 

(∀n ∈ N) E( x n+1 -z 2 | X n ) (1 -λ n ) x n -z 2 + λ n E( t n -z 2 | X n ) -λ n (1 -λ n )E( t n -x n 2 | X n ) + E(ξ n (z) | X n ) (1 -λ n ) x n -z 2 + λ n (1 + µ n (z)) x n -z 2 + ν n (z) -θ n (z) -λ n (1 -λ n )E( t n -x n 2 | X n ) + E(ξ n (z) | X n ) (1 + χ n (z)) x n -z 2 -ϑ n (z) + η n (z). ( 2 
) n∈N = ∅ [54].
Although our primary objective is to apply Theorem 2.5 to block-coordinate methods, it also yields new results for classical methods. As an illustration, the following application describes a Krasnosel'skiȋ-Mann iteration with stochastic errors.

Corollary 2.7 Let

(λ n ) n∈N be a sequence in [0, 1] such that n∈N λ n (1 -λ n ) = +∞
and let T : H → H be a nonexpansive operator such that Fix T = ∅. Let x 0 and (e n ) n∈N be H-valued random variables. Iterate for n = 0, 1, . . .

x n+1 = x n + λ n Tx n + e n -x n .
(2.26)

In addition, assume that n∈N λ n E( e n 2 | X n ) < +∞ P-a.s. Then the following hold:

(i) (x n ) n∈N converges weakly P-a.s. to a (Fix T)-valued random variable.

(ii) Suppose that T is demicompact at 0 (see Definition 2.6). Then (x n ) n∈N converges strongly P-a.s. to a (Fix T)-valued random variable.

Proof. Set F = Fix T. Since T is continuous, T is measurable and F is closed. Now let z ∈ F and set (∀n ∈ N) t n = Tx n . Then, using the nonexpansiveness of T, we obtain

(∀n ∈ N)      x n+1 = x n + λ n (t n + e n -x n ) E( t n -x n 2 | X n ) = Tx n -x n 2 E( t n -z 2 | X n ) = Tx n -Tz 2 x n -z 2 .
(2.27)

It follows that properties (i)-(iii) in Theorem 2.5 are satisfied with (∀n ∈ N) θ n = 0, µ n = 0, and ν n = 0. Hence, (2.15) and (2.27) imply the existence of Ω ∈ F such that P( Ω) = 1 and

(∀ω ∈ Ω) n∈N λ n (1 -λ n ) Tx n (ω) -x n (ω) 2 < +∞. (2.28) 
Moreover,

(∀n ∈ N) Tx n+1 -x n+1 = Tx n+1 -Tx n + (1 -λ n )(Tx n -x n ) -λ n e n Tx n+1 -Tx n + (1 -λ n ) Tx n -x n + λ n e n x n+1 -x n + (1 -λ n ) Tx n -x n + λ n e n λ n Tx n -x n + (1 -λ n ) Tx n -x n + 2λ n e n = Tx n -x n + 2λ n e n (2.29)
and, therefore,

(∀n ∈ N) E( Tx n+1 -x n+1 | X n ) Tx n -x n + 2λ n E( e n | X n ) Tx n -x n + 2λ n E( e n 2 | X n ). (2.30)
In turn, Lemma 2.2 implies that there exists Ω ⊂ Ω such that Ω ∈ F, P( Ω) = 1, and, for every ω ∈ Ω, ( Tx n (ω) -x n (ω) ) n∈N converges.

(i): It is enough to establish property (iv) of Theorem 2.5. Let ω ∈ Ω and let x ∈ W(x n (ω)) n∈N , say x kn (ω)

x. In view of (2.28), since

n∈N λ n (1-λ n ) = +∞, we have lim Tx n (ω)-x n (ω) = 0. Therefore, Tx n (ω) -x n (ω) → 0.
(2.31)

Altogether, x kn (ω)

x and Tx kn (ω) -x kn (ω) → 0. Since T is nonexpansive, the demiclosed principle [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 4.18] asserts that x ∈ F.

(ii): It is enough to establish property (v) of Theorem 2.5. Let ω ∈ Ω. As shown above, (x n (ω)) n∈N converges weakly and it is therefore bounded [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Lemma 2.38]. Hence, by demicompactness, (2.31) implies that S(x n (ω)) n∈N = ∅. Thus, S(x n ) n∈N = ∅ P-a.s. Remark 2.8 Corollary 2.7 extends [21, Theorem 5.5], which is restricted to deterministic processes and therefore less realistic error models. As shown in [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Cegielski | Iterative Methods for Fixed Point Problems in Hilbert Spaces[END_REF][START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms, in: Inherently Parallel Algorithms for Feasibility and Optimization[END_REF], the Krasnosel'skiȋ-Mann iteration process is at the core of many algorithms in variational problems and optimization. Corollary 2.7 therefore provides stochastically perturbed versions of these algorithms.

Single-layer random block-coordinate fixed point algorithms

In the remainder of the paper, the following notation will be used.

Notation 3.1 H 1 , . . . , H m are separable real Hilbert spaces and H = H 1 ⊕ • • • ⊕ H m is their direct Hilbert sum.
The scalar products and associated norms of these spaces are all denoted by • | • and • , respectively, and x = (x 1 , . . . , x m ) denotes a generic vector in H. Given a sequence

(x n ) n∈N = (x 1,n , . . . , x m,n ) n∈N of H-valued random variables, we set (∀n ∈ N) X n = σ(x 0 , . . . , x n ).
We recall that an operator T : H → H with fixed point set Fix T is quasinonexpansive if [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] (∀z for n = 0, 1, . . .

∈ Fix T)(∀x ∈ H) Tx -z x -z . ( 3 
for i = 1, . . . , m x i,n+1 = x i,n + ε i,n λ n T i,n (x 1,n , . . . , x m,n ) + a i,n -x i,n , (3.2) 
and set (∀n ∈ N) E n = σ(ε n ). In addition, assume that the following hold:

(i) F = n∈N Fix T n = ∅. (ii) n∈N E( a n 2 | X n ) < +∞.
(iii) For every n ∈ N, E n and X n are independent.

(iv) (∀i ∈ {1, . . . , m})

p i = P[ε i,0 = 1] > 0.
Then

T n x n -x n → 0 P-a.s. (3.3)
Furthermore, suppose that:

(v) W(x n ) n∈N ⊂ F P-a.s.
Then (x n ) n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addition, (vi) S(x n ) n∈N = ∅ P-a.s., then (x n ) n∈N converges strongly P-a.s. to x.

Proof. We define a norm ||| • ||| on H by

(∀x ∈ H) |||x||| 2 = m i=1 1 p i x i 2 . (3.4)
We are going to apply Theorem 2.5 in (H, ||| • |||). Let us set

(∀n ∈ N) t n = (t i,n ) 1 i m e n = (ε i,n a i,n ) 1 i m , where (∀i ∈ {1, . . . , m}) t i,n = x i,n +ε i,n (T i,n x n -x i,n ). (3.5)
Then it follows from (3.2) that

(∀n ∈ N) x n+1 = x n + λ n t n + e n -x n , (3.6) 
while (ii) implies that

n∈N λ n E(|||e n ||| 2 | X n ) n∈N E(|||a n ||| 2 | X n ) < +∞. (3.7) 
Since the operators (T n ) n∈N are quasinonexpansive, F is closed [6, Section 2]. Now let z ∈ F and set

(∀n ∈ N)(∀i ∈ {1, . . . , m}) q i,n : H × D → R : (x, ) → x i -z i + i (T i,n x -x i ) 2 . (3.8)
Note that, for every n ∈ N and every i ∈ {1, . . . , m}, since T i,n is measurable, so are the functions (q i,n (•, )) ∈D . Consequently, since, for every n ∈ N, (iii) asserts that the events ([ε n = ]) ∈D form an almost sure partition of Ω and are independent from X n , and since the random variables

(q i,n (x n , )) 1 i m ∈D are X n -measurable, we obtain [44, Section 28.2] (∀n ∈ N)(∀i ∈ {1, . . . , m}) E( t i,n -z i 2 | X n ) = E q i,n (x n , ε n ) ∈D 1 [εn= ] X n = ∈D E(q i,n (x n , )1 [εn= ] | X n ) = ∈D E(1 [εn= ] | X n )q i,n (x n , ) = ∈D P[ε n = ]q i,n (x n , ). (3.9) 
Thus, (3.4), (3.5), (3.9), (3.8), (iv), and (3.1) yield

(∀n ∈ N) E(|||t n -z||| 2 | X n ) = m i=1 1 p i E( t i,n -z i 2 | X n ) = m i=1 1 p i ∈D P[ε n = ] x i,n -z i + i (T i,n x n -x i,n ) 2 = m i=1 1 p i   ∈D, i =1 P[ε n = ] T i,n x n -z i 2 + ∈D, i =0 P[ε n = ] x i,n -z i 2   = T n x n -z 2 + m i=1 1 -p i p i x i,n -z i 2 = |||x n -z||| 2 + T n x n -z 2 -x n -z 2 |||x n -z||| 2 . (3.10)
Altogether, properties (i)-(iii) of Theorem 2.5 are satisfied with (∀n ∈ N)

θ n = µ n = ν n = 0. We therefore derive from (2.15) that n∈N λ n (1 -λ n )E(|||t n -x n ||| 2 | X n ) < +∞ P-a.s.
In view of our conditions on (λ n ) n∈N , this yields

E(|||t n -x n ||| 2 | X n ) → 0 P-a.s. (3.11) 
On the other hand, proceeding as in (3.9) leads to

(∀n ∈ N)(∀i ∈ {1, . . . , m}) E( t i,n -x i,n 2 | X n ) = ∈D i P[ε n = ] T i,n x n -x i,n 2 . (3.12)
Hence, it follows from (3.4), (3.5), and (iv) that

(∀n ∈ N) E(|||t n -x n ||| 2 | X n ) = m i=1 1 p i E( t i,n -x i,n 2 | X n ) = m i=1 1 p i ∈D i P[ε n = ] T i,n x n -x i,n 2 = m i=1 1 p i ∈D, i =1 P[ε n = ] T i,n x n -x i,n 2 = T n x n -x n 2 . (3.13)
Accordingly, (3.11) yields T n x n -x n → 0 P-a.s. In turn, the weak and strong convergence assertions are consequences of Theorem 2.5.

Remark 3.3

Let us make a few comments about Theorem 3.2.

(i) The binary variable ε i,n signals whether the i-th coordinate T i,n of the operator T n is activated or not at iteration n.

(ii) Assumption (iv) guarantees that each operator in (T i,n ) 1 i m is activated with a nonzero probability at each iteration n of Algorithm (4.1). The simplest scenario corresponds to the case when the block sweeping process assigns nonzero probabilities to multivariate indices ∈ D having a single component equal to 1. Then only one of the operators in (T i,n ) 1 i m is activated randomly. In general, the sweeping rule allows for an arbitrary sampling of the indices {1, . . . , m}.

(iii) In view of (3.3), (v) is satisfied if there exists Ω ∈ F such that P( Ω) = 1 and

(∀ω ∈ Ω) T n x n (ω) -x n (ω) → 0 ⇒ W(x n (ω)) n∈N ⊂ F . (3.14)
In the deterministic case, this is akin to the focusing conditions of [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF]; see [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Bauschke | A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces[END_REF][START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms, in: Inherently Parallel Algorithms for Feasibility and Optimization[END_REF] for examples of suitable sequences (T n ) n∈N . Likewise, (vi) is satisfied if there exists Ω ∈ F such that P( Ω) = 1 and

(∀ω ∈ Ω) sup n∈N x n (ω) < +∞ and T n x n (ω) -x n (ω) → 0 ⇒ S(x n (ω)) n∈N = ∅ . (3.15)
In the deterministic case, this is the demicompactness regularity condition of [21, Definition 6.5]. Examples of suitable sequences (T n ) n∈N are provided in [START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms, in: Inherently Parallel Algorithms for Feasibility and Optimization[END_REF].

Our first corollary is a random block-coordinate version of the Krasnosel'skiȋ-Mann iteration.

Corollary 3.4 Let (λ n ) n∈N be a sequence in ]0, 1[ such that inf n∈N λ n > 0 and sup n∈N λ n < 1, set D = {0, 1} m {0}
, and let T : H → H : x → (T i x) 1 i m be a nonexpansive operator such that Fix T = ∅ where, for every i ∈ {1, . . . , m}, T i : H → H i . Let x 0 and (a n ) n∈N be H-valued random variables, and let (ε n ) n∈N be identically distributed D-valued random variables. Iterate for n = 0, 1, . . .

for i = 1, . . . , m x i,n+1 = x i,n + ε i,n λ n T i (x 1,n , . . . , x m,n ) + a i,n -x i,n , (3.16 
)

and set (∀n ∈ N) E n = σ(ε n ).
In addition, assume that properties (ii)-(iv) of Theorem 3.2 hold. Then (x n ) n∈N converges weakly P-a.s. to a (Fix T)-valued random variable. The convergence is strong if T is demicompact at 0 (see Definition 2.6).

Proof. This is an application of Theorem 3. Remark 3.5 A special case of Corollary 3.4 appears in [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF]. It corresponds to the scenario in which H is finite-dimensional, T is firmly nonexpansive, and, for every n ∈ N, λ n = 1, a n = 0, and only one block is activated as in Remark 3.3(ii). Let us also note that a renorming similar to that performed in (3.4) was employed in [START_REF] Yu | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF].

Next, we consider the construction of a fixed point of a family of averaged operators. for n = 0, 1, . . . and set (∀n ∈ N) E n = σ(ε n ). Furthermore, assume that there exists Ω ∈ F such that P( Ω) = 1 and the following hold:

for i = 1, . . . , m x i,n+1 = x i,n + ε i,n λ n T i,n (x 1,n , . . . , x m,n ) + a i,n -x i,n , (3.17 
(i) F = n∈N Fix T n = ∅. (ii) n∈N α -1 n E( a n 2 | X n ) < +∞.
(iii) For every n ∈ N, E n and X n are independent.

(iv) (∀i ∈ {1, . . . , m})

P[ε i,0 = 1] > 0. (v) (∀ω ∈ Ω) α -1 n T n x n (ω) -x n (ω) → 0 ⇒ W(x n (ω)) n∈N ⊂ F .
Then (x n ) n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addition,

(vi) (∀ω ∈ Ω) sup n∈N x n (ω) < +∞ and α -1 n T n x n (ω) -x n (ω) → 0 ⇒ S(x n (ω)) n∈N = ∅ ,
then (x n ) n∈N converges strongly P-a.s. to x.

Proof. Set (∀n ∈ N) R n = (1 -α -1 n )Id + α -1 n T n and (∀i ∈ {1, . . . , m}) R i,n = (1 -α -1 n )Id + α -1 n T i,n . Moreover, set (∀n ∈ N) µ n = α n λ n and b n = α -1 n a n . Then (∀n ∈ N) Fix R n = Fix T n and R n is nonexpansive.
In addition, we derive from (3.17) that Theorem 4.1 Let (α n ) n∈N and (β n ) n∈N be sequences in ]0, 1[ such that sup n∈N α n < 1 and sup n∈N β n < 1, let (λ n ) n∈N be a sequence in ]0, 1] such that inf n∈N λ n > 0, and set D = {0, 1} m {0}. Let x 0 , (a n ) n∈N , and (b n ) n∈N be H-valued random variables, and let (ε n ) n∈N be identically distributed D-valued random variables. For every n ∈ N, let R n : H → H be β n -averaged and let T n : H → H : x → (T i,n x) 1 i m be α n -averaged, where, (∀i ∈ {1, . . . , m}) T i,n : H → H i . Iterate

(∀n ∈ N)(∀i ∈ {1, . . . , m}) x i,n+1 = x i,n + ε i,n µ n R i,n x n + b i,n -x i,n . (3.18) Since (µ n ) n∈N lies in [χ, 1 -χ] and n∈N E( b n 2 | X n ) = n∈N α -1 n E( a n 2 | X n ) < +∞,
for n = 0, 1, . . .     y n = R n x n + b n for i = 1, . . . , m x i,n+1 = x i,n + ε i,n λ n T i,n y n + a i,n -x i,n , (4.1) 
and set (∀n ∈ N) E n = σ(ε n ). In addition, assume that the following hold:

(i) F = n∈N Fix (T n • R n ) = ∅. (ii) n∈N E( a n 2 | X n ) < +∞ and n∈N E( b n 2 | X n ) < +∞.
(iii) For every n ∈ N, E n and X n are independent.

(iv) (∀i ∈ {1, . . . , m})

p i = P[ε i,0 = 1] > 0.
Then

(∀z ∈ F) T n (R n x n ) -R n x n + R n z → z P-a.s. (4.2) 
and

(∀z ∈ F) x n -R n x n + R n z → z P-a.s. (4.3) 
Furthermore, suppose that: 

(v) W(x n ) n∈N ⊂ F P-
(∀i ∈ {1, . . . , m})      t i,n = x i,n + ε i,n (T i,n r n -x i,n ) c i,n = ε i,n a i,n d i,n = ε i,n (T i,n y n -T i,n r n ) and e i,n = c i,n + d i,n . (4.5) 
Then (4.1) implies that

(∀n ∈ N) x n+1 = x n + λ n t n + e n -x n . (4.6)
On the other hand, we derive from (4.5) that

(∀n ∈ N) E(|||e n ||| 2 | X n ) E(|||c n ||| 2 | X n ) + E(|||d n ||| 2 | X n ) E(|||a n ||| 2 | X n ) + E(|||d n ||| 2 | X n ). (4.7) 
However, it follows from (4.5), (4.4), and the nonexpansiveness of the operators (T n ) n∈N that

(∀n ∈ N) E(|||d n ||| 2 | X n ) 1 min 1 i m p i E m i=1 ε i,n (T i,n y n -T i,n r n ) 2 X n 1 min 1 i m p i E( T n y n -T n r n 2 | X n ) 1 min 1 i m p i E( y n -r n 2 | X n ) = 1 min 1 i m p i E( b n 2 | X n ). (4.8) 
Consequently (4.4), (4.7), and (ii) yield

n∈N λ n E(|||e n ||| 2 | X n ) 1 min 1 i m √ p i n∈N E( a n 2 | X n ) + n∈N E( b n 2 | X n ) < +∞. (4.9) 
Now let z ∈ F, and set

(∀n ∈ N)(∀i ∈ {1, . . . , m}) q i,n : H × D → R : (x, ) → x i -z i + i (T i,n (R n x) -x i ) 2 . (4.10)
Observe that, for every n ∈ N and every i ∈ {1, . . . , m}, by continuity of R n and T i,n , T i,n • R n is measurable, and the functions (q i,n (•, )) ∈D are therefore likewise. Consequently, using (iv) and arguing as in (3.9) leads to

(∀n ∈ N)(∀i ∈ {1, . . . , m}) E( t i,n -z i 2 | X n ) = ∈D E(q i,n (x n , )1 [εn= ] | X n ) = ∈D P[ε n = ] x i,n -z i + i (T i,n r n -x i,n ) 2 . (4.11)
Hence, recalling (3.4) and (iv), we obtain

(∀n ∈ N) E(|||t n -z||| 2 | X n ) = m i=1 1 p i E( t i,n -z i 2 | X n ) = m i=1 1 p i ∈D P[ε n = ] x i,n -z i + i (T i,n r n -x i,n ) 2 = m i=1 1 p i   ∈D, i =1 P[ε n = ] T i,n r n -z i 2 + ∈D, i =0 P[ε n = ] x i,n -z i 2   = T n r n -z 2 + m i=1 1 -p i p i x i,n -z i 2 = |||x n -z||| 2 + T n r n -z 2 -x n -z 2 .
(4.12)

However, we deduce from (i) and Proposition 3.7 that

(∀n ∈ N) T n r n -z 2 + 1 -α n α n r n -T n r n -R n z + z 2 r n -R n z 2 . (4.13)
Combining (4.12) with (4.13) yields 

(∀n ∈ N) E(|||t n -z||| 2 | X n ) + 1 -α n α n r n -T n r n -R n z + z 2 |||x n -z||| 2 + R n x n -R n z 2 -x n -z 2 .
(∀n ∈ N) E(|||t n -z||| 2 | X n ) + θ n (z) |||x n -z||| 2 , (4.15) 
where

(∀n ∈ N) θ n (z) = χ r n -T n r n -R n z + z 2 + x n -r n -z + R n z 2 (4.16) 1 -α n α n r n -T n r n -R n z + z 2 + 1 -β n β n x n -r n -z + R n z 2 . (4.17)
We have thus shown that properties (i)-(iii) of Theorem 2.5 hold with (∀n ∈ N) µ n = ν n = 0. Next, let Z be a countable set which is dense in F. Then (2.14) asserts that

(∀z ∈ Z)(∃ Ω z ∈ F) P(Ω z ) = 1 and (∀ω ∈ Ω z ) n∈N λ n θ n (z, ω) < +∞. (4.18)
Moreover, the event Ω = z∈Z Ω z is almost certain, i.e., P( Ω) = 1. Now fix z ∈ F. By density, we can extract from Z a sequence (z k ) k∈N such that z k → z. In turn, since inf n∈N λ n > 0, we derive from (4.16) and (4.18) that 

(∀k ∈ N)(∀ω ∈ Ω) r n (ω) -T n r n (ω) -R n z k + z k → 0 x n (ω) -r n (ω) -z k + R n z k → 0. ( 4 
(∀k ∈ N)(∀n ∈ N)(∀ω ∈ Ω) -ζ z k -z -S n z k -S n z p n (ω) + S n z -p n (ω) + S n z k S n z k -S n z ζ z k -z (4.20)
and, therefore, (4.19) yields

(∀k ∈ N) -ζ z k -z lim n→+∞ p n (ω) + S n z -lim n→+∞ p n (ω) + S n z k = lim n→+∞ p n (ω) + S n z lim n→+∞ p n (ω) + S n z lim n→+∞ p n (ω) + S n z -lim n→+∞ p n (ω) + S n z k ζ z k -z . (4.21)
Since z k -z → 0 and P( Ω) = 1, we obtain p n + S n z → 0 P-a.s., which proves (4.2). Likewise, set (∀n ∈ N) q n = x n -r n . Then, proceeding as in (4.21), (4.19) yields q n +S n z → 0, which establishes (4.3). Finally, the weak and strong convergence claims follow from (v), (vi), and Theorem 2.5.

Remark 4.2

(i) Consider the special case when only one-block is present (m = 1) and when the error sequences (a n ) n∈N and (b n ) n∈N , as well as x 0 , are deterministic. Then the setting of Theorem 4.1 is found in [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]Theorem 6.3]. Our framework therefore makes it possible to design block-coordinate versions of the algorithms which comply with the two-layer format of [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]Theorem 6.3], such as the forward-backward algorithm [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] or the algorithms of [START_REF] Briceño-Arias | Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions[END_REF] and [START_REF] Raguet | A generalized forward-backward splitting[END_REF]. Theorem 4.1 will be applied to block-coordinate forward-backward splitting in Section 5.2.

(ii) Theorem 4.1(v) gives a condition for the P-a.s. weak convergence of a sequence (x n ) n∈N produced by algorithm 4.1 to a solution x. In infinite-dimensional spaces, examples have been constructed for which the convergence is only weak and not strong, i.e., ( x n -x ) n∈N does not converge to 0 P-a.s. [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Hundal | An alternating projection that does not converge in norm[END_REF]. Even if, as in Theorem 4.1(vi), ( x n -x ) n∈N does converge to 0 P-a.s., there is in general no theoretical upper bound on the worst-case behavior of the rate of convergence, which can be arbitrarily slow [START_REF] Bauschke | Characterizing arbitrarily slow convergence in the method of alternating projections[END_REF]. The latter behavior is also possible in Euclidean spaces [START_REF] Bauschke | Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study[END_REF][START_REF] Youla | Mathematical theory of image restoration by the method of convex projections[END_REF].

Applications to operator splitting

Let A : H → 2 H be a set-valued operator and let A -1 be its inverse, i.e., (∀(x, u) 

∈ H 2 ) x ∈ A -1 u ⇔ u ∈ Ax. The resolvent of A is J A = (Id + A) -1 . The domain of A is dom A = x ∈ H Ax = ∅ and the graph of A is gra A = (x, u) ∈ H × H u ∈ Ax . If A is monotone, then J A is
∂f : H → 2 H : x → u ∈ H (∀y ∈ H) y -x | u + f(x) f(y) . (5.1)
For every x ∈ H, f + x -• 2 /2 has a unique minimizer, which is denoted by prox f x [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF]. We have

prox f = J ∂f . (5.2)
For background on convex analysis and monotone operator theory, see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. We continue to use the standing Notation 3.1.

Random block-coordinate Douglas-Rachford splitting

We propose a random sweeping, block-coordinate version of the Douglas-Rachford algorithm with stochastic errors. The purpose of this algorithm is to construct iteratively a zero of the sum of two maximally monotone operators and it has found applications in numerous areas; see, e.g., [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Bot | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF][START_REF] Briceño-Arias | A Douglas-Rachford splitting method for solving equilibrium problems[END_REF][START_REF] Combettes | Iterative construction of the resolvent of a sum of maximal monotone operators[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF][START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF][START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Papadakis | Optimal transport with proximal splitting[END_REF][START_REF] Pennanen | A splitting method for stochastic programs[END_REF][START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF].

Proposition 5.1 Set D = {0, 1} m {0} and, for every i ∈ {1, . . . , m}, let A i : H i → 2 H i be maximally monotone and let B i :

H → 2 H i . Suppose that B : H → 2 H : x → × m i=1 B i
x is maximally monotone and that the set F of solutions to the problem

find x 1 ∈ H 1 , . . . , x m ∈ H m such that (∀i ∈ {1, . . . , m}) 0 ∈ A i x i + B i (x 1 , . . . , x m ) (5.3) is nonempty. Set B -1 : u → × m i=1 C i u
where, for every i ∈ {1, . . . , m}, C i : H → 2 H i . We also consider the set F * of solutions to the dual problem and(b n ) n∈N be H-valued random variables, and let (ε n ) n∈N be identically distributed D-valued random variables. Set J γB : x → (Q i x) 1 i m where, for every i ∈ {1, . . . , m},

find u 1 ∈ H 1 , . . . , u m ∈ H m such that (∀i ∈ {1, . . . , m}) 0 ∈ -A -1 i (-u i ) + C i (u 1 , . . . , u m ). (5.4) Let γ ∈ ]0, +∞[, let (µ n ) n∈N be a sequence in ]0, 2[ such that inf n∈N µ n > 0 and sup n∈N µ n < 2, let x 0 , z 0 , (a n ) n∈N ,
Q i : H → H i , iterate for n = 0, 1, . . .      for i = 1, . . . , m z i,n+1 = z i,n + ε i,n Q i (x 1,n , . . . , x m,n ) + b i,n -z i,n x i,n+1 = x i,n + ε i,n µ n J γA i (2z i,n+1 -x i,n ) + a i,n -z i,n+1 , (5.5 
)

and set (∀n ∈ N) E n = σ(ε n ).
Assume that the following hold:

(i) n∈N E( a n 2 | X n ) < +∞ and n∈N E( b n 2 | X n ) < +∞.
(ii) For every n ∈ N, E n and X n are independent.

(iii) (∀i ∈ {1, . . . , m})

p i = P[ε i,0 = 1] > 0.
These imply that 0 ∈ -A -1 (-u) + B -1 u P-a.s., i.e., that u ∈ F * P-a.s. Finally, assume that (iv) holds. Then there exists Ω ∈ F such that P( Ω) = 1 and (∀ω ∈ Ω) J γB x n (ω) J γB x(ω) = z(ω). Now let i ∈ {1, . . . , m}, ω ∈ Ω, and v ∈ H.

Then Q i x n (ω) | v i → z i (ω) | v i and (5.5) yields (∀n ∈ N) z i,n+1 (ω) | v i = z i,n (ω) | v i + ε i,n (ω) Q i x n (ω) | v i + b i,n (ω) | v i -z i,n (ω) | v i .
(5.13) However, according to (iii), at the expense of possibly taking ω in a smaller almost sure event, ε i,n (ω) = 1 infinitely often. Hence, there exists a monotone sequence (k n ) n∈N in N such that k n → +∞ and, for n ∈ N sufficiently large,

z i,n+1 (ω) | v i = Q i x kn (ω) | v i + b i,kn (ω) | v i .
(5.14)

Thus, since Q i x kn (ω) | v i → z i (ω) | v i and b i,kn (ω) | v i → 0, z i,n+1 (ω) -z i (ω) | v i → 0. Hence, z n+1 (ω) -z(ω) | v = m i=1 z i,n+1 (ω) -z i (ω) | v i → 0.
This shows that z n z P-a.s., which allows us to conclude that γ -1 (x n -z n )

u P-a.s.

Remark 5.2

Let us make some connections between Proposition 5.1 and existing results.

(i) In the standard case of a single block (m = 1) and when all the variables are deterministic, the above primal convergence result goes back to [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF] and to [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF] in the unrelaxed case.

(ii) In minimization problems, the alternating direction method of multipliers (ADMM) is strongly related to an application of the Douglas-Rachford algorithm to the dual problem [START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF]. This connection can be used to construct a random block-coordinate ADMM algorithm. Let us note that such an algorithm was recently proposed in [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] in a finite-dimensional setting, where single-block, unrelaxed, and error-free iterations were used.

Next, we apply Proposition 5.1 to devise a primal-dual block-coordinate algorithm for solving a class of structured inclusion problems investigated in [START_REF] Combettes | Systems of structured monotone inclusions: Duality, algorithms, and applications[END_REF].

Corollary 5.3 Set D = {0, 1} m+p {0}, let (G k ) 1 k p be separable real Hilbert spaces, and set G = G 1 ⊕ • • • ⊕ G p .
For every i ∈ {1, . . . , m}, let A i : H i → 2 H i be maximally monotone and, for every k ∈ {1, . . . , p}, let B k : G k → 2 G k be maximally monotone, and let L ki : H i → G k be linear and bounded. It is assumed that the set F of solutions to the problem

find x 1 ∈ H 1 , . . . , x m ∈ H m such that (∀i ∈ {1, . . . , m}) 0 ∈ A i x i + p k=1 L * ki B k m j=1 L kj x j (5.15)
is nonempty. We also consider the set F * of solutions to the dual problem

find v 1 ∈ G 1 , . . . , v p ∈ G p such that (∀k ∈ {1, . . . , p}) 0 ∈ - m i=1 L ki A -1 i - p l=1 L * li v l + B -1 k v k .
(5.16) and(c n ) n∈N be H-valued random variables, let y 0 , w 0 , (b n ) n∈N , and (d n ) n∈N be G-valued random variables, and let (ε n ) n∈N be identically distributed D-valued random variables. Set

Let γ ∈ ]0, +∞[, let (µ n ) n∈N be a sequence in ]0, 2[ such that inf n∈N µ n > 0 and sup n∈N µ n < 2, let x 0 , z 0 , (a n ) n∈N ,
V = (x 1 , . . . , x m , y 1 , . . . , y p ) ∈ H ⊕ G (∀k ∈ {1, . . . , p}) y k = m i=1 L ki x i , (5.17) 
let P V : x → (Q j x) 1 j m+p be its projection operator, where (∀i ∈ {1, . . . , m})

Q i : H ⊕ G → H i and (∀k ∈ {1, . . . , p}) Q m+k : H ⊕ G → G k , iterate for n = 0, 1, . . .             for i = 1, . . . , m z i,n+1 = z i,n + ε i,n Q i (x 1,n , . . . , x m,n , y 1,n , . . . , y p,n ) + c i,n -z i,n x i,n+1 = x i,n + ε i,n µ n J γA i (2z i,n+1 -x i,n ) + a i,n -z i,n+1 for k = 1, . . . , p w k,n+1 = w k,n + ε m+k,n Q m+k (x 1,n , . . . , x m,n , y 1,n , . . . , y p,n ) + d k,n -w k,n y k,n+1 = y k,n + ε m+k,n µ n J γB k (2w k,n+1 -y k,n ) + b k,n -w k,n+1 , (5.18) 
and set (∀n ∈ N) Y n = σ(x j , y j ) 0 j n and E n = σ(ε n ). In addition, assume that the following hold:

(i) n∈N E( a n 2 | Y n ) < +∞, n∈N E( b n 2 | Y n ) < +∞, n∈N E( c n 2 | Y n ) < +∞, n∈N E( d n 2 | Y n ) < +∞, c n 0 P-a.
s., and d n 0 P-a.s.

(ii) For every n ∈ N, E n and Y n are independent.

(iii) (∀j ∈ {1, . . . , m + p}) P[ε j,0 = 1] > 0.

Then (z n ) n∈N converges weakly P-a.s. to an F-valued random variable, and (γ -1 (w n -y n )) n∈N converges weakly P-a.s. to an F * -valued random variable. Then the primal-dual problem (5.15)-(5.16) can be rewritten as

Proof. Set A : H → 2 H : x → × m i=1 A i x i , B : G → 2 G : y → × p k=1 B k y k ,
find (x, v) ∈ K such that 0 ∈ Ax + L * BLx 0 ∈ -LA -1 (-L * v) + B -1 v. (5.20) 
The normal cone operator to V is [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Example 6.42] (5.15). (5.22) Since C and N V are maximally monotone, it follows from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 23.16] that the iteration process (5.18) is an instance of (5.5) for finding a zero of C + N V in K. The associated dual problem consists of finding a zero of -C -1 (-•) + N -1 V . Let (u, v) ∈ K. Then (5.21) yields

N V : K → 2 K : (x, y) → V ⊥ , if Lx = y; ∅, if Lx = y, where V ⊥ = (u, v) ∈ K u = -L * v . (5.21) Now let (x, y) ∈ K. Then (0, 0) ∈ C(x, y) + N V (x, y) ⇔ (x, y) ∈ V (0, 0) ∈ (Ax × By) + V ⊥ ⇔ Lx = y (∃ u ∈ Ax)(∃ v ∈ By) u = -L * v ⇒ (∃ v ∈ B(Lx)) -L * v ∈ Ax ⇒ (∃ v ∈ G) L * v ∈ L * BLx and -L * v ∈ Ax ⇔ x solves
(0, 0) ∈ -C -1 (-u, -v) + N -1 V (u, v) ⇔ (0, 0) ∈ -C -1 (-u, -v) + N V ⊥ (u, v) ⇔ (u, v) ∈ V ⊥ (0, 0) ∈ -A -1 (-u) × -B -1 (-v) + V ⇔ u = -L * v (∃ x ∈ -A -1 (-u))(∃ y ∈ -B -1 (-v)) Lx = y ⇒ (∃ x ∈ -A -1 (L * v)) Lx ∈ -B -1 (-v) ⇒ (∃ x ∈ H) Lx ∈ -LA -1 (L * v)) and -Lx ∈ B -1 (-v)
⇔ -v solves (5.16).

(5.23)

The convergence result therefore follows from Proposition 5.1 using (5.22), (5.23), and the weak continuity of P V = J γN V [7, Proposition 28.11(i)].

Remark 5. [START_REF] Barty | Hilbert-valued perturbed subgradient algorithms[END_REF] The parametrization (5.19) made it possible to reduce the structured primal-dual problem (5.15)-(5.16) to a basic two-operator inclusion, to which the block-coordinate Douglas-Rachford algorithm (5.5) could be applied. A similar parametrization was used in [START_REF] Alghamdi | A primal-dual method of partial inverses for composite inclusions[END_REF] in a different context. We also note that, at each iteration of Algorithm (5.18), components of the projector P V need to be activated. This operator is expressed as

∀(x, y) ∈ H ⊕ G P V : (x, y) → (t, Lt) = (x -L * s, y + s) (5.24) 
where t = (Id + L * L) -1 (x + L * y) and s = (Id + LL * ) -1 (Lx -y) [1, Lemma 3.1]. This formula allows us to compute the components of P V , which is especially simple when Id + L * L or Id + LL * is easily inverted.

The previous result leads to a random block-coordinate primal-dual proximal algorithm for solving a wide range of structured convex optimization problems. 

G = G 1 ⊕ • • • ⊕ G p .
For every i ∈ {1, . . . , m}, let f i ∈ Γ 0 (H i ) and, for every k ∈ {1, . . . , p}, let g k ∈ Γ 0 (G k ), and let L ki : H i → G k be linear and bounded. It is assumed that there exists (x 1 , . . . , x m ) ∈ H such that

(∀i ∈ {1, . . . , m}) 0 ∈ ∂f i (x i ) + p k=1 L * ki ∂g k m j=1
L kj x j .

(5.25)

Let F be the set of solutions to the problem minimize

x 1 ∈H 1 ,...,xm∈Hm m i=1 f i (x i ) + p k=1 g k m i=1
L ki x i (5.26)

and let F * be the set of solutions to the dual problem 

minimize v 1 ∈G 1 ,...,vp∈Gp m i=1 f * i - p k=1 L * ki v k + p k=1 g * k (v k ). ( 5 
for n = 0, 1, . . .             for i = 1, . . . , m z i,n+1 = z i,n + ε i,n Q i (x 1,n , . . . , x m,n , y 1,n , . . . , y p,n ) + c i,n -z i,n x i,n+1 = x i,n + ε i,n µ n prox γf i (2z i,n+1 -x i,n ) + a i,n -z i,n+1 for k = 1, . . . , p w k,n+1 = w k,n + ε m+k,n Q m+k (x 1,n , . . . , x m,n , y 1,n , . . . , y p,n ) + d k,n -w k,n y k,n+1 = y k,n + ε m+k,n µ n prox γg k (2w k,n+1 -y k,n ) + b k,n -w k,n+1 . 
( 

Random block-coordinate forward-backward splitting

The forward-backward algorithm addresses the problem of finding a zero of the sum of two maximally monotone operators, one of which has a strongly monotone inverse (see [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] for historical background). It has been applied to a wide variety of problems among which mechanics, partial differential equations, best approximation, evolution inclusions, signal and image processing, convex optimization, learning theory, inverse problems, statistics, and game theory [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in nonpotential games[END_REF][START_REF] Byrne | Iterative Optimization in Inverse Problems[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Vito | A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization[END_REF][START_REF] Glowinski | Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF][START_REF] Tseng | Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Villa | Accelerated and inexact forward-backward algorithms[END_REF]. In this section we design a block-coordinate version of this algorithm with random sweeping and stochastic errors. 

(∀u ∈ Ax)(∀(y, v) ∈ gra A) x -y | u -v θ( x -y ).
(ii) A is strongly monotone, i.e., there exists α ∈ ]0, +∞[ such that A -αId is monotone.

(iii) J A is compact, i.e., for every bounded set C ⊂ H, the closure of J A (C) is compact. In particular, dom A is boundedly relatively compact, i.e., the intersection of its closure with every closed ball is compact.

(iv) A : H → H is single-valued with a single-valued continuous inverse.

(v) A is single-valued on dom A and Id -A is demicompact.

(vi) A = ∂f, where f ∈ Γ 0 (H) is uniformly convex at x, i.e., there exists an increasing function θ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀α ∈ ]0, 1[)(∀y ∈ dom f) f αx+(1-α)y +α(1-α)θ( x-y ) αf(x)+(1-α)f(y). (5.29) 
(vii) A = ∂f, where f ∈ Γ 0 (H) and, for every ξ ∈ R, x ∈ H f(x) ξ is boundedly compact.

Our block-coordinate forward-backward algorithm is the following.

Proposition 5.9 Set D = {0, 1} m {0} and, for every i ∈ {1, . . . , m}, let A i : H i → 2 H i be maximally monotone and let B i : H → H i . Suppose that

(∃ ϑ ∈ ]0, +∞[)(∀x ∈ H)(∀y ∈ H) m i=1 x i -y i | B i x -B i y ϑ m i=1 B i x -B i y 2 , (5.30) 
and that the set F of solutions to the problem 

find x 1 ∈ H 1 , . . . , x m ∈ H m such that (∀i ∈ {1, . . . , m}) 0 ∈ A i x i + B i (x 1 , . . . , x m ) ( 5 
i,n+1 = x i,n + ε i,n λ n J γnA i x i,n -γ n (B i (x 1,n , . . . , x m,n ) + c i,n ) + a i,n -x i,n , (5.32) 
and set (∀n ∈ N) E n = σ(ε n ). Furthermore, assume that the following hold:

(i) n∈N E( a n 2 | X n ) < +∞ and n∈N E( c n 2 | X n ) < +∞.
(ii) For every n ∈ N, E n and X n are independent.

(iii) (∀i ∈ {1, . . . , m}) P[ε i,0 = 1] > 0.

Then (x n ) n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addition, one of the following holds:

(iv) for every x ∈ F and every i ∈ {1, . . . , m}, A i is demiregular at x i ;

(v) the operator x → (B i x) 1 i m is demiregular at every point in F;

then (x n ) n∈N converges strongly P-a.s. to x.

(iii) Proposition 5.9 generalizes [2, Theorem 2.9], which uses a fully parallel deterministic algorithm in which all the blocks are used at each iteration, i.e., (∀n ∈ N)(∀i ∈ {1, . . . , m}) ε i,n = 1.

(iv) As shown in [START_REF] Combettes | Dualization of signal recovery problems[END_REF][START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF], strongly monotone composite inclusion problems can be solved by applying the forward-backward algorithm to the dual problem. Using Proposition 5.9 we can obtain a block-coordinate version of this primal-dual framework. Likewise, it was shown in [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] that suitably renormed versions of the forward-backward algorithm applied in the primal-dual space yielded a variety of methods for solving composite inclusions in duality. Block-coordinate versions of these methods can be devised via Proposition 5.9.

Next, we present an application of Proposition 5.9 to block-coordinate convex minimization. L kj x j,n + c i,n x i,n+1 = x i,n + ε i,n λ n prox γnf i r i,n + a i,n -x i,n .

(5.40)

In addition, assume that conditions (i)-(iii) in Proposition 5.9 are satisfied. Then (x n ) n∈N converges weakly P-a.s. to an F-valued random variable. If, furthermore, one of the following holds (see Lemma 5.8

(vi)-(vii) for examples):

(i) for every x ∈ F and every i ∈ {1, . . . , m}, ∂f i is demiregular at x i ;

(ii) the operator x → ( p k=1 L * ki ∇g k ( m j=1 L kj x j )) 1 i m is demiregular at every point in F; then (x n ) n∈N converges strongly P-a.s. to x. L ki x i . Then h is a Fréchet-differentiable convex function and B = ∇h is Lipschitz-continuous with constant 1/ϑ, where ϑ is given in (5.39). It therefore follows from the Baillon-Haddad theorem [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 18.15] that (5.30) holds with this constant. Since, in view of (5.2), (5.32) specializes to (5.40), the convergence claims follow from Proposition 5.9. Remark 5.12 Here are a few observations about Corollary 5.11.

(i) If more assumptions are available about the problem, the Lipschitz constant ϑ of (5.39) can be improved. Some examples are given in [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF].

(ii) Recently, some block-coordinate forward-backward methods have been proposed for not necessarily convex minimization problems in Euclidean spaces. Thus, when applied to convex functions satisfying the Kurdyka-Łojasiewicz inequality, the deterministic block-coordinate forward-backward algorithm proposed in [10, Section 3.6] corresponds to the special case of (5.38) in which H is a Euclidean space, p = 1, and (∀x ∈ H)

m i=1 L 1i x i = x. (5.42) 
In that method, the sweeping proceeds by activating only one block at each iteration according to a periodic schedule. Moreover, errors and relaxations are not allowed. This approach was extended in [START_REF] Chouzenoux | A block-coordinate variable metric forward-backward algorithm[END_REF] to an error-tolerant form with a cyclic sweeping rule whereby each block is used at least once within a preset number of consecutive iterations.

(iii) A block-coordinate forward-backward method with random seeping was proposed in [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF] in the special case of (5.42). That method uses only one block at each iteration, no relaxation, and no error terms. The asymptotic analysis of [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF] provides a lower bound on the probability that (f + g 1 )(x n ) be close to inf(f + g 1 )(H), with no result on the convergence of the sequence (x n ) n∈N . Related work is presented in [START_REF] Lu | On the complexity analysis of randomized block-coordinate descent methods[END_REF][START_REF] Necoara | A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints[END_REF].

  2 with F = Fix T and (∀n ∈ N) T n = T. Indeed, (3.14) follows from the demiclosed principle [7, Corollary 4.18] and (3.15) follows from the demicompactness assumption.

  )

Remark 3 . 9

 39 the result follows from Theorem 3.2 and Remark 3.3(iii). In the special case of a single-block (i.e., m = 1) and of deterministic errors, Corollary 3.8 reduces to a scenario found in[START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] Theorem 4.2].

(4. 14 )

 14 Now set χ = min{1/sup k∈N α k , 1/sup k∈N β k } -1. Then χ ∈ ]0, +∞[ and since, for every n ∈ N, R n is β n -averaged, Proposition 3.7 and (4.14) yield

. 19 )

 19 Now set ζ = sup n∈N β n /(1 -β n ), and (∀n ∈ N) S n = Id -R n and p n = r n -T n r n . Then it follows from Proposition 3.7 that the operators (S n ) n∈N are ζ-Lipschitzian. Consequently

  and L : H → G : x → m i=1 L ki x i 1 k p . Furthermore, let us introduce K = H ⊕ G, C : K → 2 K : (x, y) → Ax × By, and V = (x, y) ∈ K Lx = y .(5.[START_REF] Cegielski | Iterative Methods for Fixed Point Problems in Hilbert Spaces[END_REF] 

Corollary 5 . 5

 55 Set D = {0, 1} m+p {0}, let (G k ) 1 k p be separable real Hilbert spaces, and set

Corollary 5 . 1 ∈H 1 ,

 511 11 Set D = {0, 1} m {0} and let (G k ) 1 k p be separable real Hilbert spaces. For every i ∈ {1, . . . , m}, let f i ∈ Γ 0 (H i ) and, for every k ∈ {1, . . . , p}, let τ k ∈ ]0, +∞[, let g k : G k → R be a differentiable convex function with a τ k -Lipschitz-continuous gradient, and let L ki : H i → G k be linear and bounded. It is assumed that min 1 k p m i=1 L ki 2 > 0 and that the set F of solutions to the problem minimize x let (γ n ) n∈N be a sequence in ]0, 2ϑ[ such that inf n∈N γ n > 0 and sup n∈N γ n < 2ϑ, and let (λ n ) n∈N be a sequence in ]0, 1] such that inf n∈N λ n > 0. Let x 0 , (a n ) n∈N , and (c n ) n∈N be H-valued random variables, and let (ε n ) n∈N be identically distributed D-valued random variables. Iterate for n = 0, 1, . . .      for i = 1, . . . , m r i,n = ε i,n x i,n -γ n p k=1 L * ki ∇g k m j=1

Proof. As shown in [ 2 ,L

 2 Section 4],(5.38) is a special case of (5.31) with A i = ∂f i and B i : (x j ) 1 j m → kj x j .(5.41)Now set h : H → R : x → p k=1 g k m i=1

  +∞[-valued random variable P-a.s.

	(2.6)

Indeed, take ω ∈ Ω such that (ξ n (ω)) n∈N is bounded. Suppose that there exist τ (ω)

∈ [0, +∞[, ζ(ω) ∈ [0,

+∞[, and subsequences (ξ kn (ω)) n∈N and (ξ ln (ω)) n∈N such that ξ kn (ω) → τ (ω) and ξ ln (ω) → ζ(ω) > τ (ω), and let δ(ω) ∈ ]0, (ζ(ω) -τ (ω))/2[. Then, for n sufficiently large, ξ kn (ω)

  Proposition 3.7[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Proposition 4.25] Let T : H → H be nonexpansive and letα ∈ ]0, 1[. Then T is α-averaged if and only if (∀x ∈ H)(∀y ∈ H) Tx -Ty 2 xy 2 -1 -α α (Id -T)x -(Id -T)y 2 . Let χ ∈ ]0, 1[, let (α n) n∈N be a sequence in ]0, 1[, and set D = {0, 1} m {0}. For every n ∈ N, let λ n ∈ [χ/α n , (1 -χ)/α n ] and let T n : H → H : x → (T i,n x) 1 i m be an α n -averaged operator, where, for every i ∈ {1, . . . , m}, T i,n : H → H i . Furthermore, let x 0 and (a n ) n∈N be H-valued random variables, and let (ε n ) n∈N be identically distributed D-valued random variables. Iterate

	Corollary 3.8

Definition 3.

[START_REF] Bauschke | A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces[END_REF] 

Let T : H → H be nonexpansive and let α ∈ ]0, 1[. Then T is averaged with constant α, or α-averaged, if there exists a nonexpansive operator R : H → H such that T = (1 -α)Id + αR.

  • T n ) n∈N are nonexpansive, the sets (Fix (T n • R n )) n∈N are closed [7,Corollary 4.15], and so is F. Next, for every n ∈ N, set r n = R n x n , and define t n , c n , d n , and e n coordinate-wise by

	(∀x ∈ H) x 2 |||x||| 2	1 min 1 i m	p i	x 2	(4.4)
	and that, since the operators (R n				

a.s.

Then (x n ) n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addition, (vi) S(x n ) n∈N = ∅ P-a.s., then (x n ) n∈N converges strongly P-a.s. to x.

Proof. Let us prove that the result is an application of Theorem 2.5 in the renormed Hilbert space (H, ||| • |||), where ||| • ||| is defined in

(3.4)

. Note that

  We denote by Γ 0 (H) the class of lower semicontinuous convex functions f : H → ]-∞, +∞] such that f ≡ +∞. The Moreau subdifferential of f ∈ Γ 0 (H) is the maximally monotone operator

single-valued and nonexpansive and, furthermore, if A is maximally monotone, then dom J A = H.

  .27) Let γ ∈ ]0, +∞[, let (µ n ) n∈N be a sequence in ]0, 2[ such that inf n∈N µ n > 0 and sup n∈N µ n < 2, let x 0 , z 0 , (a n ) n∈N , and (c n ) n∈N be H-valued random variables, let y 0 , w 0 , (b n ) n∈N , and (d n ) n∈N be G-valued random variables, and let (ε n ) n∈N be identically distributed D-valued random variables. Define V as in (5.17) and set P V : x → (Q j x) 1 j m+p where (∀i ∈ {1, . . . , m}) Q i : H ⊕ G → H i and (∀k ∈ {1, . . . , p}) Q m+k : H ⊕ G → G k , and iterate

  Using the same arguments as in[START_REF] Combettes | Systems of structured monotone inclusions: Duality, algorithms, and applications[END_REF] Proposition 5.4] one sees that this is an application of Corollary 5.3 with, for every i ∈ {1, . . . , m}, A i = ∂f i and, for every k ∈ {1, . . . , p}, B k = ∂g k .

.

[START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF] 

In addition, assume that conditions (i)-(iii) of Corollary 5.3 are satisfied. Then (z n ) n∈N converges weakly P-a.s. to an F-valued random variable, and (γ -1 (w n -y n )) n∈N converges weakly P-a.s. to an F * -valued random variable. Proof. Remark 5.6 Sufficient conditions for (5.25) to hold are provided in [25, Proposition 5.3].

Double-layer random block-coordinate fixed point algorithmsThe algorithm analyzed in this section comprises two successive applications of nonexpansive operators at each iteration. We recall that Notation 3.1 is in force.

This work was supported by the CNRS MASTODONS project under grant 2013MesureHD.

Then (x n ) n∈N converges weakly P-a.s. to a H-valued random variable x such that z = J γB x is an F-valued random variable and u = γ -1 (x -z) is an F * -valued random variable. Furthermore, suppose that:

(iv) J γB is weakly sequentially continuous and b n 0 P-a.s.

Then z n z P-a.s. and γ -1 (x n -z n ) u P-a.s.

Proof. Set A : H → 2 H : x → × m i=1 A i x i and (∀i ∈ {1, . . . , m})

(5.6)

Now set

Then we derive from (5.5) that

which is precisely the iteration process (3.16). Furthermore, we infer from (5.7) and the nonexpansiveness of J γA [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 23.10(i)] that

and therefore that

(5.10) Thus, we deduce from (i) that n∈N E( e n 2 | X n ) < +∞. Altogether, the almost sure weak convergence of (x n ) n∈N to a (Fix T)-valued random variable x follows from Corollary 3.4. In turn, (5.6) asserts that z = J γB x ∈ F P-a.s. Now set u = γ -1 (x -z). Then, P-a.s.,

(5.12)

Proof. We are going to apply Theorem 4.1. Set A : 

(5.32) is a special case of (4.1). Observe that (4.2) and (4.3) imply the existence of Ω ∈ F such that P( Ω) = 1 and

Consequently, since inf n∈N γ n > 0,

(5.34)

Now set

(5.35)

Then (5.34) yields

Now, let us establish condition (v) of Theorem 4.1. To this end, it is enough to fix z ∈ F, x ∈ H, a strictly increasing sequence (k n ) n∈N in N, and ω ∈ Ω such that x kn (ω)

x and to show that x ∈ F. It follows from (5.34) that Bx kn (ω) → Bz. Hence, since [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Example 20.28] asserts that B is maximally monotone, we deduce from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 20.33(ii)] that Bx = Bz. We also derive from (5.36) that y kn (ω)

x and u kn (ω) → -Bz = -Bx. Since (5.35) implies that (y kn (ω), u kn (ω)) n∈N lies in the graph of A, it follows from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 20.33(ii)] that -Bx ∈ Ax, i.e., x ∈ F. This proves that (x n ) n∈N converges weakly P-a.s. to an F-valued random variable x, say

x n (ω)

x(ω) (5.37) for every ω in some Ω ∈ F such that Ω ⊂ Ω and P( Ω) = 1.

Finally take ω ∈ Ω. First, suppose that (iv) holds. Then A is demiregular at x(ω). In view of (5.36) and (5.37), y n (ω)

x(ω). Furthermore, u n (ω) → -Bx(ω) and (y n (ω), u n (ω)) n∈N lies in the graph of A. Altogether y n (ω) → x(ω) and, therefore x n (ω) → x(ω). Now, suppose that (v) holds. Then, since (5.34) yields Bx n (ω) → Bx(ω), (5.37) implies that x n (ω) → x(ω). Remark 5.10 Here are a few remarks regarding Proposition 5.9.

(i) Proposition 5.9 generalizes [22, Corollary 6.5 and Remark 6.6], which does not allow for block-processing and uses deterministic variables.

(ii) Problem (5.31) was considered in [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF], where it was shown to capture formulations encountered in areas such as evolution equations, game theory, optimization, best approximation, and network flows. It also models domain decomposition problems in partial differential equations [START_REF] Briceño-Arias | Problèmes d'Inclusions Couplées: Éclatement, Algorithmes et Applications[END_REF].