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ABSTRACT

Convolutional neural networks (CNN) are widely used in
computer vision, especially in image classification. However,
the way in which information and invariance properties are
encoded through in deep CNN architectures is still an open
question.

In this paper, we propose to modify the standard convo-
lutional block of CNN in order to transfer more information
layer after layer while keeping some invariance within the net-
work. Our main idea is to exploit both positive and negative
high scores obtained in the convolution maps. This behav-
ior is obtained by modifying the traditional activation func-
tion step before pooling. We are doubling the maps with spe-
cific activations functions, called MaxMin strategy, in order to
achieve our pipeline. Extensive experiments on two classical
datasets, MNIST and CIFAR-10, show that our deep MaxMin
convolutional net outperforms standard CNN.

Index Terms— Convolutional neural network, pooling,
activation function, invariance, image representation, classifi-
cation

1. INTRODUCTION

Computer vision has for a long time great interaction with
artificial intelligence and machine learning. One of the main
examples studied in this article is image classification.

For a while, state of the art algorithms for image classi-
fication were based on bag of words (BoW) models [1] [2].
Those algorithms build a visual dictionary from local image
descriptors. For any image, local detection values of each
word are pooled together to represent the final image fea-
ture, which is used as input for a SVM [3] classifier. Several
attempts have been made to improve the coding or pooling
steps [4, 5, 6, 7].

Recently, a major breakthrough has been revealed with
convolutional neural networks (CNN) [8] beating all others
models with a huge gap on the ILSVR2012 competition [9].
An appealing feature of deep learning is the ability to learn
representations from raw pixels. Today CNN introduced for
the first time in [10] and popularized by [11] are widely used
is computer vision and stand as the state of the art in image
classification on many popular datasets.

Thanks to DGA for funding.

The CNN architecture can be described as a succession of
convolutional blocks followed by some fully connected lay-
ers. Classically, one convolution block successively applies
linear filters, non-linear activation functions (like ReLU ), and
local pooling operations [8].

In BoW, the pooling phase enables to manage many in-
variances but it is also responsible for a loss of spatial infor-
mation that make the learning difficult. In deep convolutional
architectures, activation functions and pooling may be also
questioned. For instance, using a ReLU activation function,
all negative information is removed from the convolutional
map considered. On the contrary, we propose to modify the
CNN layers by introducing a new block to preserve this in-
formation from strong negative detections. We assume that
keeping both positive and negative evidences for each filter
may be of interest for the whole architecture. Inspired by
[15, 7], we propose a new pipeline doubling the output map
for each linear filter in order to independently process these
maps with dedicated activation functions. The resulting deep
CNN architecture, called MaxMin CNN, is evaluated against
simple CNN on two benchmarks.

2. RELATED WORKS AND MOTIVATIONS

The standard deep CNN introduced in [8] is composed with
5 convolutional blocks followed by 3 fully connected layers
with a Softmax function at the end. Each convolutional block
has a convolutional filter layer applying a number of filters
to the input and concatenates the resulting maps of convolu-
tion. This output passes through an activation function that
is responsible for increasing the representational power of the
network. In image classification the mostly used function is
ReLU [8]. Then frequently comes a pooling layer [16]. Ag-
gregating information in a local neighborhood, this step en-
sures a CNN invariance to small translations. Optionally, oth-
ers kind of layers such as local response normalisation may
be used [8].

Since [8], many CNN architecture improvements have
been proposed to boost CNN performances. For instance
[17] and [18] improved greatly the performances of CNN on
ImageNet by using a deeper and optimized architecture.

Concerning the pooling function [16] questions about the
nature of the information transmitted and proposed paramet-
ric functions that include max and average. Varying the pa-



rameters they tried to optimise the pooling function but ob-
tained no better results that average or max pooling show-
ing that it is difficult to improve the pooling function itself.
They also made a theoretical analysis explaining the condi-
tions on the input distribution involving max pooling working
better than average pooling. Still on pooling [19] proposes a
method selecting random smaller pooling windows enabling
to filter less information that will be exploited with more con-
volutional layers.

Regarding ReLU , it is a non-linear function that sets to
zero all negative values after the convolutional layer. This
filtering is supposed to facilitate the exploitation of discrimi-
native information by de-noising filter detections. [20] intro-
duced the PReLU as an extension of ReLU . It multiplies
negative values with a learnable coefficient instead of setting
them to zero. This method enables to filter less information
at activation layer while keeping the non linear property of
ReLU although at the cost of additional learnable parame-
ters.

We explore in this paper a different strategy to improve
convolutional block at the ReLU step. As mentioned, ReLU
and pooling filter a lot of information from their input. We
modify the convolutional block in order to keep more infor-
mation after the ReLU . Indeed, the information from strong
negative detection is important and is totally left out after the
ReLU . Keeping and exploiting this special information is
the goal of our method. Inspired by [15, 7] which modifies
the pooling by using a histogram of pattern detection instead
of just keeping the maximum, we propose to keep high posi-
tive and high negative values obtained after filtering in a dou-
ble ReLU scheme (MaxMin) that we detail in the following.
Similar researches have been conducted concurrently in [21]
with a new activation function called CReLU.

3. MAXMIN CNN

3.1. MaxMin Net Architecture

With the ReLU strong negative detections give the same in-
formation as weak negative detections. Unfortunately strong
negative detections can be discriminant. Similarly than with
geometrical shapes the semantic of a pattern can be invariant
to the negative transformation. Thus it seems natural to pre-
sume that for many patterns that have important discriminant
power the network learns the filters that detects the patterns
as well as their opposites. Our method aims at transmitting
directly the negative detections from a filter in order to pre-
vent the network to learn the opposite filter. Indeed for a
filter h the negative filter h− = −h verifies for all input x,
x ∗ h− = x ∗ (−h) = −(x ∗ h). Then if the pattern filtered
by h− is strongly detected on x then x ∗ h− will be high and
positive while x ∗ h will be symmetrically low and negative.
Thus conserving the information from the convolution with h
either the result is positive or negative will give the informa-

tion about h− and enables to use less filter in the architecture.
To implement our strategy, we duplicate the convolutional

filter maps (represented is blue in Fig. 1) and multiply the
copy by × − 1 resulting in the negative version of the de-
tections (in red in Fig. 1). We then concatenate the original
maps and their negative copy as shown on Fig. 1. This op-
eration increases the depth of the convolutional layer’s output
by two compared to classical CNN. We then apply the ReLU
normally to the concatenated output and optionally process a
pooling operation. This way negative values are not filtered
and can be exploited by following layers.
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Fig. 1. MaxMin scheme. After the convolutional layer, the re-
sulting maps (in blue) are duplicated negatively (in red). Both
stacked maps are concatenated to get the MaxMin output that
will pass through the ReLU before pooling.

3.2. Relation with max pooling

After the ReLU is frequently applied max pooling map by
map. Let first remark that ReLU ◦max = max ◦ ReLU . It
is possible to commute the two layers without changing the
block’s output. For our method we notice the fact that(
max(ReLU(X)), max(ReLU(−X))

)
=(

ReLU(max(X)), ReLU(−min(X))
)

where X is a vector. Thus our method can be interpreted as
simply adding an additional information at pooling function
with a bi-dimensional output when applied before the ReLU .
This additional information is the minimum detection on the
window taken negatively.

3.3. Discussion

Here we discuss the interest of the method in term of infor-
mation modeling the generalization improvement.

Modeling: As the size of the output of the convolutional
layer is doubled within the convolutional block it is necessary
that the size of the filter of the following block is doubled
too resulting on additional parameters on following filters. It
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Fig. 2. MaxMin CNN block for one input image with specific patterns. When considering input with 2 specific triangles and a
convolution with the filter h, we obtain a map with 2 strong positive and negative answers. Thanks to our MaxMin, we get an
additional information (red dotted line) that makes possible to keep both extreme information after ReLU in a joint double map.

worth mentioning that if those additional parameters are all
set to zero the network is equivalent to a simple CNN and our
method does not reduce CNN representational power.

At the convolutional layer MaxMin network enforces the
transmission of the detection from both the filters and their
negative versions. The learning of the negative version of all
filters is then not necessary. This is very useful for pattern that
are invariant to negative transformations. Fig. 2 shows that
different versions of a same shape (yellow and blue triangles)
can be transmitted with MaxMin network with only 1 filter,
whereas 2 filters are necessary for standard CNN. Thus we
can reduce the number of filters and keep a reasonable amount
of parameters.

Generalization: On a spatial window, the maximum and
the minimum pooling outputs are rarely simultaneously posi-
tively high and negatively low. Therefore, ReLU filters very
often one of the two values (min or max). This ensures a
sparse activation of the network’s neurons. This property is
known to enhance the generalization performance of neural
networks in computer vision as studied in [22] and [23].
Moreover, we claim that our method is able to learn more effi-
ciently the convolutional filters than standard CNN. MaxMin
method enforces discriminant patterns to be learnt by back-
propagating the error from both positive detections and nega-
tive ones. MaxMin networks learn each pattern both from its
positive and negative occurrences in the dataset. They learn
the pattern filters more accurately and faster than a classical
CNN that would learn positive and negative filters indepen-
dently.

4. EXPERIMENTS

We test our method on two well-known datasets, MNIST and
CIFAR-10, and we compare our results with classical CNN.

Learning protocol: All the models and the learning frame-
work are implemented in Lua using Torch 7 library in [24]
1. For the training, we use the same gradient descent as in
[8] with 0.9 of momentum and fixed weight decay (10−3 for
MNIST and 10−4 for CIFAR). We use an equal learning rate
for all layers that is being manually reduced when validation
error stops decrease. All weights of convolutional filters are
initialized from a zero-mean Gaussian distribution with stan-
dard deviation 0.01. The number of training epochs depends
on the network but is between 30 and 120 for CIFAR-10 and
around 250 for MNIST. Top-1 accuracy on test set is com-
puted to evaluate performances.

4.1. MNIST RESULTS

MNIST is a 60,000 images dataset representing 9 handwritten
digits. Images are 32× 32 pixels in one channel. See [25] for
more information. We use the same protocol as [25]: 50,000
images for training and the 10,000 remaining images for test-
ing. To compare our method, we use a LeNet like network
with pooling layers. It is composed of three convolutional
layers with ReLU activations all followed by max pooling
and a local contrast normalisation layers. The filters are of
size 5× 5 with a stride of 1. There is 64 of them at each con-
volutional layers. The pooling windows are of size 3×3 for a
stride of 2. Those layers are followed by one fully connected
layers before a softmax.

For the MaxMin network setting, we simply include a
MaxMin layer before the ReLU activation function. We keep
the same number of filters paying attention to double their size
when needed.

The baseline network obtains a score of 99.34% accuracy.
With our MaxMin network, we obtain a score of 99.39% ac-
curacy. Our strategy has 31 errors on the validation set against

1Code will be released on Gitub after publication.



# Parameters MaxMin-CNN Simple-CNN
≈ 30K 73.81 69.98
≈ 15K 78.13 74.44
≈ 60K 80.03 77.01
≈ 2M 81.68 78.11
≈ 5M 82.07 79.48
≈ 15M 82.69 80.13
≈ 45M 82.98 80.41

Table 1. CIFAR-10 results for simple CNN and our MaxMin
CNN. Accuracy scores are reported for different deep ar-
chitectures parametrized by their number of parameters.
MaxMin network has systematically better performances than
simple CNN for equal complexity (# Parameters).

36 errors for the baseline CNN. It corresponds to an relative
improvement of 13.9%. Note that the performance scores on
this dataset are very high, and any small performance gain is
difficult to obtain.

4.2. CIFAR-10 RESULTS

CIFAR-10 dataset consists of 60,000 32 × 32 color images
(50,000 training images and 10,000 test images) representing
10 objects class like airplanes, trucks or birds. Images vary
greatly within each class. See [25] for more information. The
baseline network is the one implemented in [26] where we
have replaced the average pooling layers with max pooling.
The network has three convolutional layers with ReLU acti-
vation, all followed by max pooling. All filters have size 5×5
and stride 1 with 32 filters at the first two layers and 64 at the
last one. The pooling windows have size 3× 3 and stride 2 at
all layers. The last max pooling layer is followed by two fully
connected layers before a softmax.

The accuracy score obtained using this simple CNN is
74.44% on the test set. When we train an equivalent MaxMin
network, we reach an accuracy of 78.62%, showing an im-
provement of more than 4% of the results.

Robustness to parameter number: As mentioned earlier,
our MaxMin layer imposes to double up the size of follow-
ing filters compared to classical CNN. At fixed number of fil-
ters, this implies to increase the number of parameters when
including MaxMin layers to CNN. As the number of param-
eters directly impacts the performances of a CNN, we now
compare both methods with constant number of parameters.
We use the previous network and modify the number of fil-
ters on different convolutional layers in order to vary the total
number of parameters. For the MaxMin network, we adapt
the number of filters to get comparable amount of parameters
as CNN networks. As we intend to compare the quality of
the exploitation of the filters by CNN and MaxMin, we pay

attention to get the same amount of neurons in the fully con-
nected layers. Only the number of convolutional filters varies
from a method to another. We report in table 1 the accuracies
obtained for different numbers of parameters for both simple
CNN and MaxMin networks. We observe that the MaxMin
network systematically outperforms the CNN whatever the
number of parameters is with a best performance of 82.98%.
This shows the robustness of our method to different network
parametrization and demonstrates the ability of MaxMin net-
works to exploit filter information.

Boosting performances: Current deep models on CIFAR-
10 use several kinds of learning tricks such as data augmen-
tation, image preprocessing, dropout, to improve final classi-
fication performances.

Our MaxMin deep convolutional model may benefit of the
same tricks. As the learning becomes quite more complex
and much more time consuming, we do perform only once
these optimizations for our MaxMin architecture model on
CIFAR-10. We thus apply some translations and flips for data
augmentation, zca whitening referenced in [27] to preprocess
the images, and dropout from [23] to boost the learning. We
use the same network described above with additional local
contrast normalisation layer after each pooling.

With this training of our network, we do obtain the accu-
racy of 90.03% on the test set. This score beats the results
reported by [8] that uses a deeper architecture (89%) and re-
ported by [25] that uses 8 networks for prediction (88.79%).
On the contrary, our MaxMin scores are obtained with only
one network. Our method could also benefit from the use of
several nets for prediction in order to reach the performances
of recent very deep architectures as [28] or [29] with an accu-
racy of 92.40%.

5. CONCLUSION

In this paper, we present our new deep CNN architecture,
MaxMin-CNN, to better encode both positive and negative fil-
ter detections in the net. MaxMin strategy aims at preserving
and propagating significant negative detection values through
the net. This difference with standard CNN enables us to pre-
serve and transfer more information through the network.

We evaluate and compare our strategy to classical deep
CNNs on two benchmarks CIFAR-10 and MNIST. Results
demonstrate that our MaxMin networks perform better than
CNNs, whatever the configuration considered.

Finally, our MaxMin strategy reaches very good perfor-
mances on CIFAR-10 outperforming several recent and much
more complex deep architectures. The principle is very sim-
ple and many deep networks could benefit of this MaxMin
strategy with only minor adaptations.
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