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Statistical performance of MUSIC-like algorithms
in resolving noncircular sources

Habti Abeida and Jean-Pierre Delmas, Senior member IEEE

Abstract—This paper addresses the resolution of the conven-
tional and noncircular MUSIC algorithms for arbitrary circular
and noncircular second-order distributions of two uncorrelated
closely spaced transmitters observed by an arbitrary array. An
explicit closed-form expression of the mean null spectrum of the
conventional and noncircular MUSIC algorithms is derived using
an analysis based on perturbations of the noise projector instead
of those of the eigenvectors. Based on these results, theoretical
and approximate interpretable closed-form expressions of the
threshold array signal to noise ratios (ASNR) at which these two
algorithms are able to resolve two closely spaced transmitters
along the Cox and the Sharman and Durrani criteria are
given. It is proved that the threshold ASNRs given by the
conventional MUSIC algorithm do not depend on the distribution
of the sources including their noncircularity, in contrast to the
noncircular MUSIC algorithm for which they are very sensitive to
the noncircularity phase separation of the sources. This threshold
ASNR given by the noncircular MUSIC algorithm is proved to
be comfortably lower that that given by the conventional MUSIC
algorithm except for weak phase separations of the sources for
which the resolving powers of these two algorithms are very close.
Finally, these results are analyzed through several illustrations
and Monte Carlo simulations.

Index terms: direction of arrival (DOA), circular and noncir-
cular signal, threshold of resolution, MUSIC algorithm.
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I. INTRODUCTION

DEDUCING array resolution limits is a very old problem that has
been studied extensively in the literature, first in astronomy and

subsequently in signal processing. Based on the classical beamformer,
different resolution criteria have been defined from the main lobe of
the array spectrum as the celebrated Rayleigh resolutions such as the
half power beamwidth or the null to null beamwidth [1] that depends
solely on the antenna geometry.

Then for specific so-called high resolution algorithms based on
the search for two local minima of null sample spectra such as
different MUSIC-like algorithms, two main criteria based on the
mean null spectrum have been defined. For the first, introduced
by Cox [2], two sources are resolved if the midpoint mean null
spectrum is greater than the mean null spectrum in the two true
source DOAs. This criterion was first studied by Kaveh and Barabell
[3], [4] in the resolution analysis of the conventional MUSIC and
Min-Norm algorithms for two uncorrelated equal-power sources and
a uniform linear array (ULA). This analysis has been extended to
more general classes of situations, e.g., for two correlated or coherent
equal-power sources with the smoothed MUSIC algorithm [5], then
for two unequipowered sources impinging on an arbitrary array with
the conventional and beamspace MUSIC algorithm [6]. A subsequent
paper by Zhou et al [7] developed a resolution measure based on
the mean zero spectrum and compared their results to Kaveh and

Barabell’s work. For the second one, introduced by Sharman and
Durrani [8] and then studied by Forster and Villier [9], [10] in the
context of the conventional MUSIC and Min-Norm algorithms, for
two uncorrelated equal-power sources and a ULA, two sources are
resolved if the second derivative of the mean spectrum at the midpoint
is negative.

Moreover, several authors have considered (e.g., [11], [12], [13])
the probability of resolution or an approximation of it based on the
Cox criterion applied to the sample null spectrum to circumvent the
possible misleading results given by these two criteria. Finally array
resolution limits has been studied independently of any algorithm
from different points of view. Based on order detection using in-
formation theoretic criteria such that the minimum description length
(MDL) and the Akaike’s information (AIC) criteria, the probability of
underestimating or overestimating the number of sources for the case
of two closely spaced sources has been analyzed in [4]. Resolution
criteria have been defined from the Cramer Rao bound (CRB) [14]
as the source separation that equals its own CRB, then applied to
discrete sources in [15], and from the generalized likelihood ratio
test [16] through constraints on the probabilities of false alarm and
of detection.

We note that all these studies have been obtained under a cir-
cular Gaussian distribution of signals. The aim of this paper is to
extend some of these previous results under arbitrary second-order
distributions, with a particular attention to noncircular signals often
used in digital communications. More precisely, we consider the two
resolution criteria based on mean null spectra associated with the
conventional MUSIC algorithm and with a MUSIC-like (denoted
noncircular MUSIC) algorithm introduced and studied in [17] which
is an extension of a root MUSIC-like algorithm devised in [18] to an
arbitrary array that benefits from the second-order noncircularity of
the sources.

The paper is organized as follows. The array signal model and the
statement of the problem are given in Section II. Using an analysis
based on perturbations of the noise projector instead of those of the
eigenvectors, an explicit closed-form expression of the mean null
spectrum of conventional MUSIC algorithm that does not depend on
the distribution including the noncircularity of the sources is derived
in Section III. Consequently, the associated expressions (e.g., [3,
rel.(35)] and [9, rel.(18)]) of the resolution thresholds obtained under
the two foregoing criteria for circular Gaussian sources extend to
arbitrary distributions and arbitrary arrays. This analysis is applied
again in Section IV, to derive closed-form expressions of the null
spectrum of the noncircular MUSIC algorithm. Then, closed-form
expressions of the resolution thresholds are deduced under the two
foregoing criteria for arbitrary arrays. These expressions show the
crucial role played by the noncircularity phase separation of the
sources. They confirm that the noncircular MUSIC algorithm largely
outperforms the conventional MUSIC algorithm from the resolution
point of view for large noncircularity phase separation, in contrast to
weak noncircularity phase separation for which the threshold ASNRs
given for the noncircular and conventional MUSIC algorithms are
similar. Finally, numerical illustrations and Monte Carlo simulations
are given in Section V with particular attention paid to the noncir-
cularity phase separation and the main results are summarized in a
conclusion.

The following notations are used throughout the paper. Matrices
and vectors are represented by bold upper case and bold lower case
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characters, respectively. Vectors are by default in column orientation,
while T , H , ∗ and # stand for transpose, conjugate transpose,
conjugate and Moore Penrose inverse, respectively. E(.), Tr(.),
Det(.) ‖.‖Fro, <(.) and =(.) are the expectation, trace, determinant,
Frobenius norm, real and imaginary part operators respectively. IK
is the K-order identity matrix, eK,k denotes the k-unit vector in RK

and J is the 2M × 2M partitioned matrix
(

O IM
IM O

)
. vec(·)

is the “vectorization” operator that turns a matrix into a vector by
stacking the columns of the matrix one below another which is used in
conjunction with the Kronecker product A⊗B as the block matrix
whose (i, j) block element is ai,jB and with the vec-permutation
matrix K which transforms vec(C) to vec(CT ) for any square matrix
C.

II. STATEMENT OF THE PROBLEM

Let an arbitrary array of M sensors receive the signals transmitted
by K equal-power narrowband independent sources of power σ2

xk .
The observation vectors are modelled as

yt = Axt + nt, t = 1, . . . , T, (II.1)

where (yt)t=1,...,T are independent and identically distributed. A =
[a1, ...,aK ] is the steering matrix where each vector ak = a(θk)
is parameterized by the real scalar parameter θk according to the
parametrization introduced in [6] where ‖ak‖2 = M . xt =
(xt,1, ..., xt,K)T and nt model signals transmitted by sources and
additive measurement noise, respectively. xt and nt are indepen-
dent, zero-mean, nt is assumed to be Gaussian complex circular,
spatially uncorrelated with E(ntn

H
t ) = σ2

n IM ; while xt is com-
plex noncircular not necessarily Gaussian with covariance matrices
Rx

def
= E(xtx

H
t ) and R′x

def
= E(xtx

T
t ) 6= O. Consequently, this

leads to the following two covariance matrices of yt that contain
information about (θ1, ..., θK)

Ry = ARxA
H + σ2

nIM
def
= S + σ2

nIM

and
R′y = AR′xA

T 6= O.

These covariance matrices are classically estimated by Ry,T =
1
T

∑T
t=1 yty

H
t and R′y,T = 1

T

∑T
t=1 yty

T
t , respectively.

For performance analysis, we suppose that the signal wave-
forms (xk,t)k=1,..,K have finite fourth-order moments κk

def
=

Cum(xt,k, x
∗
t,k, xt,k, x

∗
t,k). The noncircularity rate ρk of the kth

source is defined by E(x2
t,k) = ρke

2iφkE|x2
t,k| = ρke

2iφkσ2
xk where

φk is its noncircularity phase. Note that ρk = 1 in the particular case
of rectilinear signals with phase φk.

The problem addressed in this paper is to derive in these con-
ditions, resolution threshold expressions associated with the conven-
tional and noncircular MUSIC algorithms. The DOA estimated by the
conventional MUSIC algorithm are given by the K smallest minima
of the following so-called null spectrum gAlgC

T (θ) [19]:

θ̂AlgC
k,T = arg min

θ
gAlgC
T (θ)

with
gAlgC
T (θ)

def
= aH(θ)ΠTa(θ),

where ΠT denotes the projector matrix associated with the noise
subspace of Ry,T . Then, for the noncircular MUSIC algorithms
devised for rectilinear signals1, the estimated DOA are given by the
K smallest minima of the following so-called spectrum gAlgNC

T (θ):

θ̂AlgNC
k,T = arg min

θ
gAlgNC
T (θ)

with [17]

gAlgNC
T (θ)

def
=
(
aH(θ)Π1,Ta(θ)

)2

− |aT (θ)Π∗2,Ta(θ)|2, (II.2)

1Noncircular with unit rate of noncircularity, i.e., ρk = 1.

where Π1,T and Π2,T are Hermitian and complex symmetric respec-
tively, given by the projector matrix

Π̃T =

(
Π1,T Π2,T

Π∗2,T Π∗1,T

)
associated with the noise subspace of Rỹ,T

def
= 1

T

∑T
t=1 ỹtỹ

H
t with

ỹt the extended observation
(

yt
y∗t

)
for which

Rỹ
def
= E(ỹtỹ

H
t ) = ÃRx̃Ã

H + σ2
nI2M

def
= S̃ + σ2

nI2M

with Ã
def
=

(
A O
O A∗

)
and Rx̃

def
=

(
Rx R

′
x

R
′∗
x R∗x

)
.

III. RESOLVING POWER OF CONVENTIONAL MUSIC
Based upon the partially substantiated assumption [3] that the

standard deviation
√

Var[gAlgC
T (θ)] of the sample null spectrum

associated with the conventional MUSIC and Min-Norm algorithms
is small compared to its mean value E[gAlgC

T (θ)] in the vicinity of
the emitters, the mean value of the sample null spectrum can be
reasonably taken as representative of the ensemble of sample null
spectra. We note that the conditions for the validity of this foregoing
assumption has been specified in [11], for which it has been proved
for the conventional MUSIC algorithm,

Var(gAlgC
T (θ)) ≈ 1

M −K

(
E2[gAlgC

T (θ)]− [gAlgC(θ)]2
)

(III.1)

in the vicinity of the emitters, for a large number T of snapshots, a
fixed number M of sensors2 and for arbitrary SNR. Consequently,
under the conditions M � 1 and T �M√

Var[gAlgC
T (θ)]� E[gAlgC

T (θ)], (III.2)

is validated in the vicinity of the emitters. We suppose that (III.2)
is valid for the noncircular algorithm as well and based on this
assumption, we use the Cox [2] and the Sharman and Durrani
criteria [8] for which in the case K = 2, two closely spaced equal-
power sources are resolved if the following respective conditions are
satisfied:

E[gAlg
T (θ1)] = E[gAlg

T (θ2)] ≤ E[gAlg
T (θm)] (III.3)

d2E[gAlg
T (θ)]

dθ2 |θ=θm
≤ 0, (III.4)

where θm
def
= θ1+θ2

2
. Approximations to the resolution threshold are

deduced from equalities in (III.3) and (III.4). Consequently, the key
point to derive these resolution thresholds depends on the expectation
of the random variable gAlgC

T (θ). To obtain this expectation, we resort
to an analysis based on perturbations of the noise projector [19]
instead of those of the eigenvectors (e.g., [3], [6]). Therefore, we
consider the following second-order expansion of δΠT

def
= ΠT −Π

w.r.t. δRy,T
def
= Ry,T −Ry proved in [19]

δΠT = −(ΠδRy,TS# + S#δRy,TΠ)

+ S#(δRy,TΠδRy,T )S# −Π(δRy,TS#2δRy,T )Π + S#(δRy,TS#δRy,T )Π

+ Π(δRy,TS#δRy,T )S# − S#2(δRy,TΠδRy,T )Π−Π(δRy,TΠδRy,T )S#2 + o(δR2
y,T ).(III.5)

To proceed, we need the expression of E(δRy,TBδRy,T ) for arbi-
trary M ×M matrices B which is given by the following lemma
proved in Appendix A:

2We note that (III.1) is derived from an expansion in 1/T for M fixed,
and consequently is only valid for T � M . Consequently, our analysis is
not valid for small sample size scenarios studied in [20] for which T ∼ M .
The domain of validity of our approach will be considered in the illustrative
examples Section.
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Lemma 1: For K independent arbitrary noncircular, possibly non
Gaussian sources, we have:

E(δRy,TBδRy,T ) =
1

T

(
Tr(BRy)Ry + R′yB

TR′
∗
y +

K∑
k=1

κkaka
H
k Baka

H
k

)
+o(

1

T
),

that allows us to prove in Appendix B from (III.5) that

E(δΠT ) =
1

T
(Tr(Π)U− Tr(U)Π) + o(

1

T
), (III.6)

with U
def
= σ2

nS#RyS
#. Consequently, we have for K sources

E(gAlgC
T (θ)) = gAlgC(θ)+

1

T

(
(M −K)aH(θ)Ua(θ)− Tr(U)gAlgC(θ)

)
+o(

1

T
)

where gAlgC(θ)
def
= aH(θ)Πa(θ). For K = 2, this expression of

the mean null spectrum coincides with those given in the circular
Gaussian assumption [3], [10]. Therefore we can conclude the
following result for two independent equal-power sources (σ2

x
def
=

σ2
x1

= σ2
x2

) where the array signal-to-noise ratio (ASNR) is defined
by r def

= Mσ2
x/σ

2
n.

Result 1: The threshold ASNRs deduced from the Cox (III.3) and
the Sharman and Durrani criterion (III.4) given for the conventional
MUSIC algorithm with two independent equal-power sources do not
depend on the distribution including the noncircularity of the sources.
Consequently, expressions [3, (rel.(35)]3, [9, rel.(18)] and [6, rels.(91)
and (93)] of the threshold ASNRs remain valid for arbitrary distribu-
tions of the sources. The first two expressions of this threshold ASNR
dedicated to the ULA are given in the following to be compared to
those derived in the next section.

ξ1 ≈ 2

T

αM
(∆θ)4

(
1 +

√
1 +

T (∆θ)2

2βM

)
(III.7)

ξ2 ≈ 1

T

αM
(∆θ)4

(
1 +

√
1 +

T (∆θ)2

βM

)
, (III.8)

with αM
def
= 10M4

(M+2)(M2−1)
and βM

def
= 5M2

2(M+2)
, for which

the DOA separation is defined here by ∆θ
def
= M(θ1 −

θ2)/(2
√

3)4 associated with the symmetric steering vectors ak =(
e−i

(M−1)θk
2 , e−i

(M−3)θk
2 , .., ei

(M−1)θk
2

)T
where the coordinate

system has its origin at the centroid of the array according to the
parametrization of Lee et al. [6].

IV. RESOLVING POWER OF NONCIRCULAR MUSIC
The previous approach applies to the noncircular MUSIC algo-

rithm by replacing Π, Ry,T and S by Π̃, Rỹ,T and S̃ in (III.5)
respectively. Using the following lemma proved in Appendix A

Lemma 2: For K independent rectilinear, possibly non Gaussian
sources, we have:

E(δRỹ,TBδRỹ,T ) =
1

T

(
Tr(BRỹ)Rỹ + RỹJBTJRỹ +

K∑
k=1

κkãkã
H
k Bãkã

H
k

)
+o(

1

T
)

with ãk
def
=

(
ak

a∗ke
−2iφk

)
,

we prove in Appendix B the following expressions

E(δΠ̃T ) =
1

T

(
Tr(Π̃)Ũ− Tr(Ũ)Π̃

)
+ o(

1

T
) (IV.1)

3We note that due to a mistake in the derivation of [3, (rel.(33)] and
a miscalculation in a series expansion, [3, (rel.(B.2)] and [3, (rel.(35)] are
erroneous. Expression (III.7) is the correct one.

4Most of the papers dealing with this topic use this normalization, so we
also use it in order to simplify comparisons with the literature.

with Ũ
def
= σ2

nS̃#RỹS̃
# =

(
U1 U2

U∗2 U∗1

)
which gives with Π̃ =(

Π1 Π2

Π∗2 Π∗1

)
, Hermitian positive semidefinite matrices

E(δΠ1,T ) =
2

T
(Tr(Π1)U1 − Tr(U1)Π1) + o(

1

T
) (IV.2)

E(δΠ2,T ) =
2

T
(Tr(Π1)U2 − Tr(U1)Π2) + o(

1

T
).(IV.3)

This allows us to derive the mean null spectrum associated with
noncircular MUSIC algorithm (II.2). After simple but tedious alge-
braic manipulations summarized in Appendix C, we obtain under the
assumptions of Lemma 2

E(gAlgNC
T (θ)) = gAlgNC(θ)

+
2

T
(2M −K − 1)[(aH(θ)U1a(θ))(aH(θ)Π1a(θ))−<[(aH(θ)U2a

∗(θ))(aT (θ)Π∗2a(θ))]]

− 4

T
Tr(U1)gAlgNC(θ) + o(

1

T
), (IV.4)

with gAlgNC(θ)
def
= (aH(θ)Π1a(θ))2 − |aT (θ)Π∗2a(θ)|2. Since the

expression of this mean null spectrum depends on the second-order
statistics only, it is the same for the different threshold ASNRs
deduced from it for two sources. Using closed-form expressions of
U1, U2, Π1 and Π2 derived in Appendix D, the following result is
proved in Appendix E after tedious algebraic manipulations.

Result 2: The threshold ASNRs deduced from the Cox (III.3) and
the Sharman and Durrani (III.4) criteria given for the noncircular
MUSIC algorithm with two independent equal-power sources and
an arbitrary array depend only on the second-order statistics of the
sources and are respectively given by

ξ1 ≈ 2

T
α∆θ,∆φ
M

(
1 +

√
1 +

T

2β∆θ,∆φ
M

)
(IV.5)

ξ2 ≈ 1

T
α∆θ,∆φ
M

(
1 +

√
1 +

T

β∆θ,∆φ
M

)
(IV.6)

where ∆φ
def
= φ1−φ2 is the noncircularity phase separation and ∆θ

is defined according to the general parametrization of Lee et al [6]
and where α∆θ,∆φ

M and β∆θ,∆φ
M are expansions in 1/(∆θ)2 without

constant term, whose coefficients depend on M , ∆φ and the array
configuration.
We note that these threshold ASNRs (IV.5), (IV.6) depend not only
on ∆θ, T , M , but also on the noncircularity phase separation
∆φ, contrary to the threshold ASNRs obtained for the conventional
MUSIC algorithm. Using symbolic calculus akin to a high level
language (e.g., Maple software), these intricate expressions reduce
to simple interpretable expressions for weak and large noncircularity
phase separation ∆φ. For example, for a ULA where ∆θ is defined
as in Result 1 to simplify comparisons, we have more precisely the
following approximations . First, in the case sin(2∆φ)� (M−1) ∆θ

2

α∆θ,∆φ
M ≈ 5M4(2M − 3)

(M2 − 1)(M2 − 4)(∆θ)4

β∆θ,∆φ
M ≈ 5M2(2M − 3)

2(M2 − 4)(∆θ)2
(IV.7)

and the behavior of the conventional and noncircular MUSIC algo-
rithms are similar due to the similarity of the dependence in ∆θ in
the expressions (III.7), (III.8), (IV.5) and (IV.6). In the opposite case,
for tan(∆φ)� (M − 1) ∆θ

2
, we prove that

α∆θ,∆φ
M ≈ M2(2M − 3)

(M2 − 1) sin2(∆φ)(∆θ)2

β∆θ,∆φ
M ≈ M2(2M − 3)

(M2 − 1)(1 + cos2(∆φ))(∆θ)2
(IV.8)

and the noncircular MUSIC algorithm largely outperforms the con-
ventional MUSIC algorithm due to the proportionality of α∆θ,∆φ

M
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in 1/(∆θ)2 in the place of 1/(∆θ)4 given in Result 1 for the
conventional MUSIC algorithm. The domain of validity of these
approximated expressions will be specified in the next section.
Naturally, this domain depends on ∆θ, M and the criterion, but it
will be shown that this domain of validity for weak phase separations
is small in contrast to those for large phase separations. For this
second approximation with a large domain of validity, we note that
α∆θ,∆φ
M and β∆θ,∆φ

M are decreasing and increasing function of ∆φ
for ∆φ ∈]0, π/2] respectively. Consequently we have proved the
following result

Result 3: The threshold ASNRs deduced from the Cox (III.3) and
the Sharman and Durrani (III.4) criteria given for the noncircular
MUSIC algorithm with two independent equal-power sources and a
ULA are decreasing function of the phase separation of the sources
for ∆φ ∈]0, π/2] and thus are minimum for ∆φ = π/2.

Consequently, the noncircularity phase separation between the two
sources plays an crucial role in the behavior of the noncircular MU-
SIC algorithm. Furthermore, we note that the expressions of α∆θ,∆φ

M

and β∆θ,∆φ
M depend of the choice of the origin of the coordinate

system, in contrast to αM , and βM obtained for the conventional
MUSIC algorithm. This is explained by the steering vector which has
the structure a(θ) = (ei

2π
λ

rT1 i(θ), ei
2π
λ

rT2 i(θ)..., ei
2π
λ

rTM i(θ))T , where
λ is the wavelength and rm and i(θ) denote the vector pointing from
the array centroid to sensor m and the unit-length arrival vector
form a source in the direction θ, respectively. If the origin of the
coordinate system is moved from the array centroid to the point r,
the new steering vector becomes ei

2π
λ

rT i(θ)a(θ). Consequently, for
rectilinear signals, (II.1) is rewritten as

yt =

K∑
k=1

rt,ke
iφka(θk) + nt where rt,k ∈ R

and when the origin moves, yt becomes

yt =

K∑
k=1

rt,ke
i(φk+ 2π

λ
rT i(θk))a(θk) + nt

and the noncircularity phase and the DOA are coupled. This implies
that this change of the origin of the coordinate system does not
modify the matrices that appear in (III.6) in contrast to those of
(IV.1) and the resolving power of the noncircular MUSIC algorithm
is sensitive to the position of this origin in contrast to the conventional
MUSIC algorithm. Note that this sensitivity to the phase reference
also applies to the theoretical asymptotic variance of the DOA
estimated by the non-circular MUSIC algorithm. As the Cramer Rao
bound is concerned, the noncircular Gaussian Cramer Rao bound [21,
rel. (3.9)] in which the rectilinear property is a priori unknown does
not depend on the phase reference of the array in contrast to the
noncircular Gaussian CRB that takes this rectilinear property as a
priori known.

This quite curious result reminds one of a similar result in cissoid
parameter estimation (see e.g., [22] and [23, pp.273-286]) where
the Cramer Rao bounds of the frequency and phase depend upon
the time at which the first sample is taken and are minimum if the
sampling times are symmetrically located about zero. So, the centroid
of the array that has been chosen as phase origin to simplify the
notation, can be conjectured to be the phase origin that optimizes the
performance of estimation and resolution of closely spaced rectilinear
sources.

V. ILLUSTRATIVE EXAMPLES

To illustrate Results 1, 2 and 3, we consider throughout this section
two independent equal-power BPSK modulated signals impinging on
a ULA of sensors with M = 10 and T = 500 (except for Figs.9
and 10). We clearly see in Figs.1 and 2 that the noncircular MUSIC
algorithm outperforms the conventional MUSIC algorithm except for
very weak noncircularity phase separations for which the ASNR
thresholds of these two algorithms are very similar. Furthermore, we

note that the behaviors of the ASNR threshold given by the two
criteria are very similar although the ASNR thresholds are slightly
weaker for the Sharman and Durrani criterion than for the Cox
criterion. This is explained by the bias of the sample null spectrum at
the true source direction that could imply that although the midpoint
mean null spectrum is less than the mean of the mean null spectrum
in the true directions, the algorithm recognizes two sources because
the Sharman and Durrani criterion is satisfied (see e.g., [8, Fig.3]).
Finally, we cheek from these two figures that the threshold ASNRs are
approximatively to 1/(∆θ)4 for the noncircular MUSIC algorithm
with ∆φ = π/6 and ∆φ = π/2, in contrast to the conventionnal
and noncircular MUSIC algorithm with ∆φ = 0, for which they are
approximatively to 1/(∆θ)2.

Fig.1 Comparison of the threshold ASNRs given by the Cox criterion
as a function of the DOA separation ∆θ associated with the conventional
MUSIC (—) and noncircular MUSIC algorithms (- -) for three values of the
noncircularity phase separation ∆φ.

Fig.2 Comparison of the ASNR thresholds given by the Sharman and
Durrani criterion as a function of the DOA separation ∆θ associated with the
conventional MUSIC (—) and noncircular MUSIC algorithms (- -) for three
values of the noncircularity phase separation ∆φ.

Figs.3 and 4 exhibit the domain of validity of the approxima-
tions of the threshold ASNRs given in the foregoing section for
weak and large noncircularity phase separations ∆φ. From these
figures given for M = 10, these approximations are valid in
a large domain of ∆φ for the second approximation (for which
this domain enlarges when ∆θ decreases which is consistent with
the condition tan(∆φ) � (M − 1) ∆θ

2
) in contrast to the first

approximation (for which it enlarges when ∆θ increases which
is consistent with sin(2∆φ) � (M − 1) ∆θ

2
). We note that

the domains of validity of these approximations are larger for
the Sharman and Durrani criterion than for the Cox criterion.

(a) Cox criterion (b) Sharman and Durrani criterion
Fig.3 Ratio r = actual ASNR threshold/ approximate (derived from (IV.7))
ASNR threshold given by the Cox and the Sharman and Durrani criteria as a
function of the noncircularity phase separation ∆φ for three DOA separations
∆θ.

(a) Cox criterion (b) Sharman and Durrani criterion
Fig.4 Ratio r = actual ASNR threshold/ approximate (derived from (IV.8))
ASNR threshold given by the Cox and the Sharman and Durrani criteria as a
function of the noncircularity phase separation ∆φ for three DOA separations
∆θ.

Figs.5 and 6 show the probability of resolution related to the foregoing two
criteria obtained by Monte Carlo simulations5. Compared with the ASNR
thresholds given by Figs.1 and 2, we see that the ASNR threshold given
by our non probabilistic approach based on the mean null spectrum gT (θ)
corresponds to a probability of resolution that ranges from 0.3 to 0.7 for the
two criteria. Thus this non probabilistic approach gives correct approximate
ASNR for the 0.3-0.7 probability of resolution threshold region in the same
way that for the conventional MUSIC algorithm [3]. Furthermore, we note
that the resolution is much more sensitive to the ASNR for the Sharman and
Durrani criterion than for the Cox criterion.

Fig.5 Probability of resolution given by the Cox criterion (Monte Carlo with
1000 runs) as function of the ASNR for ∆θ = 0.05rd for the noncircular
MUSIC algorithm compared to the conventional MUSIC algorithm.

Fig.6 Probability of resolution given by the Sharman and Durrani criterion
(Monte Carlo with 1000 runs) as function of the ASNR for ∆θ = 0.05rd
for the noncircular MUSIC algorithm compared to the conventional MUSIC
algorithm.

We note that the difference of behavior in resolution between the conven-
tional and noncircular MUSIC algorithms are connected to the accuracy of

5In each simulation trial, the two sources are considered resolved for these
two criteria if sup(g

AlgNC
T (θ1), g

AlgNC
T (θ2)) < g

AlgNC
T (θm) for the Cox

criterion, and g
AlgNC
T (θm + 0.002 ∆θ) + g

AlgNC
T (θm − 0.002 ∆θ) −

2g
AlgNC
T (θm) < 0 for the Sharman and Durrani criterion.
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the DOA estimate given by the noncircular MUSIC algorithm [17] compared
to those of the conventional MUSIC algorithm. This is illustrated in Fig.7
and 8 where the variance of the estimated DOA and of the separation of
DOA are respectively exhibited. In these figures, the theoretical asymptotic
variances are derived form the covariance of the asymptotic distribution
of the DOAs estimated by the conventional and the noncircular MUSIC
given in [17]. We note in particular that the performances given by the
noncircular MUSIC algorithms for ∆φ = 0 and those of the conventional
MUSIC algorithms are theoretically and empirically different but very closed.

Fig.7 Theoretical asymptotic variance of the DOA estimates given by the
conventional MUSIC (—) and the noncircular MUSIC (- -) algorithms and
empirical variance given by the conventional MUSIC (+) and the noncircular
MUSIC (o) algorithms (with 1000 Monte Carlo runs) for three values of the
noncircularity phase separation ∆φ as a function of the DOA separation ∆θ,
for SNR = 20dB.

Fig.8 Theoretical asymptotic variance of the difference between DOA
estimates given by the conventional MUSIC (—) and the noncircular MUSIC
(- -) algorithms and empirical variance of the difference between DOA esti-
mates given by the conventional MUSIC (+) and the noncircular MUSIC (o)
algorithms (with 1000 Monte Carlo runs) for three values of the noncircularity
phase separation ∆φ as a function of the DOA separation ∆θ, for SNR
= 20dB.

Finally, we question the domain of validity of our approach that is totally
based on the contention that the mean value of the sample null spectrum can
be taken as representative of the ensemble of sample null spectra obtained for
a large number T of snapshots and a fixed number M of sensors and more
specifically under the condition T �M � 1. In Fig.9 and 10, M = 10 and
∆θ = 0.1rd are fixed, in contrast to the number T of snapshots. First, we
cheek that because T � 2β∆θ,∆φ

M , the ASNR threshold varies as 2
T
α∆θ,∆φ
M .

Then compared with the ASNR threshold given by Fig.9, we see in Fig.10 that
the ASNR threshold given by our approach based on the mean null spectrum
gT (θ) corresponds to a probability of resolution that keeps on ranging from
0.2 to 0.7 for the Cox criterion provided that T ≤ 7. Consequently our
approach seems to be valid at least in the domain M � 1 and T/M ≥ 1.
Consequently, the Cox and the Sharman and Durrani criteria that are very
close, enable one to obtain a coarse estimate of the ASNR threshold in a
relatively large domain of validity.

Fig.9 Comparison of the threshold ASNRs given by the Cox criterion as
a function of the number T of snapshots associated with the conventional
MUSIC (—) and noncircular MUSIC algorithms (- -) for ∆θ = 0.1rd and
∆φ = π/2rd.

Fig.10 Probability of resolution given by the Cox criterion (Monte Carlo
with 1000 runs) as function of the ASNR for ∆θ = 0.1rd for the noncircular
MUSIC algorithm with ∆φ = π/2rd, for six values of the number T of
snapshots.

VI. CONCLUSION
This paper has presented a theoretical analysis of the resolution according

to the Cox and the Sharman and Durrani criteria for the conventional and
noncircular MUSIC algorithms for arbitrary circular and noncircular second-
order distribution of two closely spaced transmitters. It has been proved
that these threshold ASNRs given by the conventional MUSIC algorithm do
not depend on the distribution of the sources including their noncircularity,
in contrast to the noncircular MUSIC algorithm for which they are very
sensitive to the noncircularity phase separation of the sources. More precisely,
it has been proved that for very weak phase separations the behavior of
the conventional and noncircular MUSIC algorithms are very similar, in
contrast to large phase separation for which the noncircular MUSIC algorithm
comfortably outperforms the conventional MUSIC algorithm.

APPENDIX
We recall for the ease of the reader the following identities that will be

frequently used in all Appendices (see e.g., [24, th. 7.7, 7.16 and 7.17])

(A⊗B)(C⊗D) = AC⊗BD (A.1)

vec(ABC) = (CT ⊗A)vec(B) (A.2)

Tr(ABCD) = vecT (AT )(DT ⊗B)vec(C). (A.3)

First, using the vectorization operator and (A.2), we have

vec(E(δRy,TBδRy,T )) = E(δRT
y,T ⊗ δRy,T )vec(B), (A.4)

with

E(δRT
y,T ⊗ δRy,T ) =

1

T 2
E

(
T∑
t=1

T∑
t′=1

(y∗t y
T
t −RT

y )⊗ (yt′y
H
t′ −Ry)

)

=
1

T
E
(

(y∗t y
T
t −RT

y )⊗ (yty
H
t −Ry)

)
=

1

T

(
E(y∗t y

T
t ⊗ yty

H
t )−RT

y ⊗Ry

)
,

where y∗t y
T
t ⊗ytyHt = (y∗t ⊗yt)(yTt ⊗yHt ) = vec(ytyHt )vecH(ytyHt ).

Using the following relation deduced from the derivation of [25] in the
particular case of independent sources

E[vec(yty
H
t )vecH(yty

H
t )]− vec(Ry)vecH(Ry) = RT

y ⊗Ry + K(R
′
y ⊗R

′∗
y )

+

K∑
k=1

κk(A∗ ⊗A)(eK,k ⊗ eK,k)(eTK,k ⊗ eTK,k)(AT ⊗AH),

we obtain

E(δRT
y,T⊗δRy,T ) =

1

T

(
vec(Ry)vecH(Ry) + K(R

′
y ⊗R

′∗
y ) +

K∑
k=1

κk(A∗ ⊗A)(eK,k ⊗ eK,k)(eTK,k ⊗ eTK,k))(AT ⊗AH)

)
.

Incorporating this relation in (A.4) gives

vec(E(δRy,TBδRy,T )) =
1

T

(
vec(Ry)

[
vecH(Ry)vec(B)

]
+ K(R

′
y ⊗R

′∗
y )vec(B)

+
K∑
k=1

κk(A∗ ⊗A)(eK,k ⊗ eK,k)(eTK,k ⊗ eTK,k))(AT ⊗AH)vec(B)

)
,

and using (A.1), (A.2), (A.3) and AeK,k = ak with A
def
= [a1, ..,ak] proves

Lemma 1.
For K independent rectilinear sources, x∗k,t = e−2iφkxk,t, k = 1, ..,K

implies that ỹt =
∑K
k=1 xk,tãk+ ñt and consequently the proof of Lemma

1 extends by replacing Ry,T , Ry , R′y and ak by Rỹ,T , Rỹ , R′ỹ and ãk ,

respectively. Since R′ỹ
def
= E(ỹỹT ) = RỹJ, Lemma 2 is proved.

First, note that the first order term of (III.5) in E(δΠT ) vanishes because
E(δRy,T ) = O. Then, using Lemma 1 with B = Π, S# and S#2

, the
contributions of Tr(BRy)Ry in E(δΠT ) vanishes except the following first
two terms because RyΠ = σ2

nΠ and S#Π = O:

S#Tr(ΠRy)RyS
# = Tr(σ2

nΠ)S#RyS
# = Tr(Π)U

−ΠTr(S#2Ry)RyΠ = −ΠTr(S#RyS
#)RyΠ = −Tr(U)Π.

Finally after a close examination, all the contributions of R′yB
TR′∗y and

aka
H
k Baka

H
k in E(δΠT ) vanishes because ΠR′y = O and Πak = 0

respectively, and consequently (III.6) is proved.
Relation (IV.1) is proved in the same way by replacing Ry , Π and S by

Rỹ , Π̃ and S̃ respectively and using the relations JΠ̃TJ = Π̃, JS̃#T J =

S̃# and JS̃#2T J = S̃#2 because S̃# and S̃#2 are structured as Π̃ in the
form

(
(�) (×)

(×)∗ (�)∗

)
.

To simplify the expression of E(g
AlgNC
T (θ)), introduce M

def
=

a(θ)aH(θ) and N
def
= a(θ)aT (θ) for which we have:

g
AlgNC
T (θ) = Tr(Π1,TM)Tr(Π1,TM)− Tr(Π∗2,TN)Tr(Π2,TN∗),

which gives

E(g
AlgNC
T (θ)) = gAlgNC (θ) (A.1)

+ 2Tr[E(δΠ1,T )M]Tr(Π1M)− 2<
(
Tr[E(δΠ2,T )N∗]Tr(Π∗2N)

)
+ E

[
Tr(δΠ1,TM)Tr(δΠ1,TM)

]
− E

[
Tr(δΠ∗2,TN)Tr(δΠ2,TN∗)

]
+ o(

1

T
).

The first-order terms of (A.1) are deduced from (IV.2) and (IV.3) which gives
from Tr[Π̃) = 2Tr[Π1) = 2M −K where a

def
= a(θ) for sake of brevity.

Tr[E(δΠ1,T )M] =
1

T

(
(2M −K)(aHU1a)− 2Tr(U1)(aHΠ1a)

)
+ o(

1

T
)

Tr[E(δΠ2,T )N∗] =
1

T

(
(2M −K)(aHU2a∗)− 2Tr(U1)aHΠ2a∗

)
+ o(

1

T
).



6

Introducing these expressions, the first-order terms of (A.1) are given by

2Tr[E(δΠ1,T )M]Tr(Π1M) =
2

T

(
(2M −K)(aHU1a)(aHΠ1a)− 2Tr(U1)(aHΠ1a)2

)
+ o(

1

T
) (A.2)

2<
(
Tr[E(δΠ2,T )N∗]Tr(Π∗2N)

)
=

2

T

(
(2M −K)<

(
(aHU2a∗)(aTΠ∗2a)

)
− 2Tr(U1)|aHΠ2a∗|2

)
+ o(

1

T
)(A.3)

The second-order terms of (A.1) are given by

E
[
Tr(δΠ1,TM)Tr(δΠ1,TM)

]
= vecT (MT )E

(
vec(δΠ1,T )vecH(δΠ1,T )

)
vec(M)

=
1

T
vecT (MT )CΠ1vec(M) + o(

1

T
) (A.4)

E
[
Tr(δΠ∗2,TN)Tr(δΠ2,TN∗)

]
= vecT (N)E

(
vec(δΠ∗2,T )vecT (δΠ2,T )

)
vec(N∗)

=
1

T
vecT (N)C∗Π2

vec(N∗) + o(
1

T
), (A.5)

where CΠ1 and CΠ2 denote the covariance matrices of the asymptotic
distribution of Π1,T and Π2,T respectively, whose following expressions
are proved in [17].

CΠ1
= (Π∗1 ⊗U1) + (U∗1 ⊗Π1) + K [(Π2 ⊗U∗2) + (U2 ⊗Π∗2)]

CΠ2
= (I + K)(Π1 ⊗U1) + (U1 ⊗Π1).

Introducing these expressions in (A.4) and (A.5) gives after straightforward
algebra manipulations

E
[
Tr(δΠ1,TM)Tr(δΠ1,TM)

]
=

2

T
<[(aHU2a∗)(aTΠ∗2a)] + o(

1

T
)(A.6)

E
[
Tr(δΠ∗2,TN)Tr(δΠ2,TN∗)

]
=

2

T
(aHU1a)(aHΠ1a) + o(

1

T
).(A.7)

Incorporating expressions (A.2), (A.3), (A.6) and (A.7) in (A.1) proves relation
(IV.4).

To give the expressions of the blocks U1, U2 and Π1, Π2 from

Ũ =

(
U1 U2

U∗2 U∗1

)
and Π̃ =

(
Π1 Π2

Π∗2 Π∗1

)
respectively, amounts

to deriving the two eigenvectors and associated eigenvalues of the rank two

matrice S̃ = σ2
x(ã1ãH1 + ã2ãH2 ) with ãk

def
=

(
ak

a∗ke
−2iφk

)
, k = 1, 2.

The nonzero eigenvalues (λk)k=1,2 of S̃ are derived from their sum and
product, and consequently given by the roots of the quadratic equation

λ2 − Tr(S̃)λ+ Det

(
σ2
x

(
ãH1
ãH2

)(
ã1, ã2

))
= 0,

which gives using Tr(S̃) = 4Mσ2
x and Det

(
σ2
x

(
ãH1
ãH2

)(
ã1, ã2

))
=

4M2σ4
x

(
1− %2 cos2(ψ −∆φ)

)
where %1,2 = %eiψ

def
=

aH1 a2

M
is the

spatial complex-valued correlation coefficient between the two sources and
∆φ

def
= φ1 − φ2

λk = 2Mσ2
x

(
1 + (−1)k% cos(ψ −∆φ)

)
, k = 1, 2. (A.1)

The associated eigenvectors (vk)k=1,2 span the two-dimensional signal
subspace generated by (ã1, ã2) and therefore they are linear combinations
of ã1 and ã2 with S̃vk = λkvk , k = 1, 2. Solving this linear system, we
obtain

vk =
ã1 + (−1)ke−i∆φã2

2
√
M(1 + (−1)k% cos(ψ −∆φ))

, k = 1, 2. (A.2)

With Ũ
def
= σ2

nS̃#RỹS̃
# = σ2

nS̃#(S̃ + σ2
nI)S̃# = σ2

nS̃# + σ4
nS̃#2

and
S̃ = λ1v1vH1 + λ2v2vH2 , we obtain

Ũ =

(
σ2
n

λ1
+
σ4
n

λ2
1

)
v1vH1 +

(
σ2
n

λ2
+
σ4
n

λ2
2

)
v2vH2 .

Developing Ũ w.r.t. physical parameters by using the expressions of
(λk)k=1,2 and (vk)k=1,2 given in (A.1) and (A.2), we obtain after tedious
but straightforward algebra manipulations

U1 = γ1(a1aH1 + a2aH2 ) + γ2(ei∆φa1aH2 + e−i∆φa2aH1 ) (A.3)

U2 = γ1(e2iφ1a1aT1 + e2iφ2a2aT2 ) + γ2e
i(φ1+φ2)(a1aT2 + a2aT1 )(A.4)

where γ1 and γ2 are the following ASNR (defined by r
def
= Mσ2

x/σ
2
n)

dependent geometric terms

γ1 =
1

4rM(1− %2 cos2(ψ −∆φ))

(
1 + %2 cos2(ψ −∆φ) +

1 + 3%2 cos2(ψ −∆φ)

2r(1− %2 cos2(ψ −∆φ))

)
γ2 =

−% cos(ψ −∆φ))

2rM(1− %2 cos2(ψ −∆φ))2

(
1 +

3 + %2 cos2(ψ −∆φ)

4r(1− %2 cos2(ψ −∆φ))

)
.

Finally, Π1 and Π2 are deduced from Π̃ = I− (v1vH1 + v2vH2 ) and the
expressions of v1 and v2 given in (A.2). After tedious but straightforward
algebra manipulations, we obtain

Π1 = I + τ1(a1aH1 + a2aH2 ) + τ2(ei∆φa1aH2 + e−i∆φa2aH1 )(A.5)

Π2 = τ1(e2iφ1a1aT1 + e2iφ2a2aT2 ) + τ2e
i(φ1+φ2)(a1aT2 + a2aT1 ),(A.6)

where τ1 and τ2 are the following purely geometric terms

τ1 = −
1

2M(1− %2 cos2(ψ −∆φ))

τ2 = −τ1% cos(ψ −∆φ).

For simplify the notations to derive the two expressions of the threshold
ASNR ξ1 and ξ2 given by the Cox and the Sharman and Durrani criteria
respectively, we first consider centrosymmetric arrays6. This assumption7 that
means that the steering vectors a(θ) satisfy Ja(θ) = a∗(θ), implies that the

different spatial correlation coefficients: %1,2, %k,m
def
=

aHk am
M

, k = 1, 2

with am
def
= a(θm), %

′
k,m

def
=

aHk a
′
m

M
, k = 1, 2 with a

′
m

def
=

da(θ)
dθ
|θ=θm

and %
′′
k,m

def
=

aHk a
′′
m

M
, k = 1, 2 with a

′′
m

def
=

d2a(θ)
dθ

2
|θ=θm that will be

used in the proof are real-valued.
Consider the Cox criterion. From (IV.4)

E(g
AlgNC
T (θ1)) =

2

T
(2M−3)[(aH1 U1a1)(aH1 Π1a1)−<[(aH1 U2a∗1)(aT1 Π∗2a1)]]+o(

1

T
).

Expressing aH1 U1a1 and aH1 U2a∗1 as function of the ASNR r using (A.3)
and (A.4) respectively, and also aH1 Π1a1 and aT1 Π∗2a1 as function of the
spatial correlation coefficient %1,2, using (A.5) and (A.6) respectively, we
obtain after tedious but straightforward algebraic manipulations

E(g
AlgNC
T (θ1)) =

1

T

(
1

r
h1(%1,2,∆φ) +

1

r2
h2(%1,2,∆φ)

)
+ o(

1

T
),

(A.1)
with

h1(%1,2,∆φ) =
(2M − 3)M2(1− %2

1,2)

2(1− %2
1,2 cos2(∆φ))

h2(%1,2,∆φ) =
h1(%1,2,∆φ)

2(1− %2
1,2 cos2(∆φ))

.

To derive E(g
AlgNC
T (θm)), aHmU1am and aHmU2a∗m are expressed as

function of the ASNR r using (A.3) and (A.4) respectively, and also
aHmΠ1am and aTmΠ∗2am as function of %1,m and %2,m using (A.5)
and (A.6) respectively, we obtain after tedious but straightforward algebraic
manipulations

E(g
AlgNC
T (θm) = gAlgNC (θm) +

1

T

(
1

r
h1,m +

1

r2
h2,m

)
+ o(

1

T
),

(A.2)
where gAlgNC (θm), h1,m and h2,m depend on %1,2, %1,m, %2,m and ∆φ,
and are given by

gAlgNC (θm) =
M2

1− %2
1,2 cos2(∆φ)

(
1− %2

1,2 − %2
1,m − %2

2,m + 2%1,2%1,m%2,m

+ sin2(∆φ)(%1,m%2,m(%1,m%2,m − 2%1,2) + %2
1,2)
)

h1,m =
2gAlgNC (θm) + (2M − 3)η1

1− %2
1,2 cos2(∆φ)

h2,m =
gAlgNC (θm) + (2M − 3)η2

1− %2
1,2 cos2(∆φ)

,

6We note that this structure is very used in practice because uniform linear,
uniform circular and regular hexagonal shaped arrays [26] are centrosymmet-
ric.

7We note that this assumption necessarily implies that the origin of the
coordinate system is at the array centroid.
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where

η1 =
M2

2(1− %2
1,2 cos2(∆φ))

(
cos2(∆φ)

(
2%1,m%2,m(2%1,2 − %1,m%2,m)− %2

1,2(%2
1,m + %2

2,m)
)
− %2

1,m − %2
2,m + 2%1,m%2,m

)
η2 =

M2

4(1− %2
1,2 cos2(∆φ))

(
(1 + %2

1,2 cos2(∆φ))(2%2
1,m%

2
2,m − %2

1,m − %2
2,m)

+ 2 cos2(∆φ)
(
2%1,2%1,m%2,m − %2

1,2(%2
1,m + %2

2,m) + %1,m%2,m(%1,2 − %1,m%2,m)(1 + %1,2 cos(∆φ))
))
.

Finally, the threshold ASNR given by the Cox criterion is deduced from the
value ξ1 of r for which expressions (A.1) and (A.2) are equal

ξ1 =
1

T
α1

(
1 +

√
1 +

T

β1

)

with α1
def
=

h1−h1,m

2gAlgNC (θm)
and β1

def
=

(h1−h1,m)2

4gAlgNC (θm)(h2−h2,m)
which

depend on ∆θ, ∆φ, M and the specific array. Using expansions of the
spatial correlation coefficients8 %1,2, %1,m and %2,m w.r.t. ∆θ for closely
spaced sources and a symbolic calculus akin to a high level language to
achieve the algebra manipulations, completes the proof of (IV.5).

To consider now the Sharman and Durrani criterion for which the threshold
ASNR ξ2 is deduced from nulling the second derivative of the mean null
spectrum at the midpoint θm (see (III.4)), we follow the same steps used
for deriving the threshold ASNR associated with the conventional MUSIC
algorithm detailed in [10]. The main steps are given in the following in which
the mean null spectrum given by (IV.4) is written for K = 2 as

E(g
AlgNC
T (θ))=(1−

4

T
Tr(U1))gAlgNC (θ)−

2(2M − 3)

T
f(θ) + o(

1

T
),

(A.3)
with

f(θ)
def
= < (Tr(U2N∗)Tr(Π∗2N))− Tr(Π1M)Tr(U1M).

Differentiating (A.3) twice w.r.t. θ, leads to,

d2E(g
AlgNC
T (θ))

dθ2
|θ=θm = (1−

4

T
Tr(U1))

d2gAlgNC (θ)

dθ2
|θ=θm−

2(2M − 3)

T

d2f(θ)

dθ2
|θ=θm+o(

1

T
),

(A.4)
with

d2gAlgNC (θ)

dθ2
|θ=θm = 2

(
(Tr(Π1M

′
m))2 + Tr(Π1Mm)Tr(Π1M

′′
m)− |Tr(Π2N

′∗
m)|2 −<(Tr(Π2N∗m)Tr(Π∗2N

′′
m))

)
d2f(θ)

dθ2
|θ=θm = <

(
2Tr(U2N

′∗
m)Tr(Π∗2N

′
m) + Tr(U2N

′′∗
m )Tr(Π∗2Nm) + Tr(U2N∗m)Tr(Π∗2N

′′
m)
)

− 2Tr(Π1M
′
m)Tr(U1M

′
m)− Tr(Π1M

′′
m)Tr(U1Mm)− Tr(Π1Mm)Tr(U1M

′′
m),

where Mm
def
= M(θm), Nm

def
= N(θm), M′m

def
=

dM(θ)
dθ
|θ=θm , N′m

def
=

dN(θ)
dθ
|θ=θm , M

′′
m

def
=

d2M(θ)

dθ2
|θ=θm and N

′′
m

def
=

d2N(θ)

dθ2
|θ=θm . By

expressing Tr(U1Mm), Tr(U1M
′
m) and Tr(U1M

′′
m), and Tr(U2N∗m),

Tr(U2N
′∗
m) and Tr(U2M

′′∗
1,m) as a function of the ASNR r using

(A.3) and (A.4) respectively, and expressing Tr(Π1Mm), Tr(Π1M
′
m) and

Tr(Π1M
′′
m), and Tr(Π2N∗m), Tr(Π2N

′∗
m) and Tr(Π2N

′′∗
m ) as a function

of %
′
k,m and %

′′
k,m, using (A.5) and (A.6) respectively, we obtain after tedious

but straightforward algebraic manipulations

d2f(θ)

dθ2
|θ=θm =

ν1

r
+
ν2

r2
, (A.5)

with

ν1
def
=

M2

2(1− %2
1,2 cos2(∆φ))2

(
8M2 sin2(∆φ)((%1,m%

′
2,m + %′1,m%2,m)2 + %1,m%2,mk1)− k2 − %1,2 cos2(∆φ) (%1,2k2 − 2k1)

)
ν2

def
=

M2

4(1− %2
1,2 cos2(∆φ))3

(
8M2 sin2(∆φ)(1 + %2

1,2 cos2(∆φ))((%1,m%
′
2,m + %′1,m%2,m)2 + %1,m%2,mk1)

−k2 − %1,2 cos2(∆φ)
(
3k2 − k1(3 + %2

1,2 cos2(∆φ))
))

8For example, for a ULA, using the parametrization recalled at the end

of Section III, %1,2 =
sin(M ∆θ

2
)

M sin( ∆θ
2

)
and %1,m = %2,m =

sin(M ∆θ
4

)

M sin( ∆θ
4

)
with

sin(M ∆θ
2

)

M sin( ∆θ
2

)
= 1− (M2−1)(∆θ)2

24
+

(M2−1)(3M2−7)(∆θ)4

5760
+O((∆θ)6).

where k1
def
= %1,m%

′′
2,m + %

′′
1,m%2,m + 2%

′
1,m%

′
2,m and k2

def
= %

′2
1,m +

%
′2
2,m+%1,m%

′′
1,m+%2,m%

′′
2,m and where the spatial correlation coefficients

%
′
k,m, %

′′
k,m, k = 1, 2 depend on ∆θ, M and the specific array. From

the expression of U1 given by (A.3), where here %1,2 is real-valued and
consequently ψ = 0, we obtain

Tr(U1) =
1

2(1− %2
1,2 cos2(∆φ))

1

r
+

(1 + %2
1,2 cos2(∆φ))

4(1− %2
1,2 cos2(∆φ))2

1

r2
. (A.6)

Inserting (A.6) and (A.5) into (A.4), we obtain after straightforward algebraic
manipulations

d2E(g
AlgNC
T (θ))

dθ2
|θ=θm =

d2gAlgNC (θ)

dθ2
|θ=θm−

1

T

[
1

r
h
′
1,m +

1

r2
h
′
2,m

]
,

(A.7)
where d2gAlgNC (θ)

dθ2
|θ=θm , h

′
1,m, h

′
2,m depend on ∆θ, ∆φ, M and the

specific array are given by

d2gAlgNC (θ)

dθ2
|θ=θm =

2M2

(1− %2
1,2 cos2(∆φ))2

(
(1− %2

1,2 cos2(∆φ))(%1,2k1 cos2(∆φ)− k2)

+ sin2(∆φ)
(
(1− %2

1,2 cos2(∆φ))(%1,m%
′
2,m + %′1,m%2,m) + k3 − %2

1,2%1,m%2,mk1 cos2(∆φ)
)) def

= hm

h
′
1,m

def
=

2(hm + (2M − 3)ν1(1− %2
1,2 cos2(∆φ)))

1− %2
1,2 cos2(∆φ)

h
′
2,m

def
=

hm(1 + %2
1,2 cos2(∆φ)) + 2(2M − 3)ν2(1− %2

1,2 cos2(∆φ))2

(1− %2
1,2 cos2(∆φ))2

.

Finally, the threshold ASNR given by the Sharman and Durrani criterion is
deduced from the value ξ2 of r for which expression (A.7) of the second
derivative of the mean null spectrum at the midpoint θm is null

ξ2 =
1

T
α2

(
1 +

√
1 +

T

β2

)
,

with α2
def
=

h
′
1,m

2hm
and β2

def
=

h
′2
1,m

4hmh
′
2,m

which depend on ∆θ, ∆φ, M and

the specific array. Using expansions9 of the spatial correlation coefficients
%1,2, %1,m, %2,m and of %

′
1,m, %

′
2,m %

′′
1,m, %

′′
2,m w.r.t. ∆θ for closely

spaced sources and a symbolic calculus akin to a high level language to
achieve the algebra manipulations, completes the proof of (IV.6).

To extend the proof to an arbitrary array, it is convenient to use the general
parametrization proposed by Lee et al [6] that has been recalled at the end
of Section IV where ∆θ is defined here by ∆θ = θ1− θ2 rather than ∆θ =
2π
λ

√
1
M

∑M
m=1 rTm(i(θ1)− i(θ2)) [6, rel.8]. In this case, all the steps of the

previous proof extend, but now the spatial correlation coefficients %1,2, %k,m
%
′
k,m and %

′′
k,m, k = 1, 2 are generally complex-valued and consequently

the notation are much cumbersome and furthermore the expansions of the
spatial correlation coefficients are much more involved. For example in the
derivation of %1,2 and %1,m, we obtain:

%1,2 =
1

M

M∑
m=1

ei
4π
λ

rTmi0 sin( ∆θ
2

) and %1,m =
1

M

M∑
m=1

ei
2π
λ

rTm((cos( ∆θ
2

)−1)im+sin( ∆θ
2

)i0)

where i0 is the unit vector parallel to i1 − i2 and im is the bisector of i1
and i2, which gives the expansions

%1,2 = 1−
1

M

M∑
m=1

(
a2
m

2
(∆θ)2 + i

a3
m

6
(∆θ)3 −

a4
m + a2

m

24
(∆θ)4

)
+O((∆θ)5),

%1,m = 1−
1

M

M∑
m=1

(
1

8
a2
m(∆θ)2 +

1

48
am(ia2

m − 3bm)(∆θ)3 −
1

384
(4a2

m − 3b2m + 6ibma
2
m + a4

m)(∆θ)4

)
+O((∆θ)5)

9For example, for a ULA using the parametrization re-
called at the end of Section III, %

′
1,m = −%′2,m =

M cos(M ∆θ
4

) sin( ∆θ
4

)−cos( ∆θ
4

) sin(M ∆θ
4

)

2M sin2( ∆θ
4

)
= − (M2−1)(∆θ)

24
+

(M2−1)(3M2−7)(∆θ)3

11520
+ O((∆θ)5) and %

′′
1,m = −%′′2,m =

1

4M sin3( ∆θ
4

)

(
sin(M ∆θ

4
)(2− (1 +M2) sin2( ∆θ

4
))−M cos(M ∆θ

4
) sin( ∆θ

2
)
)

=

−M
2−1
12

+
(M2−1)(3M2−7)(∆θ)2

1920
− (M2−1)(3M4−18M2+31)(∆θ)4

516096
+

O((∆θ)5).
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with am
def
= 2π

λ
rTmi0 and bm

def
= 2π

λ
rTmim.
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